文档库 最新最全的文档下载
当前位置:文档库 › 航模基础知识空气动力学

航模基础知识空气动力学

航模基础知识空气动力学
航模基础知识空气动力学

航模基础知识空气动力学

一章基础物理

本章介绍一些基本物理观念,在此只能点到为止,如果你在学校已上过了或没兴趣学,请跳过这一章直接往下看。第一节速度与加速度速度即物体移动的快慢及方向,我们常用的单位是每秒多少公尺﹝公尺/秒﹞加速度即速度的改变率,我们常用的单位是﹝公尺/秒/秒﹞,如果加速度是负数,则代表减速。第二节牛顿三大运动定律第一定律:除非受到外来的作用力,否则物体的速度(v)会保持不变。没有受力即所有外力合力为零,当飞机在天上保持等速直线飞行时,这时飞机所受的合力为零,与一般人想象不同的是,当飞机降落保持相同下沉率下降,这时升力与重力的合力仍是零,升力并未减少,否则飞机会越掉越快。第二定律:某质量为m 的物体的动量(p = mv)变化率是正比于外加力F 并且发生在力的方向上。此即著名的F=ma 公式,当物体受一个外力后,即在外力的方向产生一个加速度,飞机起飞滑行时引擎推力大于阻力,于是产生向前的加速度,速度越来越快阻力也越来越大,迟早引擎推力会等于阻力,于是加速度为零,速度不再增加,当然飞机此时早已飞在天空了。第三定律:作用力与反作用力是数值相等且方向相反。你踢门一脚,你的脚也会痛,因为门也对你施了一个相同大小的力第三节力的平衡作用于飞机的力要刚好平衡,如果不平衡就是合力不为零,依牛顿第二定律就会产生加速度,为了分析方便我们把力分为X、Y、Z 三个轴力的平衡及绕X、Y、Z 三个轴弯矩的平衡。轴力不平衡则会在合力的方向产生加速度,飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞,升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称x 及y 方向﹝当然还有一个z 方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x 方向阻力与推力大小相同方向相反,故x 方向合力为零,飞机速度不变,y 方向升力与重力大小相同方向相反,故y 方向合力亦为零,飞机不升降,所以会保持等速直线飞

弯矩不平衡则会产生旋转加速度,在飞机来说,X 轴弯矩不平衡飞机会滚转,

Y 轴弯矩不平衡飞机会偏航、Z 轴弯矩不平衡飞机会俯

第四节伯努利定律

伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力

越小,速度越小,静压力越大,这里说的流体一般是指空气或水,在这里当然是

指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢,

静压力较大,两边互相较力,于是机翼就被往上推去,然后飞机就

飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流

经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无

法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上

缘的质点会比流经机翼的下缘质点先到达后缘

我曾经在杂志上看过某位作者说飞机产生升力是因为机翼有攻角,当气流

通过时机翼的上缘产生”真空”,于是机翼被真空吸上去﹝如图1-6﹞,他的真

空还真听话,只把飞机往上吸,为什么不会把机翼往后吸,把你吸的动都不能动,

还有另一个常听到的错误理论有时叫做***理论,这理论认为空气的质点如同子

弹一般打在机翼下缘,将动量传给机翼,这动量分成一个往上的分量于是产生升

力,另一个分量往后于是产生阻力﹝如图1-7﹞,可是克拉克Y 翼及内凹翼在攻

角零度时也有升力,而照这***理论该二种翼型没有攻角时只有上面”挨子

弹”,应该产生向下的力才对啊,所以机翼不是风筝当然上缘也没有所谓真空。

伯努利定律在日常生活上也常常应用,最常见的可能是喷雾杀虫剂了﹝如

图1-8﹞,当压缩空气朝A 点喷去,A 点附近的空气速度增大静压力减小,B 点的

大气压力就把液体压到出口,刚好被压缩空气喷出成雾状,读者可以在家里用杯

子跟吸管来试验,压缩空气就靠你的肺了,表演时吸管不要成90 度,倾斜一点

点,以免空气直接吹进管内造成皮托管效应,效果会更好。

第一节翼型介绍

飞机最重要的部分当然是机翼了,飞机能飞在空中全靠机翼的浮力,机翼

的剖面称之为翼型,为了适应各种不同的需要,航空前辈们发展了各种不同的翼

型,从适用超音速飞机到手掷滑翔机的翼型都有,翼型的各部名称如﹝图3-1﹞,

100 年来有相当多的单位及个人做有系统的研究,与模型有关的方面比较重要的

发展机构及个人有:

1NACA:国家航空咨询委员会即美国太空总署﹝NASA﹞的前身,有一系列之翼型

研究,比较有名的翼型是”四位数”翼型及”六位数”翼型,其中”六位

数” 翼型是层流翼。

2易卜拉:易卜拉原先发展滑翔机翼型,后期改研发模型飞机翼型。

3渥特曼:渥特曼教授对现今真滑翔机翼型有重大贡献。

4哥庭根:德国一次大战后被禁止发展飞机,但滑翔机没在禁止之列,所以哥庭

根大学对低速﹝低雷诺数﹞飞机翼型有一系列的研究,对遥控滑翔机及自

由飞﹝无遥控﹞模型非常适用。

5班奈狄克:匈牙利的班奈狄克翼型是专门针对自由飞模型,有很多翼型可供选

择。

有些翼型有特殊的编号方式让你看了编号就大概知道其特性,如NACA2412,

第一个数字2 代表中弧线最大弧高是2%,第二个数字4 代表最大弧高在前缘算

起40%的位置,第三、四数字12 代表最大厚度是弦长的12%,所以NACA0010,

因第一、二个数字都是0,代表对称翼,最大厚度是弦长的10%,但要注意每家

命名方式都不同,有些只是单纯的编号。

因为翼型实在太多种类了,一般人如只知编号没有坐标也搞不清楚到底长

什么样,所以在模型飞机界称呼翼型一般常分成以下几类﹝如图3-2﹞:

1全对称翼:上下弧线均凸且对称。

8

2半对称翼:上下弧线均凸但不对称。

3克拉克Y 翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y 翼最有名,故把这类翼型都叫克拉克Y 翼,但要注意克拉克Y 翼

也有好几种。

4S 型翼:中弧线是一个平躺的S 型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。

5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。

6其它特种翼型。

以上的分类只是一个粗糙的分类,在观察一个翼型的时候,最重要的是找

出它的中弧线,然后再看它中弧线两旁厚度分布的情形,中弧线弯曲的方式、程度大至决定了翼型的特性,弧线越弯升力系数就越大,但一般来说光用眼睛看非常不可靠,克拉克Y 翼的中弧线就比很多内凹翼还弯。

第二节飞行中之阻力

如何减少阻力是飞机设计的一大难题,飞行中飞机引擎的推力全部用来克服阻力,如果可以减少阻力则飞机可以飞得更快,不然可以把引擎改小减少重量及耗油量,拿现代私人小飞机与一次大战战斗机相比,引擎大约都差不多一百多匹马力,现代私人小飞机光洁流线的机身相对于一次大战战斗机整架飞机一堆乱七八糟的支柱与张线,现代飞机速度几乎是它前辈的一倍,所以减少阻力是我们设计飞机时需时时刻刻要注意的,我们先要了解阻力如何产生,一架飞行中飞机阻力可分成四大类:

1磨擦阻力:空气分子与飞机磨擦产生的阻力,这是最容易理解的阻力但不很重要,只占总阻力的一小部分,当然为减少磨擦阻力还是尽量把飞机磨光。

2形状阻力:物体前后压力差引起的阻力,平常汽车广告所说的风阻系数就是指形状阻力系数﹝如图3-3﹞,飞机做得越流线形,形状阻力就越小,尖锥状

的物体形状阻力不见得最小,反而是有一点钝头的物体阻力小,读者如果

有机会看到油轮船头水底下那部分,你会看到一个大头,高级滑翔机大部

9

分也有一个大头,除了提供载人的空间外也是为了减少形状阻力。

3诱导阻力:机翼的翼端部因上下压力差,空气会从压力大往压力小的方向移动,部份空气不会规规矩矩往后移动,而从旁边往上翻,因而在两端产生涡流

﹝如图3-4﹞,因而产生阻力,这现象在飞行表演时,飞机翼端如有喷烟时

可看得非常清楚,你可以注意涡流旋转的方向﹝如图3-5﹞,﹝图3-6﹞是NASA 的照片,可看见壮观的涡流,因为这种涡流延伸至水平尾翼时,从水

平尾翼的观点气流是从上往下吹,因此会减小水平尾翼的攻角,也就是说

水平尾翼的攻角实际会比较小,﹝图3-6﹞只不过是一架小飞机,如像类似

747 这种大家伙起飞降落后,小飞机要隔一阵子才能起降,否则飞入这种涡

流,后果不堪设想,这种阻力是因为涡流产生,所以也称涡流阻力。

4寄生阻力:所有控制面的缝隙﹝如主翼后缘与副翼间﹞、主翼及尾翼与机身接合处、机身开孔处、机轮及轮架、拉杆等除本身的原有的阻力以外,另外

衍生出来的阻力﹝如图3-7,3-8﹞。

本帖最后由沈淼章于2013-9-20 11:11 编辑

一架飞机的总阻力就是以上四种阻力的总合,但飞机的阻力互相影响的,以上的分类只是让讨论方便而已,另外诱导阻力不只出现在翼端,其它舵面都会产生,只是翼端比较严重,磨擦阻力、形状阻力、寄生阻力与速度的平方成正比,速度越快阻力越大,诱导阻力则与速度的平方成反比﹝如图3-9﹞,所以要减少阻力的话,无动力飞机重点在减少诱导阻力,高速飞机重点在减少形状阻力与寄生阻

力。

第三节翼面负载

翼面负载就是主翼每单位面积所分担的重量,这是评估一架飞机性能很重要的指

针,模型飞机采用的单位是每平方公寸多少公克﹝g/dm2﹞,实机的的单位则是

每平方公尺多少牛顿﹝N/m2﹞,翼面负载越大意思就是相同翼面积要负担更大的

重量,如果买飞机套件的话大部分翼面负载都标示在设计图上,计算翼面负载很

简单,把飞机﹝全配重量不加油﹞秤重以公克计,再把翼面积计算出来以平方公

寸计﹝一般为简化计算,与机身结合部分仍算在内﹞两个相除就得出翼面负载,

例如一架30 级练习机重1700 公克,主翼面积30 平方公寸,则翼面负载为56.7

g/dm2。

练习机一般在50~70 左右,特技机约在60~90,热气流滑翔机30~50,像真机110 以内还可忍受,牵引滑详机约12~15 左右,我在新店市白马飞行场看过一对兄弟

飞一架自己设计的大嘴鸟,翼面负载130,但也飞的很漂亮,总括来说,翼面负

载太大的话,起飞滑行时老牛破车慢慢加速,好不容易起飞后飞行转弯时千万不

要减速太多﹝弯要转大一点﹞,否则很容易失速,降落速度超快,滑行一大段距

离才停的住。

说到这里稍微离题一下,我常在飞行场听到有人说重的飞机飞的比较快,我们来

验证一下看这说法正不正确,一架飞机引擎的马力假设是P,从物理课本可知

P=FV,F 是力,V 是速度,飞机在水平直线飞行时F 就是阻力的总合,因P 是定

值﹝不考虑螺旋桨效率﹞,所以飞机极速只跟阻力F 有关,同一型飞机理论上速

度应一样,但假设其中一架用的木头比较重,平飞时比较重的飞机翼面负载大攻角要比较大,因而阻力F 比较大,所以速度V 就比较小,所以重的飞机不可能飞得比较快,要使飞机飞的快应该要减少阻力才对,重的飞机代价很大,加速及爬升慢、极速也慢,动作不灵活,比较容易失速,好处只是比较抗侧风,俯冲时比较快。

第四节雷诺数与失速

机翼的升力随攻角的增大而增加,攻角就是翼弦线与气流的夹角﹝如图3-10﹞,攻角为零度时对称翼此时不产生升力,但克拉克Y 翼及内凹翼仍有升力,后二

种翼型要负攻角才不产生升力,不产生升力的攻角叫零升攻角﹝如图3-11﹞,所以对称翼的零升攻角就是零度,谁都知道攻角增加有一个上限,超过这上限就要14

失速,那机翼什么时候会失速呢?﹝图3-12a﹞是飞机正常飞行时流经机翼的气流,﹝图3-12b﹞是飞机失速时的气流,这时上翼面产生强烈乱流,直接的结果是阻力大增,而且气流冲击上翼面,使升力大减,于是重力主控这架飞机,就是摔下去啦,那我们想事先知道机翼什么时候会失速,这就有需要知道雷诺数,雷诺数原始公式是:

Re=ρ.V.b/μ

Re=ρ.V.b/μ ρ 是空气密度、V 是气流速度、b 是翼弦长、μ 黏性系数。

HK{4Z)9GC`QFERX[JR324JN.jpg (22.24 KB, 下载次数: 1)

因对模型飞机而言空气密度与黏性系数是定值,因为你不会飞很高故空气密度不 变,而且你不会飞到水里故黏性系数不变,故以上公式可简化为:

Re=68500.V.b V 单位是公尺/秒b 是公尺。

一架练习机譬如说时速90 公里﹝每秒25 公尺﹞,翼弦24 公分,雷诺数

=68500.25.0.24=411000,如果不是矩形翼的话,翼根与翼端弦长不一样,雷诺

数当然不同。

雷诺数越大流经翼表面的边界层越早从层流边层过渡为紊流边界层,而紊流边界

层不容易从翼表面分离,所以比较不容易失速,雷诺数小的机翼边界层尚未从层

流边层过渡为紊流边界层时就先分离了,一般翼型的数据都会注明该数据是在雷

诺数多大时所得,展弦比如没特别说明则是无限大,翼型资料上大都会告诉你雷

诺数多少时在几度攻角失速,雷诺数越大越不容易失速﹝如图3-13﹞,一架飞

机的失速角不是一定值,速度越慢时﹝雷诺数小﹞越容易失速,翼面负载越大时,

因飞行时攻角较大也越容易失速,三角翼飞机翼弦都很大,所以雷诺数大,比较

不容易失速。

实机在设计时都会设法在失速前使机翼抖动及操纵杆震动,或者在机翼上装置气

流分离警告器,以警告驾驶员飞机即将失速,模型飞机一般都没什么征兆,初学

降落时大部分的人都有这痛苦的经验,因进场时作了太多的修正,耗掉了太多速

度,说时迟那时快飞机一下子就摔下来,从此一连好几个月进场速度都超快,降

落时不是海豚跳个三、四次就是把两百公尺跑道用完还不够。

第五节展弦比

从雷诺数的观点机翼越宽、速度越快越好,但我们不要忘了阻力,短而宽的机翼

诱导阻力会吃掉你大部分的马力,也许读者反应很快,诱导阻力不是与速度平方

成反比吗?我们只要飞得够快诱导阻力就不是问题了,但很可惜速度快的话形状

阻力也会与速度平方成正比增大,还有所有飞机迟早都要降落,降落时考虑跑道

长度、安全性等,实机的话还有轮胎的磨耗,我们需要一个合理降落速度,总不

能要求一架模型飞机以时速100 公里降落吧,那跑道要长得吓人,而且没几个人

对得准,火箭、飞弹飞的很快而且不用考虑降落,所以展弦比都很低,飞机则要

有适合的展弦比,展弦比A 就是翼展L 除以平均翼弦b(A=L/b),L 与b 单位都是

公分,如果不是矩形翼的话我们把右边上下乘以L,得A=L2 / S,S 是主翼面积,

单位是平方公分,这样省得求平均翼弦,一般适合的展弦比在5~7 左右,超过8

以上要特别注意机翼的结构,不要一阵风就断了,我作过展弦比10 的飞机,手

投掷起飞的一剎那,机翼受风弯成U 形,非常漂亮﹝如图3-14﹞,滑翔机实机

的展弦比有些高达30 以上,还曾经出现过套筒式的机翼,翼展可视需要伸长或

短。

如前所述磨擦阻力、形状阻力与速度的平方成正比,速度越快阻力越大,诱导阻

力则与速度的平方成反比,所以高速飞机比较不考虑诱导阻力,所以展弦比低,

滑翔机速度慢,采高展弦比以降低诱导阻力,最典型的例子就是U2﹝如图3-15

﹞跟F104﹝如图3-16﹞,U2 为高空侦察机,为长时间翱翔,典型出一次任务约

10~12 小时,U2 展弦比为10.5,F104 为高速拦截机,速度达2 倍音速以上,展弦比4.5,自然界也是如此,信天翁为长时间遨翔,翅膀展弦比高,隼为掠食性动

物,为求高速、灵活,所以展弦比低。

滑翔机没有动力,采取高展弦比以降低阻力是唯一的方法,展弦比高的机翼一般

翼弦都比较窄,雷诺数小,所以要仔细选择翼型,避免过早失速,另外高展弦比

代表滚转的转动惯量大,所以也不要指望做出滚转的特技了。

飞惯特技机的人看到遥控滑翔机时常常好奇,为什么主翼面积那么大,偏偏机身

短而且尾翼面积相对很小,会很担心升降操作会有问题,其实这是展弦比的另外

一个特性,就是高展弦比时,攻角增加时升力系数增加会比低展弦比的机翼快﹝

如图3-17﹞,低展弦比机翼升力系数在攻角更大时才到达最大值,所以高展弦比

的滑翔机并不须要大尾翼就可以操纵升降。

第六节翼端处理

一个机翼不可能无限长,一定有端点,我们现在知道翼端是很多问题的根源,翼

前缘有点后掠的飞机,因几何形状的关系,翼前缘的气流不但往后走而且往外流

﹝如图3-18﹞,使翼端气流更复杂,于是有各式各样的方法来减少诱导阻力,常

见的有:1整形1:把翼端整成圆弧状,尽点人事,模型飞机最常见的方式﹝如图3-19﹞。

常用﹝如图3-20﹞。

一举两得,如T-33﹝如图3-21﹞。

4小翼:目前最流行的作法,大部分小翼是往上伸,但也有些是往下伸的,实机

的小翼很明显,飞行时看的非常清楚﹝如图3-22﹞,波音747-400 的小翼相信很

多搭乘过的人都注意到,小翼的作用除了隔离翼端上下的空气外减少诱导阻力

外,因安装的角度关系还多少可提供一些向前的分力节省一点马力。

老鹰的翼端是分叉形的,你可以从影片中看到滑翔中的老鹰,翼端的羽毛几乎没

有扰动,可见效率非常高,NACA 也有发展类似的翼端。第七节翼型的选择及常用翼型机翼是飞机产生升力的部分,当然不能随兴所至乱画一通,既然前辈们发展的翼

型都经过风洞或实机的测试,我们就不客气来捡现成,市面上现在可以买到惟一

的一本有翼型数据的书是长谷川克所著”翼型”电波实验社出版,上面有三百多种

翼型的几何坐标,但其中只有易卜拉翼型有升阻系数等数据,其它只有几何坐标

聊备一格,所以除自由飞模型外用处不大,此外中国大陆的杂志里有时候会发表

新翼形,但他们偏重自由飞模型,完全没有任何实验数据,而且很难制作,遥控

的好像没看过。国外尤其是德国有关模型飞机的数据就比较多,很可惜国人一般

德文都是鸦鸦乌,这里介绍一本英文书Martin Simons 着”model aircraft aerodynamics” Argus Books,在亚马逊网络书局可以买的到,号称美国模型界

的”圣经”,另外网络上的资源有:

https://www.wendangku.net/doc/4a224990.html,﹝美国太空总署﹞

www.iag.uni-.de ﹝德国stuttgart 大学﹞

https://www.wendangku.net/doc/4a224990.html, ﹝美国Embry-Riddle Aeronautical University.﹞

https://www.wendangku.net/doc/4a224990.html,﹝美国University of Illinois at Urbana-Champaign﹞https://www.wendangku.net/doc/4a224990.html,/afdb/index-e.phtml ﹝日本大学航空研究会﹞这网站有上千种翼型坐标及极线。

选择翼型要先决定飞机用途、大小、重量、速度,再依翼面负载、雷诺数决定后再选择合适的翼型,翼型的数据包括形状的几何坐标,以及在某个展弦比及各种雷诺数下之升力、阻力系数,一般都以极线图显示,纵坐标大都是升力系数,横坐标是阻力系数﹝如图3-23 左边﹞,有些比较旧式的数据纵坐标是升力系或阻力系数,横坐标则是攻角﹝如图3-24﹞,近代计算机翼型数据纵坐标是气流速度或是压力,横坐标则是翼弦位置,但都可以从图表中换算出升力、阻力多少,也可以查出机翼攻角几度时升力系数迅速恶化发生失速,当知道飞机的升力与阻力系数后,这时就滑空比就决定了,依升力系数及翼面积总升力可以算出,再依阻力系加上机身、尾翼所有阻力系数可以算出总阻力,所需的阻力与我们原先假设的引擎马力是否相符,因过程都是计算在此省略,有兴趣的读者可参看朱宝流着”模型飞机的空气动力学”永利模型飞机公司出版,里面有详细解释选择翼型的方法,这本书讲的是自由飞模型,而且数据很旧,但原则是一样的。

对一般读者而言有一方便法门,我们可以参考别人的设计,一架飞机已经证明飞得很好,如果我们的飞机条件相似,就可以采用那种翼型,美国的套件一般多会把翼型标在设计图上,除此之外还是有一些规则可循:

1薄的翼型阻力小,但不适合高攻角飞行,适合高速机。

2厚的翼型阻力大,但不易失速。

3练习机用克拉克Y 翼或半对称翼,因浮力大。

4特技机用全对称翼,因正飞或倒飞差异不大。

5斜坡滑翔机用薄一点翼型以增大滑空比。

63D 特技机用前缘特别大的翼型以便高攻角飞行。

再次强调参考别人设计时要注意雷诺数相似,雷诺数差异大时一点意义都没有,把别人大飞机的翼型用在你的小飞机上绝对不行。

以下是一些常用翼型:

26

1特技机:NACA 0010、0012

2练习机:NACA 2410、2412、CLARK Y8

3斜坡滑翔机:RG14、RG 15 、Eppler 385F

4小滑翔机及牵引滑翔机:Eppler 385、Eppler 374、Selig 3021

1第一章 空气动力学基础知识复习过程

1第一章空气动力学 基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 1.1 大气层和标准大气 1.1.1 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组 成成分保持不变。 仅供学习与交流,如有侵权请联系网站删除谢谢1

从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下56.5度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 1.1.2 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。 气体的压强p是指气体作用于容器内壁的单位面积上的正压力。大气的压强是指大气垂直地作用于物体表面单位面积上的力。 仅供学习与交流,如有侵权请联系网站删除谢谢2

航模知识题参考答案

航模基础知识题参考答案 一、选择题 1. 航模包括 ( A ) A)航空模型航天模型B)航空模型航天模型及车模船模 C)航空模型航天模型和船模 D)航空模型 2. 相同上反角以下布局稳定性最大的是(A ) A)上单翼 B) 中单翼 C)下单翼D) A和C 3. 电动航模最常采用哪种电池提供动力( B ) A) 镍氢电池 B) 锂电池C) 铅蓄电池 D) 干电池 4.垂尾的作用是什么( A ) A)控制航向 B) 减小阻力 C) 增加阻力 D) 控制飞机俯仰5.下列那种形式的飞机最省电( D ) A) 涵道飞机 B) 3D飞机 C)腰推飞机 D)滑翔机 6.常见的飞机的可靠转向方式是什么?( C ) A. 副翼 B.方向舵 C.副翼+升降舵 D.差速 7.锂电池1S在充满电的情况下正常电压是多少( C ) A)1.2V B)3.8V C)4.2V D)12V 8.常规飞机的升力中心大概在哪个位置( A ) A) 机翼前三分之一平均弦长处 B) 机翼后缘处 C) 机身二分之一处D) 机翼前缘处 9 .电子调速器需要与哪些设备连接( D ) A)电池 B)电机 C) 接收机 D) ABC

10. 在航模飞行之前,正确的操作是( A ) A) 先打开遥控再接通动力电源 B) 先接通动力电源再打开遥控 C) 同时打开遥控接通动力电源 D) 都不对 11.当航模出现意外炸机时对于设备的操作正确的是( A ) A) 先拔掉电源B) 先关掉遥控 C) 先检查飞机 D) 先收完油门 12.常用锂电池飞行电压一般不得低于( B ) A)2.8V B)3.7V C) 4.0V D)4.2V 13.下列那种设计适用于高速飞机( D )。 A) 直翼飞机B)下单翼飞机 C) 双凸翼形的飞机 D) 后掠角大的飞机 14.翼尖涡流产生的原因是什么( B ) A)飞机飞行速度过快 B)机翼上下表面的压力差 C)螺旋桨气流影响 D)机翼上下表面的粗糙度差距 15.襟翼的基本效用是什么?( B ) A) 减速 B) 增加升力 C)增加稳定性 D) 增加机动性 16.下了说法正确的是( A ) A)无刷电机配备无刷电子调速器 B)有刷电机配备无刷电子调速器 C)无刷电机配备有刷电子调速器 D)都可以混合使用 17.现在你在用KT板作为材料制作一架飞机,在综合考虑强度和重量

航模基础知识介绍

航模基础知识介绍一一航模培训理论课 航模概念:在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器”。1什么叫飞机模型 一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。2、什么叫模型飞机 般称能在空中飞行的模型为模型飞机,叫航空模型。 航模飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架、发动机和控制系统六部分组成。 1机翼------- 是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧稳定。 2、尾翼----- 包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰稳 定,垂直尾翼保持模型飞机飞行时的方向稳定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。也有模型飞机使用V型尾翼,需要 混合控制,一般航模遥控器都有此功能。两片向外倾斜的尾翼联合控制方向舵与升降舵。最特殊的情况是机翼采用S翼型的无动力滑翔机,这类机只有垂直尾翼而没有水平尾翼。 3、机身----- 将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架------ 供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面各一个起落架叫前三点式,前部两面各一个起落架,后面一个起落架叫后三点式。 5、发动机------ 它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、 活塞式发动机、涡轮喷气式发动机、电动机。较少使用的有:脉冲喷气发动机(重量大,油耗大)、转子发动机(只有OS的一款)空气发动机(上世纪70年代用于室内模型与活塞 发动机类似。 6、太阳能板及各类电池也可作为模型飞机的动力来源。

1第一章 空气动力学基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 1.1 大气层和标准大气 1.1.1 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组成成分保持不变。 从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下56.5度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到 1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 1.1.2 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。

航模DIY-群基础知识(翼型)

机翼 机翼是模型飞机产生升力的主要部件。模型飞机性能的好坏往往决定于机翼的好坏,良好的机翼应该能产生很大的升力和很小的阻力,并有足够的强度和刚性,不容易变形而且容易制作。决定机翼产生升力大小的因素很多,与机翼面积、速度等直接有关,不过这些因素往往不能够或不便于改变,譬如空气密度,我们不能改变;机翼两积、通常受到比赛规则的限制;飞行速度不容易控制,而且对竞时的模型飞机来说,速度愈小愈好。这样一来,要想增大升力只能从增大升力系数着想了。在减小机翼阻力方面也是这样,主要是设法减小机翼产生的阻力系数。决定机翼升力系数及阻力系数的是机翼截面形状(即翼型)、机翼平面形状和当时的迎角。好的翼型能够在同样的迎角下有较大的升力系数和较小的阻力系数,这两种系数的比值(称升阻比)可达到18以上。 一、翼型 翼型就是机翼的截面形 状。现代模型飞机所用的翼型 一般可分为六类:平凸型、对 称型、凹凸型、双凸型、S型和 特种型,如图3-1所示。这六种 翼型各有各的特点,每种翼型 一般能符合某几种模型飞机的 要求。 翼型各部分的名称如图3-2所示。其中影响翼型性能最大的是中弧线(或中线)的形状、翼型的厚度和翼型厚度的分布。中弧 线是翼型上弧线与下 弧线之间的距离中点 的连线。如果中弧线是 一根直线与翼弦重合, 那就表示这个翼型上 表面和下表面的弯曲 情况完全一样,这种翼 型称为对称翼型。普通 翼型中弧线总是向上 弯的,S翼型的中弧线 成横放的S形。 要表示翼型的厚度、中弧线的弯曲度和翼型最高点在什么地方等通常不用长度计算,因为各种大小不同的飞机都可以用同样的翼型。翼型形状如用具体长度表示,在设计计算时很不方便,现在的翼型资料对这些长度都用百分数表示,不用厘米或米来计算,基准长度是翼弦,例如翼型厚度是1.2厘米,弦长10厘米,那么翼型厚度用(1.2/10)来表示,即翼型厚度是翼弦的12%。这样的表示方法很方便,不管用在大飞机或小飞机上,这种翼型的厚度始终是12%。大家只要牢记基准长度是弦长便可以很容易算出实际的翼型厚度来,此外计算前后距离也用百分数,也以弦长为基准,而且都是从前缘做出发点。例如,翼型最高点在30%弦长处,那就表示翼型最高的地方离前缘的距离等于全翼弦的30%。 下面我们分别把翼型的画法、性能的表示法和性能的计算等问题加以讨论。 (一)翼型的画法 适合于模型飞机上使用的翼型现在巳有一百多种,每种翼型的形状都不相同。幸而每种翼型的形状都用同一办法(外形坐标表)表示,所以我们只要把翼型外形坐标表找到,这种翼型的形状便完全决定了。某翼型坐标见表3-1。

第一讲航模基础知识

第一讲航模基础知识 什么叫航空模型 在国际航联制定的竞赛规则里明确规定“航空模 型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。其技术要求是: 最大飞行重量同燃料在内为五千克; 最大升力面积一百五十平方分米; 最大的翼载荷100 克/ 平方分米; 活塞式发动机最大工作容积10 亳升。 1、什么叫飞机模型 般认为不能飞行的,以某种飞机的实际尺寸按 一定比例制作的模型叫飞机模型。 2、什么叫模型飞机 般称能在空中飞行的模型为模型飞机,叫航空 模型。 二、模型飞机的组成 模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。 1、机翼——是模型飞机在飞行时产生升力的装 置,并能保持模型飞机飞机飞行时的横侧安定。

2、尾翼——包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。 3、机身——将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架——供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。 5、发动机——它是模型飞机产生飞行动力的装 置。模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。 三、航空模型技术常用术语 1、翼展——机翼(尾翼)左右翼尖间的直线距离。 穿过机身部分也计算在内)。 2、机身全长——模型飞机最前端到最末端的直线

航模飞机设计基础知识

第一步,整体设计 1、确定翼型 我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不小,这种机翼主要用在像真机上。翼梢的处理。由于机翼下面的压力大于机翼上面的压力,在翼梢处,从下到上就形成了涡流,这种涡流在翼梢处产生诱导阻力,使升力和发动机功率都会受到损失。为了减少翼梢涡流的影响,人们采取改变翼梢形状的办法来解决它。 2、确定机翼的面积 模型飞机能不能飞起来,好不好飞,起飞降落速度快不快,翼载荷非常重要。一般讲,滑翔机的翼载荷在35克/平方分米以下,普通固定翼飞机的翼载荷为35-100克/平方分米,像真机的翼载荷在100克/平方分米,甚至更多。还有,普通固定翼飞机的展弦比应在5-6之间。确定副翼的面积机翼的尺寸确定后,就

南航直升机空气动力学习题集17页

直升机空气动力学习题集 绪论 (0-1)试计算Z-8直升机的旋翼实度σ、桨尖速度ΩR和海平面标准大气条件下的桨尖M数。 (0-2)Z-9直升机的旋翼桨叶为线性负扭转。试画出以桨距Ф7=11。作悬停飞行的桨叶上r=(0.29~1.0)一段的剖面安装角()rφ→分布。 (0-3)关于反扭矩的是非题: a) 尾桨拉力用以平衡发动机的反扭矩,所以尾桨的位置要比发动机高。() b) 尾桨拉力用以平衡旋翼的反扭矩,所以尾桨位置距旋翼轴很远。() c)双旋翼直升机的两付旋翼总是彼此反向旋转的。() d) 尾桨没有反扭矩。() (0-4) 关于旋翼参数的是非题: a)旋翼的半径就是桨叶的长度。() b) 测量桨叶的根部宽度及尖部宽度,就可以得到桨叶的根梢比。() c) 测量桨叶的根部及尖部之间的倾斜角之差,就得到桨叶的扭度。()

d) 台式电风扇实度接近1。 ( ) (0-5) 假定Y-2直升机在某飞行状态下,旋翼拉力T=1200公斤,试计算 其C T 值。(海平面标准大气) 第一章 (1-1) 论证在垂直上升状态旋翼的滑流形状是图(a )而不是图(b ) (1-2) 假定Y-2直升机在垂直飞行状态发动机的功率有84%传递给旋翼, 且悬停时悬疑的 型阻功率为诱导功率的一半,桨端损失系数к=0.92; a) 求在海平面标准大气条件下悬停时桨盘外的诱导速度; b) 求在海平面标准大气条件下悬停时的诱导功率、相对效率和直升机的单位马力载 荷; c) 若以V 0=(1/3)v 10的速度作垂直爬升,此时桨盘处的诱导速度多大?诱导功率多大? 若型阻功率与悬停时相同,旋翼消耗的总功率多大? (1-3) 上题中,若飞行重量增大20%,除增大桨距外保持其他条件及型阻 功率不变,那么其悬停诱导功率及相对效率将是多大? (1-4) 既然 a) 是否可以认为,只要把旋翼直径做得很大,就可以用很小功率的 发动机做成重型直升机? b) 直升机的发展趋势为什么是p 趋向增大? (1-5) 试根据0η的定义导出0η与桨盘载荷p 的关系。假定型阻功率与p

航模的基本原理和基本知识

一、航空模型的基本原理与基本知识 1)航空模型空气动力学原理 1、力的平衡 飞行中的飞机要求手里平衡,才能平稳的飞行。如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称x及y方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。 图1-1 飞机会偏航、Z 图 2 在这里当然是指空气,设法使机翼上部空气流速较快,静压 1-3﹞,于是机翼就被往上 一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。? 图1-3 图1-4 图1-5 3、翼型的种类

1全对称翼:上下弧线均凸且对称。 2半对称翼:上下弧线均凸但不对称。 3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。 4S型翼:中弧线是一个平躺的S型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。 5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。 基本航模的翼型选测规律: 2厚的翼型阻力大,但不易失速。 6 4、飞行中的阻力 一架飞行中飞机阻力可分成四大类: 1磨擦阻力:空气分子与飞机磨擦产生的阻力,这是最容易理解的阻力但不很重要,只占总阻力的一小部分,当然为减少磨擦阻力还是尽量把飞机磨光。 2形状阻力:物体前后压力差引起的阻力,平常汽车广告所说的风阻系数就是指形状阻力系数﹝如图3-3﹞,飞机做得越流线形,形状阻力就越小,尖锥状的物体形状阻力不见得最小,反而是有一点钝头的物体阻力小,读者如果有机会看到油轮船头水底下那部分,你会看到一个大

航模基础知识空气动力学

航模基础知识空气动力学 一章基础物理 本章介绍一些基本物理观念,在此只能点到为止,如果你在学校已上过了或没兴趣学,请跳过这一章直接往下看。第一节速度与加速度速度即物体移动的快慢及方向,我们常用的单位是每秒多少公尺﹝公尺/秒﹞加速度即速度的改变率,我们常用的单位是﹝公尺/秒/秒﹞,如果加速度是负数,则代表减速。第二节牛顿三大运动定律第一定律:除非受到外来的作用力,否则物体的速度(v)会保持不变。没有受力即所有外力合力为零,当飞机在天上保持等速直线飞行时,这时飞机所受的合力为零,与一般人想象不同的是,当飞机降落保持相同下沉率下降,这时升力与重力的合力仍是零,升力并未减少,否则飞机会越掉越快。第二定律:某质量为m 的物体的动量(p = mv)变化率是正比于外加力F 并且发生在力的方向上。此即著名的F=ma 公式,当物体受一个外力后,即在外力的方向产生一个加速度,飞机起飞滑行时引擎推力大于阻力,于是产生向前的加速度,速度越来越快阻力也越来越大,迟早引擎推力会等于阻力,于是加速度为零,速度不再增加,当然飞机此时早已飞在天空了。第三定律:作用力与反作用力是数值相等且方向相反。你踢门一脚,你的脚也会痛,因为门也对你施了一个相同大小的力第三节力的平衡作用于飞机的力要刚好平衡,如果不平衡就是合力不为零,依牛顿第二定律就会产生加速度,为了分析方便我们把力分为X、Y、Z 三个轴力的平衡及绕X、Y、Z 三个轴弯矩的平衡。轴力不平衡则会在合力的方向产生加速度,飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞,升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称x 及y 方向﹝当然还有一个z 方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x 方向阻力与推力大小相同方向相反,故x 方向合力为零,飞机速度不变,y 方向升力与重力大小相同方向相反,故y 方向合力亦为零,飞机不升降,所以会保持等速直线飞 弯矩不平衡则会产生旋转加速度,在飞机来说,X 轴弯矩不平衡飞机会滚转, Y 轴弯矩不平衡飞机会偏航、Z 轴弯矩不平衡飞机会俯 第四节伯努利定律 伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力 越小,速度越小,静压力越大,这里说的流体一般是指空气或水,在这里当然是 指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢, 静压力较大,两边互相较力,于是机翼就被往上推去,然后飞机就 飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流 经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无 法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上 缘的质点会比流经机翼的下缘质点先到达后缘 我曾经在杂志上看过某位作者说飞机产生升力是因为机翼有攻角,当气流 通过时机翼的上缘产生”真空”,于是机翼被真空吸上去﹝如图1-6﹞,他的真 空还真听话,只把飞机往上吸,为什么不会把机翼往后吸,把你吸的动都不能动, 还有另一个常听到的错误理论有时叫做***理论,这理论认为空气的质点如同子 弹一般打在机翼下缘,将动量传给机翼,这动量分成一个往上的分量于是产生升 力,另一个分量往后于是产生阻力﹝如图1-7﹞,可是克拉克Y 翼及内凹翼在攻 角零度时也有升力,而照这***理论该二种翼型没有攻角时只有上面”挨子 弹”,应该产生向下的力才对啊,所以机翼不是风筝当然上缘也没有所谓真空。 伯努利定律在日常生活上也常常应用,最常见的可能是喷雾杀虫剂了﹝如

航模螺旋桨基础知识

一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数 直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。 此外还要考虑螺旋桨桨尖气流速度不应过大(<音速),否则可能出现激波,导致效率降低。 二、桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正 比。超轻型飞机一般采用结构简单的双叶桨。只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。 实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目的影响相似。随实度增加拉力系数和功率系数增大。

空气动力学基础知识及飞行基础原理

-/ M8空气动力学基础及飞行原理 1、绝对温度的零度是 A、-273℉ B、-273K C、-273℃ D、32℉ 2、空气的组成为 A、78%氮,20%氢和2%其他气体 B、90%氧,6%氮和4%其他气体 C、78%氮,21%氧和1%其他气体 D、21%氮,78%氧和1%其他气体 3、流体的粘性系数与温度之间的关系是? A、液体的粘性系数随温度的升高而增大。 B、气体的粘性系数随温度的升高而增大。 C、液体的粘性系数与温度无关。 D、气体的粘性系数随温度的升高而降低。 4、空气的物理性质主要包括 A、空气的粘性 B、空气的压缩性 C、空气的粘性和压缩性 D、空气的可朔性 5、下列不是影响空气粘性的因素是 A、空气的流动位置 B、气流的流速 C、空气的粘性系数 D、与空气的接触面积 6、气体的压力

、密度<ρ>、温度三者之间的变化关系是 A、ρ=PRT B、T=PRρ C、P=Rρ/ T D、P=RρT 7、在大气层内,大气密度 A、在同温层内随高度增加保持不变。 B、随高度增加而增加。 C、随高度增加而减小。 D、随高度增加可能增加,也可能减小。 8、在大气层内,大气压强 A、随高度增加而增加。 B、随高度增加而减小。 C、在同温层内随高度增加保持不变。

-/ D、随高度增加可能增加,也可能减小。 9、空气的密度 A、与压力成正比。 B、与压力成反比。 C、与压力无关。 D、与温度成正比。 10、影响空气粘性力的主要因素: A、空气清洁度 B、速度剃度 C、空气温度 D、相对湿度 11、对于空气密度如下说法正确的是 A、空气密度正比于压力和绝对温度 B、空气密度正比于压力,反比于绝对温度 C、空气密度反比于压力,正比于绝对温度 D、空气密度反比于压力和绝对温度 12、对于音速.如下说法正确的是: A、只要空气密度大,音速就大 B、只要空气压力大,音速就大 C、只要空气温度高.音速就大 D、只要空气密度小.音速就大 13、假设其他条件不变,空气湿度大 A、空气密度大,起飞滑跑距离长 B、空气密度小,起飞滑跑距离长 C、空气密度大,起飞滑跑距离短 D、空气密度小,起飞滑跑距离短 14、一定体积的容器中,空气压力 A、与空气密度和空气温度乘积成正比 B、与空气密度和空气温度乘积成反比 C、与空气密度和空气绝对湿度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 15、一定体积的容器中.空气压力 A、与空气密度和摄氏温度乘积成正比 B、与空气密度和华氏温度乘积成反比 C、与空气密度和空气摄氏温度

航模基础知识

一、什么叫航空模型 在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。 其技术要求是: 最大飞行重量同燃料在内为五千克; 最大升力面积一百五十平方分米; 最大的翼载荷100克/平方分米; 活塞式发动机最大工作容积10亳升。 1、什么叫飞机模型 一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。2、什么叫模型飞机 一般称能在空中飞行的模型为模型飞机,叫航空模型。 二、模型飞机的组成 模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。 1、机翼―――是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧安定。 2、尾翼―――包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。 3、机身―――将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架―――供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫前三点式, 前部两面三个起落架,后面一个起落架叫后三点式。 5、发动机―――它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。 三、航空模型技术常用术语 1、翼展――机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。 2、机身全长――模型飞机最前端到最末端的直线距离。 3、重心――模型飞机各部分重力的合力作用点称为重心。 4、尾心臂――由重心到水平尾翼前缘四分之一弦长处的距离。 5、翼型――机翼或尾翼的横剖面形状。 6、前缘――翼型的最前端。 7、后缘――翼型的最后端。 8、翼弦――前后缘之间的连线。 9、展弦比――翼展与平均翼弦长度的比值。展弦比大说明机翼狭长。 什么是通道 通道也称Ch,简单地说就是指控制模型的一路相关功能。例如前进和后退是一路;左右转向是一路;空模中的升降也是一路。还可以是一组控制其他动作的(如炮塔的左右;上下俯仰;鸣笛、亮灯等),但是各个通道应该可以同时独立工作,不能互相干扰。固定翼飞机还要控制水平尾翼(升降)的通道和控制付翼(作横滚等特技动作)的通道;直升机更要增加陀螺仪用的通道。

航模的基本原理和基本知识

航模的基本原理和基本 知识 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

一、航空模型的基本原理与基本知识 1)航空模型空气动力学原理 1、力的平衡 飞行中的飞机要求手里平衡,才能平稳的飞行。如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称 x 及 y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。 图1-1 弯矩不平衡则会产生旋转加速度,在飞机来说,X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会偏航、Z轴弯矩不平衡飞机会俯仰﹝如图1-2﹞。 图1-2 2、伯努利定律 伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力越小,速度越小,静压力越大,流体一般是指空气或水,在这里当然是指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢,静压力较大,两边互相较力﹝如图1-3﹞,于是机翼就被往上推去,然后飞机就飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应

在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。 图1-3 图1-4 图1-5 3、翼型的种类 1全对称翼:上下弧线均凸且对称。 2半对称翼:上下弧线均凸但不对称。 3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y 翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。 4S型翼:中弧线是一个平躺的S型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。 5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。 基本航模的翼型选测规律: 1薄的翼型阻力小,但不适合高攻角飞行,适合高速机。 2厚的翼型阻力大,但不易失速。

空气动力学基础知识及飞行基础原理笔试题

空气动力学基础及飞行原理笔试题 1绝对温度的零度是:C A -273℉ B -273K C -273℃ D 32℉ 2 空气的组成为C A 78%氮,20%氢和2%其他气体 B 90%氧,6%氮和4%其他气体 C78%氮,21%氧和1%其他气体 D 21%氮,78%氧和1%其他气体 3 流体的粘性系数与温度之间的关系是? B A液体的粘性系数随温度的升高而增大。 B气体的粘性系数随温度的升高而增大。 C液体的粘性系数与温度无关。 D气体的粘性系数随温度的升高而降低。 4 在大气层内,大气密度:C A在同温层内随高度增加保持不变。B随高度增加而增加。 C随高度增加而减小。D随高度增加可能增加,也可能减小。 5 在大气层内,大气压强:B A随高度增加而增加。B随高度增加而减小。 C在同温层内随高度增加保持不变。C随高度增加可能增加,也可能减小。 6 增出影响空气粘性力的主要因素 B C A空气清洁度B速度梯度C空气温度D相对湿度 7 对于空气密度如下说法正确的是B A空气密度正比于压力和绝对温度B空气密度正比于压力,反比于绝对温度C空气密度反比于压力,正比于绝对温度D空气密度反比于压力和绝对温度 8 “对于音速.如下说法正确的是”C A只要空气密度大,音速就大”B“只要空气压力大,音速就大“ C”只要空气温度高.音速就大”D“只要空气密度小.音速就大” 9 假设其他条件不变,空气湿度大:B A空气密度大,起飞滑跑距离长B空气密度小,起飞滑跑距离长 C空气密度大,起飞滑跑距离短D空气密度小,起飞滑跑距离短 10一定体积的容器中。空气压力D A与空气密度和空气温度乘积成正比B与空气密度和空气温度乘积成反比

直升机空气动力学现状和发展趋势

直升机空气动力学现状 二级学院:航空维修工程学院 班级:航修六班 学号:14504604 姓名:李达伦 日期:2015年6月30日

直升机空气动力学现状 (航修六班14504604 李达伦) 摘要:直升机空气动力学是直升机技术研究及型号研制的基础性学科和先进学 科,本文概述了国外的直升机气动理论与方法研究、基于气动理论和方法的应用基础研究、直升机气动试验技术的研究现状。 关键词:空气动力学;直升机 Abstract:Aerodynamics of helicopter is a helicopter technological research and model development of basic disciplines and advanced subject. This paper summarizes the foreign helicopters gas dynamic theory and method of research, based on the aerodynamic theory and methods of applied basic research, helicopter aerodynamic test technology research status. Key word:Air dynamics; helicopter 1 前言 飞行器的设计和研制必须以其空气动力学为主要依据,这是飞行器研制区别 于其它武器平台的典型特征。直升机以旋翼作为主要的升力面、推力面和操纵面, 这种独特的构型和旋翼驱动方式,更使其气动特征具有复杂的非定常特征,其气 动分析和设计技术固定翼飞行器更具挑战性。 直升机气动研究是指认识直升机与空气之间作用规律、解释直升机飞行原 理、获取提升直升机飞行能力和效率的新知识、新原理、新方法的研究活动,其 主要任务是获得直升机的空气动力学特性[1]。由于直升机气动特征性直接决定了 型号飞行性能、振动特性、噪声水平,且是结构设计、寿命评估等的直接依据, 因此直升机气动研究是直升机技术研究的重要方面,更是型号研制的基础。尤其 是要实现舒适、安全、便利、快捷的直升机型号研制目标,直升机空气动力学将 体现其核心推动作用。 2 内容和范围 直升机空气动力学专业发展涵盖的内容和范围主要有直升机气动理论与方 法的研究、基于气动原理的应用基础研究以及气动特性试验研究三大内容。 直升机气动理论与方法的研究重点关注旋翼与周围空气相互作用现象及机 理的分析模型和方法,通过对气动理论和方法的研究,实现对直升机及其流场的 深入了解,以准确地计算其空气动力学特性。 气动应用研究是指基于气动理论和方法,以直升机研制为目标所展开的应用 基础研究,涵盖气动特性、气动弹性、气动噪声、结冰模拟、流动控制等应用领

叶片的空气动力学基础

叶片的空气动力学基础 在风力机基础知识一节中介绍过叶片的升力与阻力基本知识,本节将进一步介绍相关理论知识。在风力机基础知识一节中已作介绍的不再重复,仅介绍有关内容的提高部分。 常用叶片的翼型 由于平板叶片攻角略大就易产生气流分离,阻力增大;平板的强度也很低,所以正式的叶片截面都就是流线型的,即使有一定厚度阻力也很小。图1就是一幅常见翼型的几何参数图,该翼型的中弧线就是一条向上弯曲的弧线,称这种翼型为不对称翼型或带弯度翼型,比较典型的带弯度翼型为美国的NACA4412。 图1--翼型的几何参数 当弯度等于0时,中弧线与弦线重合,称这种翼型为对称翼型,图2就是一个对称翼型,比较典型的对称翼型为美国的NACA0012。

图2--对称翼型的几何参数 图3就是一个性能较好的适合风力机的低阻翼型,就是带弯度翼型,在水平轴风力机中应用较多。 图3--带弯度的低阻翼型 翼型的升力原理 有关翼型的升力原理解释有多种,归纳起来主要依据就是基于牛顿定律的气流偏转产生反作用力与基于伯努利原理的气流速度不同产生压差两个原理,我们结合这两个原理对翼型的升力作通俗的解释。

带弯度翼型在攻角为0度时的升力与阻力 图4就是一个带弯度翼型在攻角为0度时的流线图与压强分布图,左图就是该翼型的流线图,由于翼型上下面不对称,气流在上下面的流动状态也不同。翼型上表面就是凸起的,通道截面减小,气流的流速会加快,另一个原因就是凸起的表面使翼型后面的气压有所减小,前后的压差使得气流速度加快,特别就是翼型上表面前端流速较快。翼型下表面较平,多数气流基本就是平稳流过,由于由于上表面前端高速气流产生低压的吸引,翼型前端气流都向上表面流去,造成靠下表面的气流通道加宽,导致靠近下表面的气流速度有所下降。这样流过上表面的气流速度要比下表面快,根据伯努利原理,流速快的地方压力比流速慢的地方压力小,也就就是说翼型下方压力大于上方,压力差使翼型获得一个向上的力Fl,所以说带弯度翼型在攻角为0度时也会有升力。 图4--翼型在攻角为0度时的流线图与压强分布图图4右图就是该翼型的压力分布图,图中翼型上部分浅绿色区域内的绿色箭头线就是上表面的压力分布,箭头线的长短与方向表示该点的压

航模入门基本知识

航模入门基本知识 航模入门基本知识 一、遥控飞机的种类 遥控飞机一般以动力来分有以下几种: 1.无动力:一般多用于滑翔机,虽说无动力其实它是利用地球的重力来生成速度有速度自然有升力可敖翔天际。 2.电动:利用电池或者是其它方式如太阳能板来产生电力带动电动马达来生成推力。 3.木精引擎:目前多数的遥控飞机都用此种动力方式,它用的燃料是木精(甲醇)。 4.汽油引擎:汽油引擎体积较大,用于比较大型的飞机,而且省油。 5.涡轮喷射引擎:动力强大,一般用于大型飞机和像真机,工作原理与真涡轮喷射引擎一样。 6.祡油引擎:比较少见的应用。 二、遥控飞机一般以外型功能来分有以下几种: 滑翔机、练习机、像真机、运动机、花式特技机、F3A竞赛机、 F4D竞速机、空战机和RPV。 三、玩遥控飞机的配备 1.遥控器:遥控器通常会听到有玩家说“几动”、“几个通道”,指的是可操做几个动作,通常一个动作就是由一个伺服机(舵机)所 控制的。市面上所售的遥控器,从两动到十动甚至更多的都有,一 般飞机须要四动以上,少数滑翔机或动力滑翔机、小型机用三动,

少了副翼或方向舵的功能,因此有些空中的动作做不出来!而至于要 买哪一型,就看您的最预算而定,如果你有极大的兴趣,且可确定 你一直玩下去,就是有闲有钱有热度,那可考虑买高级些的遥控器,要不然四动就很够用了! 2.引擎:目前引擎有许多的发展,在此先不详述,目前引擎应用在一般遥控飞机上,多是木精(甲醇)引擎(热塞式引擎GLOWPLUGENGINE),分四冲程和两冲程,初学建议使用二冲程日本 OS的引擎,并非其它牌子不好,而是OS的对初学者较好操做。 3.燃油:木精引擎的燃油主要成份——木精(甲醇)+润滑油+硝基甲皖+其它(如防绣剂等等)。 润滑油大体上分三种——篦麻油、半合成、合成,各有优劣;硝 基甲皖是一种炸 药的材料,无色液状,可提升马力,但相当贵,因此其占的百分比越高越贵。一般玩家说的”几趴几趴”就是指这个,一般飞机用5~15%就够了。 4.激活器:一般飞机其实用不到电动起动器,但如果你怕被打到的话。模型店通常也有卖一种激活棒,一端是橡皮,一端是木质握把,但有个更好用的东西——优利胶棒,买一只20元左右,又合手 又够粗又有弹性。 5.火星塞:当然就是点燃引擎汽缸内的混合气用的啦! 火星塞也分冷型及热型,一般来说,目前市面上使用在飞机上较普遍的有OSNo.8、EnyaNo.3.4这几种在初学使用上都不会有太大问题。 6.电夹:用于激活时使火星塞保持红热状态,电池的容量大一些会比较好,才不会发一发没电了。 7.燃油帮浦(泵):用来把油加到油箱中,有手动和电动两种,又有进口和国产之分,基本上差不了多少。用久之后,如果有漏油的 现象多是衬垫老化,自己剪一块再装上多半就好了。

相关文档
相关文档 最新文档