文档库 最新最全的文档下载
当前位置:文档库 › 直放站干扰,指标调试及整体测试

直放站干扰,指标调试及整体测试

直放站干扰,指标调试及整体测试
直放站干扰,指标调试及整体测试

直放站在今天的应用已非常普遍,从工作原理来看,它本质上是个双向功率放大器,在移动通信网络中主要起填补蜂窝小区信号传输空白区域的作用,体现在消除盲区、改善覆盖、扩展小区边界等应用上。在无线传输中,它还可以充当中继,以提高链路余量,并为特定的基站吸收业务量。基于其体积较小、价格较低、结构简单、安装方便等特点,它不再是通信运营商的专有物,一些工厂、宾馆、商场、停车场等场所也会根据需要私自安装。

直放站在商业通信网络中发挥着积极作用的同时,由于其为数众多且管理上不够完善,也带来了不少副作用。如它恶化了公众移动通信频段的电磁环境,催生了众多无线电干扰,而且,对这些干扰的排查也并非易事。

直放站干扰排查实录

我们曾接到中国联通的干扰申诉,称:容桂华宝GSM900基站上行信号受到干扰,网络统计分析显示掉话率很高。他们认为是由机床产生的工业干扰,初步确定干扰源就在与基站一路之隔的广东美芝厂区内。我们出动监测车,利用车上的ESMB/DDF190监测/测向设备,同时开启E4407B频谱分析仪,分别接上全向及定向天线,在基站四周及广东美芝一带苦候干扰信号的出现。ESMB/DDF190系统在其高增益有源天线的强力支持下,倒是收到了信号,但却是假信号,频谱分析仪则一点动静都没有。但联通中心机房的网络统计分析显示,这段时间内干扰依然存在。

当监测车行经某知名公司厂房的大门口时,频谱分析仪显示屏上有了反应,底噪提高了近20dB。我们立即换上定向天线作简易测向,测得的信号最大值方向指向该公司办公大楼。于是,我们改用TekNet YBT250基站维护测试仪并配上EB200手持式测向天线入内查寻,绕大楼一周,最后将疑点锁定在电梯机房内。在楼顶电梯机房旁测得信号的最大值约为-70 dBm(频谱图如图1所示)。我们以为该信号是由电梯内的视频监视无线传输设备发出的,但遍寻不获。后来我们无意中发现楼下有两根天线立于停车场入口处的纤维遮光棚一侧,并在棚内又发现另一根。之后以手持天线对准其中一根定向八木天线,测得信号最大幅度接近-50 dBm(频谱图见图2)。我们沿着馈线顺藤摸瓜,发现在停车场入口旁一侧拐角的墙上,上下依次装了3个放大器。放大器的另一端分别接一根鞭状天线,固定于停车场天花板铁架上。

图1 办公楼顶电梯机房旁测得的信号频谱

图2 停车场入口处天线旁测得的信号频谱

至此,终于真相大白:干扰是由一个公众移动室内覆盖系统发出的。

干扰重组

根据现场布线,可画出地下停车场信号覆盖系统的示意图(如图3所示)。由图3可知,系统主要由直放站、施主天线和重发天线组成。

图3 地下停车场室内覆盖系统框架

直放站为双向功率放大器,它把施主天线接收到的基站下行信号放大后经重发天线发给移动台,同时把移动台收到的上行信号放大后经施主天线发向基站天线。图3为三个独立的系统,三根施主天线分别指向附近移动、联通的G网及联通的C网基站,分别接续移动、联通的G网及联通C网的信号,覆盖信号盲区的地下停车场。

直放站工作时,它产生的热噪声电平在基站接收机输入端等效为:

NBTS-R=KTB+NFR+GR-EDoPL (1)。

式(1)中:NFR为直放站噪声系数;GR为直放站增益;EDoPL为有效施主路径损耗,它由基站的馈线接头到直放站施主天线端口的所有增益和损耗组成。

NBTS-R叠加到基站接收机本身的热噪声电平中。当其大于GSM系统允许的最大干扰电平时,就会对其产生干扰;若过大时,会湮没小区内其它移动台的正常上行信号,甚至阻塞基站,使信噪比降低,BTS接收灵敏度下降,出现掉话等情况。本案例就是由于联通G 网直放站调校不良以致底噪过高,干扰了上行信号,使附近区域的手机接入困难或掉话。

GSM基站接收机噪声电平为-116 dBm,载干比(C/I)为9 dB ,允许的最大干扰电平大致为-125 dBm,所以,我们要求直放站作用于基站接收前端的噪声电平小于-125 dBm。为不对源站产生干扰,在源站和直放站位置已确定的情况下,直放站正式投入使用前,必须进行现场测试,并对覆盖进行系统调整。根据式(1),可调节的参数有GR和EdoPL。为减小到达基站的热噪声电平,可降低直放站增益GR或加大EDoPL,使NBTS-R满足小于-125 dBm的条件。

干扰信号查寻过程问题分析

(1)为什么我们转了两天,无论是ESMB/DDF190监测/测向设备还是E4407B频谱分析仪,均收不到干扰信号?

分析:图4为联通基站的周围环境平面示意图。图中,施主天线为定向八木天线,有较好的方向性。当它指向相应基站时,信号传输就有大致固定的空间路径,而且范围较窄;另外,在传输过程中,信号受到旁边的山丘及前方厂房建筑物的阻挡而衰减,在路径之外固然收不到信号或信号相当微弱;即使在路径经过之处,若接收点与施主天线不在视距之内,信号幅度也会大打折扣甚至完全消失,所以接收不到。

图4 基站周围环境平面示意图

(2)从频谱图看,直放站的工作频率范围为885 MHz~915 MHz(上行),作为宽带放大器,覆盖联通及移动的上行信号频段,但为什么中国移动的基站没有受到干扰?

分析:直放站为宽带放大器,频率范围涵盖移动、联通两大运营商的上行工作频段。当两者的G网共站址时,同时受到干扰的可能性非常大。除非施主天线没对准基站天线,或两者的覆盖区不同,所以天线的朝向不同。当施主天线刚好对着基站天线的旁瓣而非主瓣时,接收增益下降,可折合为EDoPL增大,NBTS-R减小,故干扰程度减弱。

另外,该地下停车场覆盖系统由3个独立的分系统组成,若两者G网共站址,则没必要设3个子系统,两个就足够了。只要调校好系统,就可较好实现直放站与基站两者之间的信号传输。可见,两者并不是共站址的(事后翻查资料,也证实了这一点)。由于不共站址,同时施主天线具有方向性,所以当移动的基站偏离其传输路径时,信号较弱甚至没有,因而联通的该直放站并没有干扰到移动的基站。而联通的C网上行频率为825 MHz~835 MHz,与G网的相去甚远,构不成干扰。

总结与体会

(1)干扰排查时,最好能与通信运营商的技术人员紧密配合,加强交流沟通。因为只有他们才能与中心机房很好地联络,及时掌握一些基站工作参数及统计数据的现况,如RSSI等,这些数据可以较好地指导干扰查处工作,并能了解具体受干扰的扇区,缩小查找范围,使工作更有目标性和针对性。另外,他们还能比较方便地带领我们出入一些基站机房——这其中很多是租借的私人物业。

(2)在基站周围测不到信号但干扰仍然存在时,应考虑去安装基站天线的天台附近测试,因为即使在下边某处收到干扰信号,该干扰信号也未必会影响到该基站、该扇区。这一方面是由于路径衰减,另一方面该干扰信号可能是定向信号,对基站接收天线而言,可能存在较大的方向性衰减。不管是哪种原因,只要衰减量足够大,使信号小于BTS最大的可允

许干扰电平,就不会构成影响。所以,这种情况下要以基站天线附近收到的信号为准。当牵涉到具体某一扇区受干扰时,应弄清与该扇区相对应的天线及其朝向,并选择该方向对干扰信号进行测向。

(3)建立基站、直放站资料数据库。鉴于施主天线主波瓣宽度较窄,除在受干扰基站扇区的天线旁边外,附近可能很难再找出一个主波瓣内的制高点再测向交叉定位。另外,由于手持测向天线频带宽、方向图不够尖锐,所以测向精度不是很高。在主波瓣内即使能找到另一个制高点,也可能由于两点之间距离较近、示向线夹角较小而使交出的点误差较大。所以,查找干扰时,可能会以一点测向,然后沿测向示向线追查的方式进行。显然,这不是一个最佳的方法。若有如直放站布点及工作参数等庞大的资料库作后盾,则可减小工作的盲目性,大大缩短排查干扰所需时间。

(4)建立在用设备周期检测制度。干扰的查寻实际上是对未知信号源(发射机)的发射特性的远场测试,要做到对特定设备的无线参数心中有数,很有必要推行对在用或拟用的发射设备(这里是直放站)进行周期性检测的制度。这一方面可以杜绝劣质、不合格设备投入使用或继续使用;另一方面为上述的台站数据库收集原始资料,同时也是从源头上防止干扰的必要举措。

结语

干扰的排查表面上是一项技术工作,实际情况却并不完全是这样,还有许多技术外的东西起着主导性的作用。精细的管理、完善的台站资料数据库,可以使根据现象结合资料线索从理论上推断干扰源地点成为可能。技术上的查找只是查干扰过程中初步找准大方向后的一个环节,起到验证和查实的作用。尽管最终仍由其断论,但如有强有力的数据库支持,干扰查找往往能事半功倍,整项工作技术环节上的耗时会大大减少。

参考文献

[1] Mr.Aif Ahlstrom.利用直放站提高公众移动系统的覆盖范围.移动通信,1999(3)

[2] 朱泽健.直放站对移动通信网络的干扰分析.中国无线电,2005(9)

[3] 黄标.移动通信系统之间电磁兼容分析.无线电监测与频谱管理培训教材(下)

直放站的指标调试及整体测试

直放站由于其投资少,结构简单、安装方便等特点,被广泛应用于一些弱信号区域或信号盲区,已成为无线网络优化的一个重要选择。文章先介绍了直放站的工作原理,然后详细地分析了直放站的各项调试指标,最后还讨论了直放站安装完成后衡量其工作性能必需测量的4项整体指标。

随着移动通信用户数量的急剧增长,移动用户对蜂窝移动通信系统的覆盖范围和信号质量要求也越来越高,移动通信直放站以其有效性和经济性得到广泛应用。与基站相比,直放站由于其投资较少、结构简单、安装方便灵活等优点,广泛应用于一些弱信号区域或盲区,如电梯、地下车库、宾馆、山上风景区、地铁、隧道等场所,并能有效地改善这些地区的通信质量。目前,直放站已经成为无线网络优化的一种重要手段和延伸网络覆盖距离的一个优选方案。直放站的设计与安装是否合理,对其各项指标的测试就显得及其关键且有重要的现实意义。

1、直放站的工作原理

直放站(Repeater)的基本功能是一个射频功率增强器,在无线通信传输过程中起到信号增强的一种无线电发射中继设备。

在移动通信系统中,直放站位于基站与移动台之间,中继传输两者间的双向射频信号,用来填补基站覆盖盲区或延伸覆盖区。直放站与基站不同,没有基带处理电路,不解调无线信号,没有容量扩展,其原理框图如图1所示。

图1直放站应用原理图

2、直放站的指标调试

为使直放站安装符合工程设计要求,并尽可能小地减少对其它移动网络造成干扰,就必须在直放站安装时对以下技术指标进行严格调试。

2.1基本工作频带

GSM900直放站的工作频带应满足上行:890~909MHz,下行:935~954MHz。

为适应部分站点的特殊需要(如抑制竞争对手信号或抑制干扰),要求宽带直放站的带宽在2~19MHz范围内可调,具体工作频带的设置按设计文件(方案)的要求。

2.2带内平坦度

在直放站输入信号和增益保持不变的情况下,在直放站输出端测试在直放站有效工作带宽内的不同频率上最大和最小输出信号的差值(峰峰值)。要求直放站的带内平坦度(峰峰值)小于3dB。

2.3接收信号功率

测试现场直放站下行接收信号功率。测得的接收信号电平不能超过直放站允许的最大输入功率,并符合设计方案的要求或与竣工文件相符。

2.4输出信号功率

测试现场直放站下行的输出信号功率。测得的输出信号功率不能超过直放站的最大输出功率(ALC用于调节功率),并符合设计方案的要求或与竣工文件相符。

2.5增益

测试现场直放站的实际上下行增益(输出信号功率-输入信号功率),并与直放站标注的增益值比较是否一致,误差范围在±10%内。

2.6收发信隔离度

测试室外无线直放站收发信两端的隔离度。直放站收发信隔离度的要求:隔离度I≥直放站实际工作增益G+10dB。

2.7驻波比

分别在直放站的输入端和输出端测试其至施主天线和覆盖天线的驻波比,其驻波比要求小于1.5。

2.8噪声电平

分别在直放站的输入端和输出端测试上下行噪声电平(对于光纤直放站,分别在中继端机的输入端和覆盖端机的输出端测试上下行噪声电平)。要求直放站上行噪声电平小于

-36dBm,而且到达施主基站(CDU端)的上行噪声电平小于-120dBm。设直放站上行噪声电平为PNR,从施主基站(CDU端)到直放站输入端的信号损耗为LP,则要求直放站上行噪声电平:PNR<-120dBm+LP。

2.9互调干扰

分别在直放站的输入端和输出端测试上下行互调干扰产物(对于光纤直放站,分别在中继端机的输入端和覆盖端机的输出端测试上下行互调干扰产物)。要求在900MHz频段内所有互调均小于-36dBm,1800MHz频段小于-30dBm。

2.10带外抑制度

测试直放站对工作带宽外所获得的信号的增益抑制程度。对于宽带直放站,带外抑制度要求如下。

设f1、f0、f2分别为滤波器带宽的下限、中心频率和上限当直放站最大增益≥80dB 时,则上下行必须满足表1参数。

表1宽带直放站带外抑制参数1

当直放站最大增益小于80dB时,则上下行必须满足表2参数。

表2宽带直放站带外抑制参数2

对于载波选频直放站,带外抑制要求如下。

设f0为滤波器中心频率,直放站增益为85dB,则上下行必须满足表3参数。

表3载波选频直放站带外抑制参数

3、直放站系统的整体测试

直放站安装调试完毕后,实际工作中能否达到设计要求,还需进行整体测试这一步,如果整体测试符合要求,则该直放站安装达到了工程要求;否则,要重新调试,直到符合要求为止。一般整体测试主要测试下面4项指标。

3.1信号强度

要求在设计覆盖范围内95%的位置上所测得的手机接收信号强度室外不得低于-93dBm,室内不得低于-85dBm,电梯内不得低于-90dBm。在覆盖区内挑选20个以上的测试点用测试手机(如TEMS等)测量接收到的BCCH、BSIC及信号强度,并填写“直放站覆盖效果测试表”。另施主小区信号强度一次强小区信号强度≥10dBm(室外),施主小区信号强度一次强小区信号强度≥6dBm(室内)。

3.2通话质量

要求在通话过程中话音清晰无噪声,无断续,无串音,无单通等现象。用TEMS进行误码率(RxOul)的测试,等级为3以下(不包含3)的测试点的数量应占90%以上。并填写“直放站覆盖效果测试表”。

3.3对其他运营商信号的抑制

在保证GMCC有效工作频带信号转发的前提下,要求直放站不能有效转发其他GSM运营商信号,不能改善其覆盖效果,不能给其网络带来干扰。还应在设计覆盖范围内挑选5个以上的测试点,通过开、关直放站,用测试手机(如TEMS等)测量其他运营商的信号强度,比较直放站开、关对其产生的影响。要求对其信号提高不超过20dB。填写“对其他运营商信号抑制效果测试表”。

3.4安装前后对网络的影响评估

对直放站的施主小区及相邻小区分别做开通前和开通后5天的忙时话务统计(包括SDCCH和TCH的统计),要求其各项指标均达到当年网络指标要求,其中要求施主小区在直放站开通后比开通前的掉话率(非考核掉话率)增加的百分数(以直放站开通前后5天的话务统计的平均值为标准)不超过O.2个百分点。

4、结论

通过以上对直放站调试指标和整体测试的分析可知,指标调试和整体测试是直放站工程设计实施最关键的一步;工程施工是否达到设计要求,直放站能否正常发挥作用且不对其他信号造成干扰,都依赖于指标调试和整体测试的结果,因此必须充分引起设计施工者重视!

CDMA参数指标说明

CDMA 1、CDMA Radio窗口 参数名称参数描述 RX Power(dBm)手机的接收功率 TX Power(dBm)手机的发射功率 TX Adj.(dB)发射功率调整 Total Ec /Io(dB)搜索到的多径的Ec/Io总和 Reference Ec/Io(dB)主导频的Ec/Io Max Ec/Io(dB)多径中Ec/Io的最高值。 Total Ec(dBm)导频功率的总和 Reference Ec(dBm)主导频的Ec Max Ec(dBm)导频功率的最大值 Reference PN主导频的PN Max Ec/Io PN多径中Ec/Io最高的导频PN FFER(%)前向误帧率 ActiveSet Number激活集导频个数 Frequency主服务导频的频点 2、CDMA Markov窗口 参数名称参数描述 Full预期的马尔可夫帧全速率 D1/2马尔可夫半速率下的接收帧的实际速率D1/4马尔可夫1/4速率下的接收帧的实际速率D1/8马尔可夫1/8速率下的接收帧的实际速率BSig带有信令信息的帧数 Half预期的马尔可夫帧半速率 Quarter预期的马尔可夫帧1/4速率 Eight预期的马尔可夫帧1/8速率 Eras接收时有删除记号的帧数 FError接收时有误码的帧数 BError每次呼叫中误码的总数

Ferr.%误帧率 3、CDMA Finger窗口 参数名称参数描述 PN多径信号的PN Sector多径信号所在的扇区 Distance(m)与服务扇区的距离 Ec/Io(dB)多径信号的Ec/Io OffSet多径信号PN偏置 4、CDMA System Parameters窗口 参数名称参数描述 SID移动业务本地网ID NID网络ID BID基站ID Win_A切换类参数,用来设定Active Set和Candidate Set的搜索窗口长度Win_N切换类参数,用来设定neighbor set的搜索窗口长度 Win_R切换类参数,用来设定remaining set的搜索窗口长度 Pilot Inc.导频增量,即相邻两个导频相位偏置之差(PILOT_INC×64chip)T_Add导频信号强度门限 T_Comp Active Set与Candidate Set导频信号强度的比较门限 T_Drop导频信号去除门限 T_TDrop导频去除计时器值 Soft Slope切换斜率 Ec Threshold导频信号功率 Ec/Io Threshold导频Ec/Io Neighbor Max Age相邻导频集最大保留时间 5、Access Params窗口

直放站指标参数详解

直放站设备指标参数详解 1.工作频段 工作频段是指直放站在线性输出状态下的实际工作频率范围,根据需要设备可使用工作频段的全部和部分。 对应于900MHz/1800MHz频段: 上行 885~909MHz/1710~1730MHz 下行 930~954MHz/1805~1825MHz 2.标称最大输出功率 2. 1定义 标称(最大)输出功率是指直放站在线性工作区内所能达到的最大输出功率,此最大输出功率应满足以下条件: (a)输入信号为GSM连续波信号; (b)增益为最大增益; (c) 在网络应用中不应超过此功率 2.2 测量方法 1.按图1所示连接测试系统; 图1:标称(最大)输出功率测试 2.将GSM信号发生器输出通过电缆接至被测设备输入端口,再将功率衰减器及连接电缆总损耗值作为偏置输入GSM分析仪或功率计中; 3.关闭反向链路(测量前向输出功率)或关闭前向链路(测量反向输出功率);

4.将GSM信号发生器设置为该直放站工作频率范围内的中心频率或指配信道的中心频率;将被测直放站增益调到最大; 5.调节GSM信号发生器的输出电平直至ALC启控点,GSM分析仪或功率计上直接显示的每信道功率应在被测直放站厂商声明的最大输出功率的容差范围内; 6.记录被测直放站的输出功率电平L out(dBm)及输入电平(GSM信号发生器输出电平减去连接电缆的损耗值)L in(dBm); 7. 对于移频直放站应对近端单元和远端单元分别测量。 3.增益 3. 1最大增益及误差 3.1.1 定义 最大增益是指直放站在线性工作范围内对输入信号的最大放大能力。 最大增益误差是指最大增益的实测值与卖方声明值之间的差值。 3.1.2 测量方法 1.测试系统及测试步骤同2.2图1; 2.最大增益为Gmax= Lout-Lin(dB)(1) (dB)(2)3.增益误差为△= Gmax-G 厂声明 4. 对于移频直放站应对近端单元和远端单元分别测量。 3.2增益调节范围 3.2.1 定义 增益调节范围是指当直放站增益可调时,其最大增益和最小增益的差值。 3.2.2 测量方法 1.测试系统及测试步骤同2.2图1; 2.调被测直放站增益为最小,从GSM分析仪或功率计读出被测直放站的输出功率电平 L 。 outmin 3.调被测直放站增益为最大,从GSM分析仪或功率计读出被测直放站的输出功率电平 L 。 outmax

直放站最常见故障及处理方法

直放站最常见故障及处理方法 1、直放站轮询失败 拨打监控电话是否可以打通,通的话重新轮询确定是否已恢复正常,不正常则去现场处理。 首先检查设备供电是否正常,检查电源模块工作是否正常,检查监控板工作是否正常,取出监控卡清除卡内短信,确认卡是否停机或损坏,还是不行检查软件设置参数是否正确,如短信中心号码设置是否正确等,没有问题检查MODEM接收信号是否正常,最后都不行就更换MODEM和监控板。 2、下行驻波告警 首先用驻波仪检查直放站输出口主干馈线是否驻波过高,检查线路接头是否进水或被破坏,查出故障点整改后可以恢复,天馈驻波正常则调整直放站设备驻波告警参考值设置是否正确,或者降低直放站的输出功率可以得到解决。 3、下行欠功率告警 首先检查直放站参数设置是否正确,调整增益是否可以恢复,如果数据正常,检查下行低噪放和功放,或是施主信号变小,还有可能施主基站频点更改直放站没有及时更新。 4、直放站覆盖区无信号 `查施主天线是否有故障,检查分布系统是否被破坏。 5、直放站信号变弱 电脑检查输出信号是否变小,参数设置是否改变,调整增益是否可以改善,检查分布系统是否驻波太高。 6、基站有上行干扰 上行底噪大,主要是直放站离基站较近,增益太大。通过减小上行增益可以使底噪下降。还有检查直放站的杂散是否超标。 7、光收发模块故障 首先检查光模块光输出是否正常,再检查光输入是否正常,如果出现LD ALARM则光模块发有故障,更换,如果出现PD ALARM有可能是另一端的光模块出现故障,也可能是光纤线路出现故障,需检查远端的输出是否正常判断故障出现在哪里。 8、覆盖区手机上线困难,呼不出 出现手机上线困难主要原因是上下行增益设置不平衡,手机发射功率大,接入网络困难,接入网络时间长,要求上下行增益差不超过3-5dB。如果设置正确那就可能是上行低噪放和攻放故障,还有个可能是施主基站话务量太大导致上线,电话打不出。 9、效果监控轮询失败 效果监控软件故障,重启设备就可以恢复,效果监控供电故障,或者效果监控卡出现停机等现象。也有可能效果监控硬件故障,比如卡槽坏等明显故障。 10、效果监控接收电平强度告警 首先检查直放站工作是否正常,再检查耦合器和连接线是否有故障,还有检查平台告警范围设置是否合适。 11、切换失败掉话 进出电梯发生切换失败掉话,原因是小区列表没有做好导致掉话,检查电梯厅信号和电梯内信号两个小区的领区列表。直放站选信源要选用原大楼内的主导频点作为信源覆盖,尽量减少切换。 12、微蜂窝信号泄露 室内分布低层天线安装太靠边或者是大楼外墙损耗较小导致室内微蜂窝信号泄露,处理方法;更改室内分布系统器件或主机输出降低天线输出电平,更改天线位置,更换成定向天线,修改微蜂窝和室外宏蜂窝信号切换电平差等。 13、大楼高层信号显示满格,但经常掉话,通话质量差

Nokia指标参数公式

(一)评估内容-指标部分 (3) ◆移动接入性 (3) 1.1 平均RACH负荷率(Average RACH Load %) (3) 1.2 RACH总拒绝率(Total RACH Rejection Ratio) (3) 1.3 AGCH拥塞率(AG blocking rate) (4) 1.4 平均PCH负荷(Average Paging Buffer Space) (4) 1.5 寻呼消息删除(Delete paging command) (5) 1.6 SDCCH拥塞率(SDCCH blocking rate) (6) 1.7 TCH拥塞率(TCH blocking rate,blck_8d) (6) 1.8 随机接入成功率(Random access successful rate) (7) 1.9 业务信道分配成功率(TCH assignment successful rate) (7) ◆移动保持性 (7) 1.10 切换失败率(Total HO Failure %) (8) 1.11 SDCCH掉话率(SDCCH drop rate) (8) 1.12 Dcr_3j掉话率 (9) 1.13 2071掉话率 (9) ◆资源利用情况 (10) 1.14 SDCCH可用率 (10) 1.15 TCH可用率 (10) 1.16 BCSU负荷 (10) ◆网络质量 (11) 1.17 上下行链路平衡 (11) 1.18 强干扰(Boundary3-Boundary5) (11) ◆重要网络事件 (11) 1.19 主被叫呼叫比例: (12) 1.20 Average call length, S1 (trf_2d) (12) ◆数据业务指标 (13) 1.21 无线信道充足率(TSL Assignment Fulfill rate) (13) 1.22 TBF成功率(tbf_34a) (14) 1.23 PCU拥塞率(BLCK_32) (15) 1.24 MCS6-9编码占用比例(按照流量计算) (15) 1.25 RLC层每时隙吞吐量(trf_236) (15) (二)投诉处理 (16) ◆每万用户客户投诉比 (16) ◆TOP10投诉区域处理解决状况 (16) (三)告警处理及设备维护 (17) ◆告警处理 (17) ◆直放站告警处理 (18) ◆天馈线检查 (18)

智慧轨道交通项目解决方案

智慧轨道交通解决方案

目录 1、系统概述 (1) 2、系统架构 (2) 3、系统组成 (3) 3.1、传输系统 (3) 3.2、无线系统 (4) 3.3、公务电话子系统 (6) 3.4、专用通信系统 (7) 3.5、电视监控子系统 (8) 3.6、广播子系统 (10) 3.7、时钟子系统 (11) 3.8、电源子系统 (12) 3.9、售检票系统 (13)

1、系统概述 轨道交通子系统,是协同轨道交通运营调度及实现行车安全为目的,在统一的计算机软件和硬件平台上集成各专业机电系统,完成对线路行车运行的监控,形成集行车指挥、电车运行控制、机电设备监控于一身,真正做到行车、设备、乘客、环境、运营管理的综合监控管理。 系统建立典型的全站实景三维立体模型,如实反映设备位置和运行情况。并能在控制中心下发模式,整个三维模型能按照控制中心的模式要求进行执行命令。 系统结合CCTV的实景分析,确定控制中心的模式,以及各个设备的开启情况和执行情况。 系统通过机器视觉进行车站和设备房的关键位置监控,通过模型和实际场景配合确保车站和设备的安全可靠运行、维护。 系统与城市应急指挥系统相关联,与公安、交通、医院等信息相连,以GIS系统展现。手机App完善,现场手机拍摄状态。利用手机,定位车站工作人员位置及模拟仿真人员疏散以完善决策系统。

3.1、传输系统 传输系统是通信系统最重要的子系统,是连接行车调度指挥中心与车站、车站与车站之间信息传输的主要手段,是组建轨道交通通信网的基础和骨干,为通信系统各子系统以及列车控制(ATS)系统、电力监控(SCADA)系统、自动售检票系统(AFC)、主控系统(MCS)、办公自动化(OA)系统等系统提供语音、数据和图像信息的传输通道。业务类型通常有模拟用户、2M数字业务、宽音频广播业务、各种低速数据业务、图像业务、10/100Mbit/s以太网业务等。 1、采用SDH光传输+综合业务接入设备组网:在控制中心、车辆段和各车站设置SDH设备和接入设备(AN),在控制中心设备网管系统,用于传输网络的管理;由SDH光传输设备组成光纤数字环路自愈网,各类业务由SDH设备和接入设备接入。 2、采用ATM传输系统组网:由ATM设备组建传输网,网络分两级:一级网络为控制中心到车辆段和各个分站组成环路,属于网络骨干部分;二级网络为接入部分,主要是各车站通过ATM接入设备接入各站业务,网络管理设置在控制中心,用于传输系统的管理。各类业务由ATM接入设备接入。 3、根据用户需求集成国内外先进技术和产品。

2012上行干扰处理流程及案例

2012遵义上行干扰处理流程及案例 根据省公司“工兵行动”专项干扰优化要求,各分公司将按照自查自纠展开工作。干扰问题一直是属于优化的重点,干扰会造成后台指标恶化,同时用户感到呼叫困难、通话质量差、异常掉话等。因此,处理干扰刻不容缓。 目前,遵义全网存在三种类型干扰:一是直放站干扰(设备稳定性较差)。二是网内干扰(谐振腔、馈线头、避雷器、天线等)。三是外部干扰(如电信CDMA、私装天线等)。处理起来比较繁琐、较为复杂,网优室结合现场处理经验。梳理了排查步骤和案例如下,各公司要进行认真学习,强化干扰处理能力,着实提升网络质量。 一、排查步骤 1、带直放站干扰小区 若接直放站,则将直放站全部甩开,将直放站合路器一同拆下,保持基站天馈原有状态。 (切忌不可只关直放站电源),联系机房人员查看上行干扰是否消失或减弱(让机房工作人员多刷新几次)。 若上行干扰消失,则需联系直放站厂家对直放站设备进行处理。处理完成后,维护人员 应打机房电话确认干扰是否消除,并且到直放站远端覆盖区域检查覆盖是否减弱。 若上行干扰没有任何变化,需要做如下步骤。 2、若无直放站小区存在上行干扰 排查该干扰小区100米内是否存在电信基站,若存在电信基站,建议首选协调电信关闭 电信基站后联系机房查看干扰小区的上行干扰情况。若无法协调电信关闭基站,建议将干扰小区天线方位角转向背向电信基站方向,联系机房查看上行干扰情况,判断是否减弱或消失。若干扰减弱或消失,则该小区的干扰源为电信基站,建议协调电信整改或者安装滤波器。若不是电信干扰,需要做如下步骤。 3、网内干扰处理 该小区无电信站在附近,无直放站,基本可以判断为基站网内干扰,涉及到的部件有: ANC、ANY、1/2跳线头、避雷器、7/8馈线头、天线。首先检查1/2跳线头是否老化、松

数字无线直放站技术规范书

中国移动通信集团北京有限公司数字无线直放站技术规范书 中国移动通信集团北京有限公司 2010年5月

本技术规范书是中国移动通信集团北京有限公司就向其提供数字无线 直放站的投标人提出的技术要求,作为投标人制定技术应答书的依据。 投标人提供的系统天线、馈线应满足中国移动天线、馈线技术规范书的要求。 第一部分:总则 1、总体要求 1.1本规范书为中国移动通信集团北京有限公司(项目业主,以下简称“买方”)购买资本性优化项目所需设备的主要技术、业务功能和供货要求,供厂商(投标人,以下简称“卖方”)编写建议书和报价之用,卖方建议书的内容格式应符合本规范书的要求。 1.2 卖方应为从事无线通信设备研发和制造的企业,对GSM网络及GSM技术有深刻理解。在数字无线直放站等的生产、工程设计、工程施工和网络优化方面有良好的经验和充足的技术实力。企业具有稳定的组织机构,良好的信誉,足够的经济实力,充足的技术队伍,长久的生命力和延续性。卖方需向买方出示有效的企业资质证明(详见技术规范书第1.18点)。 1.3对本规范书各条目的应答为“满足并优于”、“满足”和“不满足”,“部分满足”视为“不满足”,对于相关技术参数指标等内容,投标人应在性能要求表格中每一项指标下方的空格内做逐项应答,说明能否满足要求,并填写具体数值,要求以产品标称值应答,应答用蓝色粗体字。此外要求提供相应软、硬件的详细技术资料和所运行环境的详细要求。对本规范书各条目的应答不得使用“明白”、“理解”等词语。卖方若对本规范书中的部分要求不能满足或者有不同于本规范书相关要求的其它建议,也应在建议书中详细说明。 1.4卖方应按照本文件的要求提供报价和详细的技术建议。卖方提供的各项设备、软件产品和系统的功能、性能应完全符合买方指明的标准,并满足或高于买方的要求。对于本文件未规定的有关系统性能,卖方应提出建议,并陈述其理由。 1.5卖方应该按照技术规范书的要求,在技术建议书中提供详细的总体方案、设备供货、安装调测、系统集成、实施计划、人员配备、验收测试、技术服务和培

直放站设计中噪声和互调干扰的解决方法

一、直放站的噪声系数对GSM网络的影响及解决方法 例一:设EDoPL为90dB,直放站增益设为90dB(设此时直放站下行输出功率和基站一样),直放站和基站的噪声系数5dB,为保持上下行链路平衡,上下行增益设置一样。利用前边的公式可以得出: ROT=3dB 结论:直放站的引入使基站噪声电平提高3dB,接收机灵敏度降低3dB,施主基站覆盖范围缩小20-30%,同样直放站的覆盖范围也要相应减小。 例二:设EDoPL为90dB,直放站增益设为85dB(直放站下行输出功率比基站小5dB),直放站和基站的噪声系数5dB,为保持上下行链路平衡,上下行增益设置一样。利用前边的公式可以得出: ROT=0.8dB 结论:直放站的引入使基站噪声电平提高0.8dB,接收机灵敏度降低0.8dB,施主基站覆盖范围缩小较少。 2解决方法 通过以上两例可以看出,影响上行输出噪声功率的因素有两个:噪声系数和整机功率。当直放站增益设置比有效路径损耗小时,直放站躁声系数对基站的影响比较小(如果在此基础上再留10dB左右的余量,直放站对基站影响将会更小:<0.3dB)。选择噪声系数尽可能小的直放站,合理调整直放站的增益,严格控制直放站的发射功率,才能避免上行躁声给网络带来的不利影响。 二、直放站的互调干扰对GSM网络的影响及解决办法 三阶互调的两种模型2fa-fb、fa+fb-fc, 二阶互调fa+fb、fa-fb等,因其频率远离主导信号频率fa、fb,可不考虑:三阶互调的两种模型2fa-fb、fa+fb-fc,因其频率接近或等于主导信号频率,对通信的影响最大; 2解决方法 通过上述分析可知,影响上行输出的互调因素有两个:设备本身的线性度和ALC控制电平。为避免产生三阶互调,可采用下面的办法: (1)选择适当的频点组合。拉开频距选用无三阶互调频道点组工作,使三阶互调不会落在所使用的频点内; (2)采用自动增益(功率)控制(APC)技术,实时减小发射功率以减低互调电平,使其不至于落入有源器件的非线性区。 (3)提高收信机前端的选择性,抑制干扰信号;改善收信机输入级的线性度,提高互调

常见基站故障指标异常处理

第一节:关于Path balance值的问题 作者:张雨 P-b值是反映RTF性能的一个参数,它的计算公式为pathbalance=uplink path loss-downlink path loss+110,故它的最佳值应为110。P-b值不正常是在基站维护过程中经常遇到的问题,它会影响到拥塞、掉话等一些敏感的指标,也会造成通话质量的下降。 第一部分:造成P-b值不正常的原因 造成P-b值不正常的原因有很多,既有软件方面的,也有硬件方面的。总结起来主要有以下几个方面: 1.基站数据定义错误 2.话务量太低也会造成P-b值不正常 3.相邻小区或本小区同频或邻频干扰也会造成P-b值不正常 4.射频通路、接收通路硬件故障及连接错误 5.载频本身故障 6.带外干扰 第二部分:解决P-b问题的步骤 我们知道了造成P-b值不正常的原因,因此先不要急于下站,我们可以先进行一下前期的分析。这有助于我们尽快的解决问题。这个分析主要是根据OMC终端的统计来做的。 一.先看一下基站是否有告警。 二.是否由于话务量太低,载频无占用造成P-b值不正常(P-b值为0)。

三.检查相关数据是否有定义错误。这包括: 1.接收天线的位置定义是否正确 2.定义的合路器类型是否正确 3.载频和RTF的相关定义是否正确 4.基站内及相邻基站是否存在同频或邻频干扰 四.倒换RTF位置以便初步判断障碍点。 一般如果只有较少载频的P-b值不正常,则可以在下站前将其RTF的位置与同小区的其它载频倒换一下,观察其后一时段的P-b值变化情况,若改换载频后RTF的P-b值正常,而改换到原RTF所在位置载频的新RTF P-b值不正常,则可初步认定是硬件故障。 一般如果P-b值不正常的RTF较多,甚至整个小区的RTF的P-b 值都不正常,那么载频故障的机率就比较小,应侧重检查其数据或合路器、天馈线等设备。 五.基站设备检查: 1.如果P-b值较低,可侧重检查射频通路;如果P-b值较高,可侧重检查接收通路。具体检测方法可按操作维护规程进行检查。 2.检查基站连线、天馈线连线及方向是否正确。 3.检查基站接头是否有松动现象,基站天馈线序是否与标签一制。 4.更换基站坏载频、器件性能不好的基站硬件。 5.基站硬件检测未发现问题后,可对基站天馈部分进行检查。如:驻波比、天线方向等。

对干扰措施硬件处理方法有哪几种

对干扰措施硬件处理方法有哪几种 对于新手来说,在对电磁干扰的设计我们主要从硬件和软件方面进行设计处理,下面就是从单片机的一、影响1.电压2.频率3.接地4.5.电源往耦二、对干扰措施的硬件处理方法1.印刷线路板(PCB)的电磁兼容性设计2.输入/输出的电磁兼容性设计3.单片机复位电路的设计4.5.防雷击措施三、对干扰措施的软件处理方法电磁干扰源所产生的干扰信号在一些特定的情况下(比如在一些电磁环境比较恶劣的情况下)是无法完全消除的,终极将会进进CPU处理的的核心单元,这样在一些大规模集成电路经常会受到干扰,导致不能正常工作或在错误状态下工作。特别是像RAM这种利用双稳态进行存储的器件,往往会在强干扰下发生翻转,使原来存储的“0”变为“1”,或者“1”变为“0”;一些串行传输的时序及数据会因干扰而发生改变;更严重的会破坏一些重要的数据参数等;造成的后果往往是很严重的。在这种情况下软件设计的好坏直接影响到整个系统的抗干扰能力的高低。 1.程序会由于电磁干扰大致会一下几种情况: ①程序跑飞。 这种情况是最常见的干扰结果,一般来说有一个好的复位系统或软件帧测系统即可,对整个运行系统的不会产生太大的影响。 ②死循环或不正常程序代码运行。 当然这种死循环和不正常程序代码并非设计职员有意写进的,我们知道程序的指令是由字节组成的,有的是单字节指令而有的是多字节指令,当干扰产生后使得PC指针发生变化,从而使原来的程序代码发生了重组产生了不可猜测的可执行的程序代码,那么,这种错误是致命的,它会有可能会往修改重要的数据参数,有可能产生不可猜测的控制输出等一系列错误状态。 2.对重要参数储存的措施 一般情况下,我们可以采用错误检测与纠正来有效地减少或避免这种情况的出现。根据检

直放站干扰,指标调试及整体测试

直放站在今天的应用已非常普遍,从工作原理来看,它本质上是个双向功率放大器,在移动通信网络中主要起填补蜂窝小区信号传输空白区域的作用,体现在消除盲区、改善覆盖、扩展小区边界等应用上。在无线传输中,它还可以充当中继,以提高链路余量,并为特定的基站吸收业务量。基于其体积较小、价格较低、结构简单、安装方便等特点,它不再是通信运营商的专有物,一些工厂、宾馆、商场、停车场等场所也会根据需要私自安装。 直放站在商业通信网络中发挥着积极作用的同时,由于其为数众多且管理上不够完善,也带来了不少副作用。如它恶化了公众移动通信频段的电磁环境,催生了众多无线电干扰,而且,对这些干扰的排查也并非易事。 直放站干扰排查实录 我们曾接到中国联通的干扰申诉,称:容桂华宝GSM900基站上行信号受到干扰,网络统计分析显示掉话率很高。他们认为是由机床产生的工业干扰,初步确定干扰源就在与基站一路之隔的广东美芝厂区内。我们出动监测车,利用车上的ESMB/DDF190监测/测向设备,同时开启E4407B频谱分析仪,分别接上全向及定向天线,在基站四周及广东美芝一带苦候干扰信号的出现。ESMB/DDF190系统在其高增益有源天线的强力支持下,倒是收到了信号,但却是假信号,频谱分析仪则一点动静都没有。但联通中心机房的网络统计分析显示,这段时间内干扰依然存在。 当监测车行经某知名公司厂房的大门口时,频谱分析仪显示屏上有了反应,底噪提高了近20dB。我们立即换上定向天线作简易测向,测得的信号最大值方向指向该公司办公大楼。于是,我们改用TekNet YBT250基站维护测试仪并配上EB200手持式测向天线入内查寻,绕大楼一周,最后将疑点锁定在电梯机房内。在楼顶电梯机房旁测得信号的最大值约为-70 dBm(频谱图如图1所示)。我们以为该信号是由电梯内的视频监视无线传输设备发出的,但遍寻不获。后来我们无意中发现楼下有两根天线立于停车场入口处的纤维遮光棚一侧,并在棚内又发现另一根。之后以手持天线对准其中一根定向八木天线,测得信号最大幅度接近-50 dBm(频谱图见图2)。我们沿着馈线顺藤摸瓜,发现在停车场入口旁一侧拐角的墙上,上下依次装了3个放大器。放大器的另一端分别接一根鞭状天线,固定于停车场天花板铁架上。

处置非法干扰民用航空安全行为程序

编号:SM-ZD-67152 处置非法干扰民用航空安 全行为程序 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

处置非法干扰民用航空安全行为程 序 简介:该制度资料适用于公司或组织通过程序化、标准化的流程约定,达成上下级或不同的人员之间形成统一的行动方针,从而协调行动,增强主动性,减少盲目性,使工作有条不紊地进行。文档可直接下载或修改,使用时请详细阅读内容。 第一部分总则 第一章定义、类别 1.1 定义 非法干扰行为:指违反有关航空安全的规定,危害或足以危害民用机场、航空器运行安全或秩序,以及有关人员生命和财产安全的行为。 1.2 类别 1.2.1 《东京公约》、《海才公约》、《蒙特利尔公约》、《蒙特利尔议定书》规定的,触犯刑律的犯罪行为(恐怖主义罪行):实施或者企图实施劫持、爆炸航空器,袭击、爆炸机场等行为。 1.2.2 可能危及飞行安全的行为:当面威胁或电话威胁劫炸机;未经许可进入驾驶舱、企图打开驾驶舱门;违反

规定不听机组劝阻;在客舱洗手间内吸烟;殴打机组或威胁伤害他人;谎报险情、危及飞行安全;未经允许使用电于设备;偷盗或者故意损坏救生设备;违反规定开启机上应急救生设备,等。 1.2.3 扰乱秩序行为:寻衅滋手、殴打乘客;酗酒滋事;性骚扰;破坏公共秩序:偷盗机上物揣、设备;在禁烟区吸烟;冲击机场、强行登占航空器:等。 1.3 适用范围本程序重点处置以上第二、三类行为,第一类行为按己有预案进行处置。 第二章处置原则 2.1 处置原则 a)确保航空安全,争取飞行正常。ˉ! b)确定性质,区别处置。 c)及时控制事态,防止矛盾激化。 d)教育与处罚相结合。. c)机上控制,机下处理。 f)空地配合,互相协作。 第三章职责分工

中国电信CDMA直放站使用技术交流

CDMA 系列直放站开通使用 培 训 资 料 深圳市皓华网络通讯有限公司

目录 1.使用安全须知 2.原理框图 3.安装调试说明 4.直放站的主要指标调测 5.常见故障排除方法 6.直放站的使用应注意的事项 7.直放站的网络优化 8.典型案例

1. 安全使用须知 1.1安全须知 在安装和操作本公司直放站之前,请务必仔细通读本安全须知,认真遵守以下安全事项: A、直放站是用来无线转发,双向放大基站上、 下行链路信号,扩展移动通信信号覆盖范 围、填补移动通信的覆盖盲区的。正常使用不 会损坏基站,但直放站在扩大基站信号覆盖范 围的同时,其上行输出噪声电平也可能会影响 基站灵敏度,工程设计中应综合考虑。

B. 为保证设备的正常运行,在设备上电时, 严禁设备开路(即在设备ANT 端口未接天线或设备内部的功放模块射频端口未接电缆或负载时就给设备上电加信号),要求接 入设备的负载(如天线等)的驻波比小于1.5,否则长期使用也会导致设备内部功放模块的损毁。 C.接地:近端机和远端机外壳均有保护接地端子,在安 装时应采用黄绿双色导线与建筑物保护地可靠连接,也可以采用接地编织线连接;天线、馈线必须接地良好。 1. 安全使用须知

D.供电: 光纤直放站(标配):近端机采用DC:-48V直流电源供电,远端机采用交流:AC220V交流电源供电,无线直放站和干放采用交流:AC220V交流电源供电。 当采用交流供电时请确认: 公共电网的交流电源额定电压范围为155~ 285VAC,额定频率范围为45~55Hz。在该设备安 装现场使用的三芯电源插座,其接地端子必须与 建筑物保护地可靠连接。

直放站的指标调试及整体测试

直放站的指标调试及整体测试 直放站由于其投资少,结构简单、安装方便等特点,被广泛应用于一些弱信号区域或信号盲区,已成为无线网络优化的一个重要选择。这里介绍了直放站的工作原理,然后详细地分析了直放站的各项调试指标,最后还讨论了直放站安装完成后衡量其工作性能必需测量的4项整体指标。 随着移动通信用户数量的急剧增长,移动用户对蜂窝移动通信系统的覆盖范围和信号质量要求也越来越高,移动通信直放站以其有效性和经济性得到广泛应用。与基站相比,直放站由于其投资较少、结构简单、安装方便灵活等优点,广泛应用于一些弱信号区域或盲区,如电梯、地下车库、宾馆、山上风景区、地铁、隧道等场所,并能有效地改善这些地区的通信质量。目前,直放站已经成为无线网络优化的一种重要手段和延伸网络覆盖距离的一个优选方案。直放站的设计与安装是否合理,对其各项指标的测试就显得及其关键且有重要的现实意义。 1、直放站的工作原理 直放站(Repeater)的基本功能是一个射频功率增强器,在无线通信传输过程中起到信号增强的一种无线电发射中继设备。 在移动通信系统中,直放站位于基站与移动台之间,中继传输两者间的双向射频信号,用来填补基站覆盖盲区或延伸覆盖区。直放站与基站不同,没有基带处理电路,不解调无线信号,没有容量扩展,其原理框图如图1所示。 图1直放站应用原理图 2、直放站的指标调试 为使直放站安装符合工程设计要求,并尽可能小地减少对其它移动网络造成干扰,就必须在直放站安装时对以下技术指标进行严格调试。 2.1基本工作频带

GSM900直放站的工作频带应满足上行:890~909MHz,下行:935~954MHz。 为适应部分站点的特殊需要(如抑制竞争对手信号或抑制干扰),要求宽带直放站的带宽在2~19MHz范围内可调,具体工作频带的设置按设计文件(方案)的要求。 2.2带内平坦度 在直放站输入信号和增益保持不变的情况下,在直放站输出端测试在直放站有效工作带宽内的不同频率上最大和最小输出信号的差值(峰峰值)。要求直放站的带内平坦度(峰峰值)小于3dB。 2.3接收信号功率 测试现场直放站下行接收信号功率。测得的接收信号电平不能超过直放站允许的最大输入功率,并符合设计方案的要求或与竣工文件相符。 2.4输出信号功率 测试现场直放站下行的输出信号功率。测得的输出信号功率不能超过直放站的最大输出功率(ALC用于调节功率),并符合设计方案的要求或与竣工文件相符。 2.5增益 测试现场直放站的实际上下行增益(输出信号功率-输入信号功率),并与直放站标注的增益值比较是否一致,误差范围在±10%内。 2.6收发信隔离度 测试室外无线直放站收发信两端的隔离度。直放站收发信隔离度的要求:隔离度I≥直放站实际工作增益G+10dB。 2.7驻波比 分别在直放站的输入端和输出端测试其至施主天线和覆盖天线的驻波比,其驻波比要求小于1.5。 2.8噪声电平 分别在直放站的输入端和输出端测试上下行噪声电平(对于光纤直放站,分别在中继端机的输入端和覆盖端机的输出端测试上下行噪声电平)。要求直放站上行噪声电平小于-36dBm,而且到达施主基站(CDU端)的上行噪声电平小于

轨道交通通信系统总体解决方案

轨道交通通信系统总体解决方案 1.传输子系统 传输子系统是通信系统最重要的子系统,是连接行车调度指挥中心与车站、车站与车站之间信息传输的主要手段,是组建轨道交通通信网的基 础和骨干,为通信系统各子系统以及列车控制(ATS)系统、电力监控(SCADA)系统、自动售检票系统(AFC)、主控系统(MCS)、办公自动化(OA)系统等系统提供语音、数据和图像信息的传输通道。业务类型通常有模拟用户、2M数字业务、宽音频广播业务、各种低速数据业务、图像业务、10/100Mbit/s以太网业务等。 采用SDH光传输+综合业务接入设备组网:在控制中心、车辆段和各车站设置SDH设备和接入设备(AN),在控制中心设备网管系统,用于传输网络的管理;由SDH光传输设备组成光纤数字环路自愈网,各类业务由SDH设备和接入设备接入。 采用ATM传输系统组网:由ATM设备组建传输网,网络分两级:一级网络为控制中心到车辆段和各个分站组成环路,属于网络骨干部分;二级网络为接入部分,主要是各车站通过ATM接入设备接入各站业务,网络管理设置在控制中心,用于传输系统的管理。各类业务由ATM接入设备接入。 根据用户需求集成国内外先进技术和产品。 2.无线系统: 无线通信系统为轨道交通内部固定工作人员与流动工作人员之间提供高效短信息和话音通信。系统为运营控制指挥中心的行车调度员、环境控制调度员、公安值班员、维修调度员等对列车司机、运营人员、维护人员和现场工作人员等无线用户分别实施无线通信;为车辆段值班员对段内的无线用户实施无线通信;以及相应的无线用户之间必要的无线通信。同时还具有相应的呼叫、广播、录音、存储、显示、检测和优先权等功能。系统以调度组为通信为主,同时还可实现用户间一对一的单独通信。系统可以传递数字信息,根据列车的需要实时的传递列车状态信息。 采用无线数字集群方式:系统通常由多基站的集群系统组成,主要设备包括控制中心设备(中心控制设备、调度操作控制台、系统网络管理终 端)、车站(基站、基地台、直放站)、便携设备(车载台、便携电台、手持台)和配套设备(漏泄同轴电缆、天线)组成,中心控制设备到基站之间采用有线传输系统所提供的通道连接,基站到移动台之间采用无线连接,无线电波通过漏泄电缆和空间辐射传播。系统在正常运行时各基站由 设置在中心的主控制器控制,当基站与控制中器失去联系时,以单站集群方式支持单站系统的正常运行。 无线通信系统以专用频道方式:系统由控制中心(中心无线设备、调度操作控制台、系统网络管理终端)、车站(车站电台、固定台、直放站设备)、便携设备(车载台、便携电台、手持台)和配套设备(漏泄同轴电缆、天线)组成。 3.公务电话子系统 为轨道交通管理部门、运营部门、维修部门提供一般公务联络(电话业务和非话业务),系统具备PSTN基本业务,具备各种新业务功能(热线、 呼出限制、呼入限制、闹钟、呼叫等待、呼叫转移、缩位拨号、追查恶意呼叫、会议、ISDN),能够识别非话业务,并与无线系统连接,与当地公用电话网互联,可实现国内、国际长途通信;实现与市话局间的全自动呼入呼出,能够与当地119、120和110等特服业务相连, 系统主要由数字程控交换设备和电话终端设备组成,在控制中心、车辆段设置数字程控交换设备,在各车站设备程控交换机远端模块,各站

通信直放站故障处理

通信直放站故障处理 随着近年来通信无线市场的需求和传输技术的革新,促使通信无线设备越来越集成化、人性化、功能化。无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围、不同的适用区域、不同的技术特点和不同的接入速率。铁路通信应用较广的模式有直放站传输模式,研究其使用和维护,总结日常出现的故障克服更有利于日后维护和设备的稳定使用。 标签:直放站;开通;故障;解决 前言 无线通信技术近十年的变更非常瞩目,我国无线频率资源也较为丰富,推進不同技术相关频谱的规划和应用工作是现在政府和各个行业应该推进的工作之一。比如3G/4G可解决广域网的传输需求;WLAN可解决中距离的较高速传输;UWB超宽带可解决近距离的超高速无线传输。因此在组网上要考虑一体化,多技术并用的方式实现不同用户群体的需求。未来的无线通信网络将是一个综合的一体化的解决方案,各种无线技术都将在这个一体化的网络中发挥自己的作用。有线传输与无线传输的结合,长距离与短距离或超短距离的高速传输的结合,满足不同行业、不同群体的需求为出发点的革新。 在铁路无线通信网络中,无线直放站的组网方式以其结构简单、安装方便、设备稳定性强、覆盖面积满足铁路通信的要求等特点,被铁路通信专业广为使用,其安装较基站便利,建设周期较短,并且不受各方面的的限制等优点,在各个管辖线路中广泛使用。针对直放站使用中的一些常见障碍和解决方式做个归纳和分析。 1 直放站简介 铁路无线直放站主要是由近端机、远端机、连接光纤、耦合器等设备构成。 车站信号通过耦合器耦合,进入近端机,经过光电转换,传输至光缆,远端机接收到光信号后,转换为电信号,并进行放大,通过天线向外覆盖,传输到隧道内的移动机车,使处于隧道内的机车台和手持台有较好的接收效果,同时将机车发出的反向信号通过天线接收并放大后,由光缆发回近端机,再由近端机转换后传回车站电台。实现车站与隧道内的机车之间的异频半双工通讯。 2 安装调试 设备在投入运营前做好安装和调试工作,确保设备的稳定运行,一般安装近端机、远端机较为简单,大多都是成品根据图纸组网,较为简单。调试工作做好以下几个方面。

新大陆移动网网管系统解决方案

新大陆移动网网管系统解决方案 简介 NL-PMNMS是针对当前移动电话网络各通讯厂商的通讯设备的管理各成一体,难以达到有效的统一的管理,且模拟网,数字网管理存在明显的差别。本系统利用强大的视图引导功能, 直观简捷地进行 管理。实现了数据采集、故障监控、性能分析、数据分析、配置显示、安全管理、系统管理的功能。可动态地创建各种报表,可灵活地设置各种告警,性能门限,性能数据处理可采用 文本输出,表格输出,并具有决策分析,综合统计,趋势分析的强大的数据处理功能。可广泛应用于移动通信公司对移动电话网络的管理。 产品目标 n 网络管理a. 实现对省内汇接网设备(TMSC1、TMSC2)的监控管理;b. 实现对省内信令网设备(HSTP、LSTP)的监控管理c. 实现对省内GSM网、CDMA网、CDMA 1X 和移动智能网设备(MSC、GMSC、BSC、BTS、SMP,SSP,SCP 等)、直放站、短信系统(含PDSCP)、语音短信系统、增值系统、管理系统的的监控管理; d. 实现对省内所辖资源所有告警信息的获取和处理、统计功能; e. 实现对省内所辖资源 所有性能数据的采集和统计功能等。n 网络资源管理a. 完成中国联通各省 范围内局数据的查询、核查; b. 完成中国联通各省所辖资源数据的录入、查询、统 计、修改。n 运营维护与分析a. 结合中国联通移动网运营维护体制,实现 故障工单管理、投诉工单管理、网络割接、电路调度管理; b. 实现省内软件版本管 理;c. 根据性能原始数据,对省内网络运营状况,运营质量进行分析,包括网络质 量分析、经营支持分析、建设支持分析等; d. 对网络进行综合分析,提出优化方案; n 管理自动化a. 值班管理自动化;b. 数据报表自动化;c. 人员、流程管理自动化等。n 与其他业务系统互联a. 提供与中国联通移动综 合网管总部网管系统的开放接口,接收总部移动综合网管系统的监控、管理; b. 与现有的信令监测系统相连,采集信令监测系统的信令信息。 技术特色n 开放式技术开放式技术成为潮流和方向,由于各种技术标准的相继建 立,计算技术也进入了开放时代。开放的UNIX操作系统进一步走向标准化,Windows、OS/2 等各操作系统均走向开放。网络系统遵照ISO/OSI七层模型,数据库管理系统采用标准的数据库语言ANSI/SQL和开放的数据库连接标准,开发工具均采用标准的用户界面以及大型关系数据库的接口。标准和开放使系统在各硬软件平台上保证了可集成性和应用程序的可移植性。n 三层体系结构以三层结构为中心处理系统。该体系由表示层,商业规则层, 数据层组成。在这种处理系统中,新的业务扩展仅需在商业规则层进扩充。该层包含用于实 现商业规则的业务逻辑和用于操纵数据的工具,这样使业务逻辑和数据访问得以集中控制,极大的提高了系统的安全性,同时减轻了客户端的负载,提高处理能力。现有系统平台还可以通过高速网络集成到一起,它已在应用系统中显示出不可替代的优越性,并越来越多地被 采用。n 视窗系统用户界面越来越受到重视,应用系统必须为用户提供简单、自然、友好、方便、一致和灵活的界面,实现人机交互的所见即所得”的可视化操作。n 瘦客户端将大量的处理在商业层完成。客户端的处理能力大为削弱,使瘦客户端程序与浏览器 方式成为可能。同时此种方式的维护,升级,使用的简单性使该模式已被越来越多的系统采用。 系统功能

BSC常见故障处理

1、硬件故障(隐性故障) (1)、TX故障: 主要表现: TRU发射功率不足(个别TX无发射功率,或发射功率不平衡) 观察处理: STS指标上:开跳频时,QD掉话数量相对较多; 关跳频时,SD掉话与QD掉话相对较多; 切换:向外切换时,下行质差紧急切换多;切入城功率较低;接通率低; 路测:强信号质差较严重;200站开跳频后信号质差。 (2)、RX故障: 主要表现: 分集接收故障、接收灵敏度偏低。 观察处理: ICM统计上:出现有两极分化的上行干扰,即在测试报告中,1级干扰的测量点数有一部分,然后另一部分在3至5级,查告警有CF 2A/33分集接收故障,这类一般都有1到2个载波有故障,用RLCRP配合RXCDP指令可确认具体的故障载波。 个别载波的接收灵敏度低:SUD与SU掉话较多,指配成功率偏多,切入成功率,话音接通率较低;这一类故障较难发现,如MOTS启用,可辅助发现问题,即某些TS话务偏少,异常掉话偏多。 (3)、TRX故障: 主要表现: 忙时TRX自动闭塞、指配成功率低 观察处理: 个别TRU问题,非忙时未发现有重大问题,但在忙时,信道完好率经常不足100%,有载波自动闭掉的现象,实为某个TRU有问题,一占用就导致闭塞,指配成功率低,若用MOTS观察,某个TRU话务极少。 另外,有些载波故障在占用后不会出现闭塞,但在路测时,信号较强的情况下,统计事件中有指配不成功,STS统计中可能出现QU、QD与SUD掉话均增多。大容量D型小区,开跳频时总有部分时隙UNUSED,关跳频后无异常。 (4)、200站故障: ①、信道完好率正常,但指派成功率低,话务接通率低,换TRX后也无改善。大 部分为TX-BUS有问题。 ②、经常在路测中发现,小区开跳频后强信号质差,关跳频后测试结果正常。 ③、路测中经常发现,某瞬间信号强度几乎为零,大部分时间正常,整体质差严 重。 ④、200站普遍存在SUD及SU掉话较严重;其灵敏度较2000站低。加大功率尤 为严重。(通过降低功率或适当调整KOFFSETN、BSRXMIN可缓和掉话情况)(5)、数接定义出错 ①、MO定义出现漏洞:在定义MO时,TRX、TX与CELL连接定义错误,有复合机 架中易经常倒站,易出质差掉话。 ②、传输设备DEV与DCP对错位(RXAPI)。此类故障经常导致倒站,或信道完好率 偏低,严重拥塞等。 ③、200站与2000站传输串联。在开站或载调整时,半永久性连接定义出错,经常有 载波不能正常工作,拥塞率高。

相关文档