文档库 最新最全的文档下载
当前位置:文档库 › 高效液相色谱仿真实验

高效液相色谱仿真实验

高效液相色谱仿真实验
高效液相色谱仿真实验

高效液相色谱仿真实验

一、实验概述:

以液体做流动相的色谱称为液相色谱。人们把已经比较成熟的气相色谱理论应用于液相色谱,使液相色谱得到了迅速的发展。随着其他科学技术的发展,出现了新型的高压输液泵、高效的固定相和柱填充技术、高灵敏度的检测器,加上计算机的应用,使得液相色谱实现了高效率和高速度。这种分离效率高、分析速度快的液相色谱称为高效液相色谱(High performance liquid chromatography, HPLC)。

二、实验装置:

Agilent(安捷伦)1100系列液相色谱系统简介:

Agilent1100系列HPLC组件和系统,将Agilent长期的化学分析经验与领先的计算机技术结合,把网络技术引入了实验室。从1996年以来,在全球已经安装了超过130,000台1100组件和55,000多套化学工作站数据处理系统,成为目前单一型号市场占有率最高的液相色谱系统。

本仿真软件是模拟用Agilent化学工作站的数据处理系统进行样品分析和数据采集(色谱图)的过程。

注:本软件只是模拟分析的过程和内容,并不涉及其原理,所以实验中的参数调节对结果并没有影响,而真实实验结果是随参数的变化而变化的,这一点需要特别注意!

实验主界面:

化学工作站界面:

三、实验操作:

第一步:选取实验

点击主菜单上的“实验选取”,会出现如下的对话框:

用鼠标左键点中你要做的实验,此文件名会出现在对话框的“文件名”一栏的文本框中,在此实验文件上面双击左键或者点击“打开”按钮打开实验文件。

第二步:确认操作条件

点击主菜单上的“操作条件”,会出现如下的操作条件列表:

在实验调节过程中,请以此列表内的条件为准进行调节,否则不能正确输出色谱峰。

第三步:加入试剂

点击仪器上的自动进样器部分(当鼠标移到仪器的各部分时会出现相应的说明),出现如下画面:

点击下面的试剂小瓶,会自动放置到自动进样器的托盘中。

完成后,点击主界面上的电脑启动化学工作站。

第四步:编辑方法

击主界面上的电脑启动化学工作站开始编辑方法。

所谓方法就是一个参数集,它包括分析一个样品所需要的所有的参数:数据采集参数、数据分析参数和命令行或者宏指令。

点击菜单“方法→编辑方法”开始编辑方法(注意:此时不可以改变方法的参数,可改

变的参数将在下面特别说明):

然后会出现下面的窗口让你选择编辑方法的内容:

用鼠标点击复选框选择要编辑的方法的内容,然后点击“确定”按钮开始方法编辑,点击“取消”按钮终止方法编辑。

开始方法编辑后,系统会根据你选择的内容分别依次显示每一部分的具体内容,点击“确定”按钮进入下一部分,点击“取消”按钮终止方法编辑。

完成方法编辑后,系统会回到主操作界面,此时色谱柱已经开始升温,在图形界面中会有显示,如下图中红色圆圈标示区域所示:

特别说明:

对于本实验要改变的参数,可以点击化学工作站软件界面中央的图示的进样器、溶剂系统、色谱柱、检测器等部分,会弹出各部分参数窗口,此时可以按照实验要求的参数进行调节(实验参数可以点击主界面上左边菜单中的“实验数据”按钮察看)。

进样器:

溶剂系统:

色谱柱:

检测器:

编辑方法完成后,在启动系统之前,请返回液相色谱仪,打开二元泵系统,调节Purge阀,观察使回路无汽泡。

第五步:调节Purge阀

点击仪器上的二元泵系统部分(当鼠标移到仪器的各部分时会出现相应的说明),出现如下画面:

图中蓝色方框部分就是Purge阀,此时是关闭的,用鼠标点击蓝色方框部分,会出现Purge 阀的放大画面,然后点击Purge阀会自动逆时针方向旋转打开Purge阀。

打开Purge阀后,右边的试剂瓶的导管当中会有气泡流出,待没有气泡再流出之后,再次点击Purge阀会自动逆时针方向旋转关闭Purge阀。然后进行下一步“启动系统”。

第六步:启动系统

完成方法编辑后,点击菜单“设备→系统开”或者图中红色圆圈指示的按钮“开启系统”:

启动系统后,在图形界面中会有显示,如下图中红色圆圈标示区域所示:

同时在色谱峰显示区域开始走基线,开始的时候系统不稳定,基线变化很厉害,等到基线走平稳表示系统稳定后,可以开始进样运行方法。

第七步:进样、运行方法

等到状态指示栏显示“Ready”后,表明系统已经准备完毕。点击菜单“运行控制→运行方法”开始进样和分析,或者点击图中红色圆圈所指示的“Start”按钮或者按“F5”键:

开始进样后,在图形界面中会有显示,如下图中红色圆圈标示区域所示:

待色谱图出完后,样品分析完毕。

第八步:完成实验报告

样品分析完成后,点击化学工作站界面上的红色方框部分,或者点击主界面左边菜单中的“实验数据”调出实验报告:

根据得出的保留时间、峰高、半峰宽等实验数据,可以计算分离度等相关参数。如果计算机安装了打印机,可以点击右上角“打印报表”按钮打印实验报告。

第九步:实验完毕(仿真实验不作要求)

完成方法编辑后,点击菜单“设备→系统关”,系统就会自动关闭,不须人工干预。

高效液相色谱仪(HPLC)校正方法

高效液相色谱仪(HPLC)校正方法 0.1输液系统: 0.1.1梯度误差G C不超过±3% 0.1.2泵流量设定值误差 S s<±2% 0.1.3流量稳定性误差 S R<±2% 0.2紫外检测器性能 0.2.1基线噪声不超过5×10-4AU,基线漂移不超过5×10-3AU 0.2.2定量测量重复性误差(6次进样)RSD≤1.5% 0.2.3最小检测浓度不超过1×10-7g/ml萘/甲醇溶液 0.2.4可调波长紫外可见光检测器波长示值不超过±2nm(HP1100高效液相色谱仪可由仪器自身完成) 1校正条件 1.1环境温度10-30℃,相对湿度低于65% 1.2校正设备 1.2.1秒表分度值小于0.1 s 1.2.2分析天平最大称量200g,最小分度值0.1mg 1.2.3容量瓶 1.2.4微量注射器 1.3标准物质和试剂 1.3.1HPLC用甲醇、纯水,分析纯的丙酮 1.3.21×10-4g/ml,1×10-7g/ml的萘甲醇溶液 1.3.3紫外波长标准溶液 2校正方法 2.1梯度误差G C的校正 2.1.1进行梯度洗脱程序,A溶剂为水,B溶剂为0.1%丙酮的水溶液,B经5个阶段从0变到100%, 20%—40%—60%—80%—100%,重复测量两次,取平均值,求各段梯度误差Gci,取最大作为仪器梯度误差,公式:Gci=(Li—Lm)/Lm×100% Li:第i段信号值的平均值; Lm :各段输出信号平均值的平均值 可接受标准: -3%≤Gci≤3% 2.2泵流量设定值误差Ss、流量稳定性误差S R的校正 2.2.1将仪器的输液系统、进样器、色谱柱和检测器联接好,以甲醇为流动相,按表一设定流量,待 流速稳定后,在流动相排出口用事先清洗称重过的容量瓶收集流动相,同时用秒表计时,准确的收集10-25

高效液相色谱实验报告

高效液相色谱实验报告 一、实验目的 1了解液相色谱的发展历史及最新进展 2 学习液相色谱的基本构造及原理 3 掌握液相色谱的操作方法和分析方法,能够通过HPLC分离测定来对目标化合物的分析鉴定。 二、实验原理 液相色谱法采用液体作为流动相,利用物质在两相中的吸附或分配系数的微小差异达到分离的目的。当两相做相对移动时,被测物质在两相之间进行反复多次的质量交换,使溶质间微小的性质差异产生放大的效果,达到分离分析和测定的目的。液相色谱与气相色谱相比,最大的优点是可以分离不可挥发而具有一定溶解性的物质或受热后不稳定的物质,这类物质在已知化合物中占有相当大的比例,这也确定了液相色谱在应用领域中的地位。 高效液相色谱可分析低分子量、低沸点的有机化合物,更多适用于分析中、高分子量、高沸点及热稳定性差的有机化合物。80%的有机化合物都可以用高效液相色谱分析,目前以已经广泛应用于生物工程、制药工程、食品工业、环境检测、石油化工等行业。 三、高效液相色谱的分类 吸附色谱法、分配色谱法、空间排阻色谱法、离子交换色谱法、亲和色谱法、化学键合相色谱法 四、高效液相色谱仪的基本构造 高效液相色谱至少包括输液系统、进样器、分离柱、检测器和数据处理系统等几部分。 1 输液系统: 包括贮液及脱气装置、高压输液泵和梯度洗脱装置。贮液装置用于存贮足够量、符合HPLC要求的流动相。高效液相色谱柱填料颗粒比较小,通过柱子的流动相受到的流动阻力很大,因此需要高压泵输送流动相。 2 进样系统: 将待测的样品引入到色谱柱的装置。液相色谱进样装置需要满足重复性好、死体积小、保证柱中心进样、进样时引起的流量波动小、便于实现自动化等多项要求。进样系统包括取样、进样两项功能。 3 分离柱: 色谱柱是色谱仪的心脏、柱效高、选择性好、分析速度快是对色谱柱的一般要求。商品化的HPLC微粒填料,如硅胶和以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换树脂)等的粒度通常在3μm、5μm、7μm、以及10μm。采用的固定相粒度甚至可以达到1μm,而制备色谱所采用的固定相粒度通常大于10μm。HPLC填充柱效的理论值可以达到50000/m~160000/m理论板,一般采用100-300mm的柱长可满足大多数样品的分析的需要。由于柱效内、外多种因素的影响,因此为使色谱柱达到其应有的效率。应尽量的减小系统的死体积。 4 检测系统: HPLC检测器分为通用型检测器和专用型检测器两类。通用型检测器可连续测量色谱柱流出物(包括流动相和样品组分)的全部特性变化。这类检测仪器包括示差折光检测器、介

高效液相色谱法简介

高效液相色谱法简介 “色谱”一词是由俄国科学家斯威特提出的。色谱法是基于补充物质在相对运动物的两相之间分布时,物理或物理化学性质的微小的差异而使混合物相互分离的一类分离或分析方法。发展与上世纪初,飞速发展于五十年代,有超过30位科学家家因为它而获得诺贝尔奖,其有自己的理论和研究方法,同时也有众多的应用领域。 色谱法常见的方法有:柱色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。 柱色谱:柱色谱法是最原始的色谱方法,这种方法将固定相注入下端塞有棉花或滤纸的玻璃管中,将被样品饱和的固定相粉末摊铺在玻璃管顶端,以流动相洗脱。常见的洗脱方式有两种,一种是自上而下依靠溶剂本身的重力洗脱,一种是自下而上依靠毛细作用洗脱。收集分离后的纯净组分也有两种不同的方法,一种方法是在柱尾直接接受流出的溶液,另一种方法是烘干固定相后用机械方法分开各个色带,以合适的溶剂浸泡固定相提取组分分子。柱色谱法被广泛应用于混合物的分离,包括对有机合成产物、天然提取物以及生物大分子的分离。 薄层色谱:薄层色谱法是应用非常广泛的色谱方法,这种色谱方法将固定相图布在金属或玻璃薄板上形成薄层,用毛细管、钢笔或者其他工具将样品点染于薄板一端,之后将点样端浸入流动相中,依靠毛细作用令流动相溶剂沿薄板上行展开样品。薄层色谱法成本低廉操作简单,被用于对样品的粗测、对有机合成反应进程的检测等用途。

气相色谱:GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体流动相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。气相色谱被广泛应用于小分子量复杂组分物质的定量分析。 高效液相色谱:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9-107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。高效液相色谱(HPLC)是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效

高效液相色谱(HPLC)法测定邻苯二甲酸酯

实验七高效液相色谱(HPLC)法测定邻苯二甲酸酯 一.实验目的 1、学习高效液相色谱仪的基本操作方法。 2、了解高效液相色谱仪原理和条件设定方法。 3、了解高效液相色谱法在日常分析中的应用。 二.实验原理 高效液相色谱法是以液体作为流动相,借助于高压输液泵获得相对较高流速的液流以提高分离速度、并采用颗粒极细的高效固定相制成的色谱柱进行分离和分析的一种色谱方法。 在高效液相色谱中,若采用非极性固定相,如十八烷基键合相,极性流动相,即构成反相色谱分离系统。反之,则称为正相色谱分离系统。反相色谱系统所使用的流动相成本较低,应用也更为广泛。 定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。分离度(R)的计算公式为: R= 2[t (R2)-t (R1) ] /1.7*(W 1 +W 2 ) 式中 t (R2)为相邻两峰中后一峰的保留时间; t (R1) 为相邻两峰中前一峰的保留 时间; W 1及W 2 为此相邻两峰的半峰宽。除另外有规定外,分离度应大于1.5。 本实验对象为邻苯二甲酸酯,又称酞酸酯,缩写PAE,常被用作塑料增塑剂。它被普遍应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品,如指甲油、头发喷雾剂、香皂和洗发液等数百种产品中。但研究表明,邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,是一类内分泌干扰物。待测物性质见表1。 表1色谱柱测试条件 如果要检测不同条件对谱图分离的影响,可按表1配制几种物质的混合溶液,在不同条件下进行HPLC分离检测。

三.仪器与试剂 1、仪器 Agilent 1100高效液相色谱仪,50ul微量注射器。 2、试剂 甲醇(色谱专用),高纯水 四.实验步骤 1、色谱条件 色谱柱:辛烷基硅烷键合硅胶(C8) 柱温:室温 流动相:初始为高纯水:30%,甲醇:70% 检测器:DAD检测器; 检测波长:220nm; 进样体积:100μl定量环,实际注射每次可控制在200μl。 2、待测溶液的配制 首先用甲醇做溶剂配制储备液:邻苯二甲酸二甲酯(0.3880g/L),邻苯二甲酸二乙酯(0.2770g/L),邻苯二甲酸二丁酯(0.3776g/L)。然后各取1mL储备液用水和甲醇(20:80)稀释至10mL,作为待测溶液。 3、色谱测定 (1) 按操作规程开启电脑,开启脱气机、泵、检测器等的电源,启动Agilent 1100在线工作软件,设定操作条件。流量为1.000ml/min。 (2) 待仪器稳定后,开始进样。将进样阀柄置于“LOAD”位置,用微量注射器吸取混合物溶液50ul,注入仪器进样口,顺时针方向扳动进样阀至“INJECT”位置,此时显示屏显示进样标志。 (3) 记下各组分色谱峰的保留时间及峰面积及分离比。 (4) 实验完毕,清洗系统及色谱柱。依次用甲醇-水(60:40)、甲醇-水(70:30)……直到纯甲醇作流动相清洗,每次清洗至基线走稳,至少清洗15min。 五.实验结果

高效液相色谱方法的验证

高效液相色谱方法的验证 ?方法验证的目的 ?方法验证的内容 ?方法验证的项目及测定方法

方法验证的目的 目的:证明采用的方法适合相应检测的要求。 方法验证是实验室针对特定方法的研究过程,通过设计方案,有步骤、系统地收集、处理实验数据,最终形成文件,以证明所用试验方法准确、灵敏、专属并重现。同一分析方法用于不同的检测项目会有不同的验证要求。

方法验证的内容 ?准确度 ?精密度 ?专属性 ?检测限 ?定量限 ?线性和范围 ?耐用性

准确度 定义:方法测定结果与真实值或参考值的接近程度。一般用回收率%表示。 1. 主成分含量测定 原料药:对照品或方法比对 2. 制剂、中药:标准加样回收 杂质定量 测定:加样回收(n 3 9) 杂质对照品 方法比对 回收率 C-A %=′ B 100% 杂质与主成分的相对含量 A:试验供试品中被测成分的量 (通常为含量测定量的50%) B: 试验供试品中加入的对照品的量 (通常为±20%) C:试验测定值

精密度 定义:在规定测试条件下,同一个均匀供试品,经多次取样测定所得结果之间的接近程度。一般用偏差,相对偏差和相对标准偏差 1. 重复性(n 9) 3 2. 中间精密度 3. 重复性 测定:HPLC方法的精密度测试,应从样品制备开始,设计3个浓度, 分别平行制备3份,以测定含量计算相对标准偏差;或同一样品平行制备6份供试品,分别进样,以峰面积计算相对标准偏差。 同一份供试品连续进样6次,计算得到的相对标准偏差只能表征进样精密度,不能作为方法精密度。

专属性 定义:在其它成分可能存在下,方法能正确测定出被测物的特性。 1. 鉴别反应 2. 含量测定 杂质测定 测定: 限量检查 空白制剂,模拟复方 加速破坏试样测试 DAD峰纯度检查

实验5 高效液相色谱应用实验

实验5高效液相色谱应用实验 一、实验目的 1、熟悉高效液相色谱分离分析的原理。 2、掌握根据保留值,用已知纯物质对照定性的分析方法。 3、掌握用归一化法定量测定混合物各组分的含量。 4、掌握用微量进样器进样的基本操作和色谱软件的一般操作。 二、方法原理 高效液相色谱法是一种重要的色谱分离技术。根据所用固定相和分离机理的不同,一般将高效液相色谱法分为分配色谱、吸附色谱、离子交换色谱等。 在分配色谱中,组分在色谱柱上的保留程度取决于它们在固定相和流动相之间的分配系数K: 组分在固定相中的浓度 K= ———————————— 组分在流动相中的浓度 显然,K值越大,组分在固定相上的保留时间越长固定相与流动相之间的极性差值也越大。因此,出现了流动相为非极性而固定相为极性物质的正相色谱法和流动相为极性而固定相为非极性的反相色谱法。目前应用最广的固定相是通过化学反应的方法将固定液键合到硅胶表面上,即所谓的键合固定相。若将正构烷烃等非极性物质(如n-C18烷)键合到硅胶基质上,以极性溶剂(如甲醇和水)为流动相,则可分离常用的有机化合物。 三、仪器与试剂 高效液相色谱仪、紫外(254nm)检测器、色谱柱C18柱(250mm×4.6mm)、注射器(25μL) 流动相甲醇+ 水(使用前应超声波脱气)、甲苯、苯甲醇、苯甲酸(均为分析纯)、未知混合样品(甲苯、苯甲醇、苯甲酸的混合溶液) 四、实验步骤 1. 以流动相为溶剂,配制甲苯、苯甲醇、苯甲酸的标准溶液,浓度均为10mg/mL。 2. 在老师的指导下开启液相色谱仪,设定操作条件。 3. 待仪器稳定后,分别用注射器进甲苯、苯甲醇、苯甲酸溶液各5μL,进样的同时,要作好记录保留时间。 4. 进未知混合样品5μL,记下各组分色谱峰的保留时间。 5. 以标准物的保留时间为基准,给未知样品各组分定性。 6. 根据标准物的峰面积,估算未知样品中相应组分的含量。

HPLC实验高效液相色谱分析实验

仪器分析实验报告实验名称:高效液相色谱分析实验

一、实验目的 1. 了解HPLC的结构,了解仪器的开、关程序。 2. 了解流动相的制备和样品溶液的制备。 3. 知道仪器的运行程序和进行样品分析。 二、仪器和试剂 仪器:美国安捷伦1200型HPLC、10μL的微量注射器 试剂:磷酸乙腈溶液(PH=3)、重蒸水、邻氯苯甲酸 三、实验步骤 1.流动相的准备 流动相只有一组:PH=3的磷酸乙腈溶液,进过脱气,用蠕动泵输送。2.开机,色谱柱平衡 当1完成后,开机,待色谱柱平衡。 3.样品溶液的准备 配置好邻氯苯甲酸溶液,按要求选好滤纸的孔径大小。用低压过滤装置过滤,由于美国安捷伦1200型HPLC配有脱气装置,因此滤液无需事先脱气就可以进行分析。 4.基线的查看 由于仪器内部压力的变化可以引起基线的不断波动,因此,需等待压力稳定后,基线平稳才能进行进样。 5.样品进样分析

用10μL的微量注射器取5μL的邻氯苯甲酸,微量注射器中不能有气泡,将微量注射器的针头插入到注射的孔时,打开微量注射阀,将邻氯苯甲酸注射进去后,迅速关闭阀门,抽出针头,等待仪器的分析结果。 6.色谱柱的清洗 分析工作结束后,要清洗进样阀中的残留样品,也要用适当的液体来清洗色谱柱。 7.关机 实验完毕后,关闭仪器和电脑。 四、实验数据及处理 1.LC参数 2.色谱柱参数 3.四元泵状态 A:0.0%流速:1.000ml/min B:0.0%压力:91bar C:0.0% D:0.0%

5.色谱分析谱图见附页,经过注射5μL的邻氯苯甲酸,得到三组实验色谱图, 根据谱图列表数据如下: 色谱柱长(L)、理论塔板高度(H)与理论塔板数(n)三者的关系为: n = L / H 理论塔板数和色谱参数之间的关系为: n = 16 ( t R / W b ) 2 = 5.54 ( t R / Y1/2 ) 2 则取第五组数据计算得: t R=2.437 min = 146.22s Y1/2 = 2.354(0.1375min / 4 ) = 4.855125 s n = 5.54 ( t R / Y1/2 ) 2 =5025 (块)

高效液相色谱仿真实验

高效液相色谱仿真实验 一、实验概述: 以液体做流动相的色谱称为液相色谱。人们把已经比较成熟的气相色谱理论应用于液相 色谱,使液相色谱得到了迅速的发展。随着其他科学技术的发展,出现了新型的高压输液泵、 高效的固定相和柱填充技术、高灵敏度的检测器,加上计算机的应用,使得液相色谱实现了 高效率和高速度。这种分离效率高、分析速度快的液相色谱称为高效液相色谱(High performanee liquid chromatography, HPLC )。 二、实验装置: Agilent(安捷伦)1100系列液相色谱系统简介: Agile nt1100 系列HPLC组件和系统,将Agile nt长期的化学分析经验与领先的计算机技术结合,把网络技术引入了实验室。从1996年以来,在全球已经安装了超过130,000台1100组件和55,000多套化学工作站数据处理系统,成为目前单一型号市场占有率最高的液 相色谱系统。 本仿真软件是模拟用Agile nt化学工作站的数据处理系统进行样品分析和数据采集(色谱图)的过程。 注:本软件只是模拟分析的过程和内容,并不涉及其原理,所以实验中的参数调节对结果并 没有影响,而真实实验结果是随参数的变化而变化的,这一点需要特别注意! 实验主界面:

3 刮创制画宣 ■ I ; 1 I ■ ■ I ' rill ■■ IB III I I I 1 I 稠环芳S.VXE 回醇和醞的分折 J 监 &]窑无醉的仔高“貂 割有机绥的分离,T 胳 丈件名⑧:|稠环芳咗.孤£ 文件类型 ①:卜站仿宣实验丈祥 2.1狐) 三] 厂以貝读方式打开? 用鼠标左键点中你要做的实验,此文件名会出现在对话框的“文件名” 一栏的文本框 中,在此实验文件上面双击左键或者点击“打开”按钮打开实验文件。 三、实验操作: 第一步:选取实验 点击主菜单上的“实验选取”,会出现如下的对话框: 取消| 化学工作站界面:

高效液相色谱定量分析分析实验

高效液相色谱定量分析实验 一、实验目的 ⑴进一步熟悉HPLC仪器的基本构造及工作原理,熟悉HPLC的基本操作; ⑵了解色谱定量操作的主要方法以及各自特点; ⑶学习未知样品中甲苯的定量分析方法。 二、实验原理 ⑴校正因子: (1)绝对校正因子;(2)相对校正因子。 ⑵常见的色谱定量分析方法主要有: (1)归一化法。特点:简单、方便、准确,但要求所有组分必须全部出峰。 (2)内标法。特点:使用相对校正因子定量,结果准确,但操作繁琐,由于需要增加内标物,增大分离的难度。 (3)标准曲线法(外标法)。简单、方便,由于采用绝对校正因子定量,结果受到操作技术因素以及具体色谱条件影响较大。 (4)内标标准曲线法。 三、仪器与试剂 LC-1000型高效液相色谱仪、甲醇(色谱纯)、二次去离子水、甲苯、系列甲苯标准溶液、平头微量注射器(100 l)、待测溶液 四、LC-1000型高效液相色谱仪操作步骤 ⑴流动相的预处理 用甲醇和二次去离子水配成500 mL (V/V=90:10)的甲醇溶液,用0.45μm 有机滤膜过滤,超声波清洗器脱气10~20 min,装入流动相贮液瓶。 ⑵高效液相色谱仪操作 (1)依次打开高压输液泵、紫外检测器电源开关 (2)打开色谱N2000在线工作站,选择通道,建立运行方法。 (3)打开三通阀(逆时针半圈),按“Purge”排除流路中的气泡。排气完毕后,按“Stop” 键,停泵,关闭三通阀。按“Flow”设置流速1.0 mL/min,“Enter”确认。 (4)按“设定”键,检测波长254 nm。按“↓”键,输入“1”,开启氘灯。 (5)按“Run”键,启动输液泵。 (6)检查基线,零点校正,待基线稳定后,用平头微量注射器取试液20 μL,将进样阀柄置于“Load”位置时注入样品,转动阀柄至“Inject”位置,同时点击软件“采集数据”。注意!平头微量注射器用甲醇清洗3次后,再用试液清洗3次,避免气泡。 (7)待所有色谱峰流出完毕后,按“停止采集”键,保存数据并在N2000离线工作站处理数据,记录组分的峰面积。 注意!注射器进不同样品前,使用专用清洗注射器在进样阀的“Load”和“Inject”位置,用流动相清洗2~3次。 (4) 结束工作:所有样品分析完毕后,流动相继续流动10~20 min,至基线稳定。关闭检测器,按“Stop”停泵。关闭泵电源。 五、实验内容 ⑴分别采集系列甲苯溶液以及未知试样的色谱图,根据保留时间定性,确定甲苯组分峰的位置,并测定各自的峰面积。 ⑵根据实验数据,利用外标法绘制标准工作曲线,并计算待测溶液中甲苯的含量。

高效液相色谱实验

实验1 气相色谱分析条件的选择和色谱峰的定性鉴定 一、目的要求 1.了解气相色谱仪的基本结构、工作原理与操作技术; 2.学习选择气相色谱分析的最佳条件,了解气相色谱分离样品的基本原理; 3.掌握根据保留值,作已知物对照定性的分忻方法。 4.掌握归一化法测定混合物各组分的含量。 二、基本原理 气相色谱是对气体物质或可以在一定温度下转化为气体的物质进行检测分析。由于物质的物性不同,其试样中各组份在气相和固定液液相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同,虽然载气流速相同,各组份在色谱柱中的运行速度就不同,经过一定时间的流动后,便彼此分离,按顺序离开色谱柱进入检测器,产生的讯号经放大后,在记录器上描绘出各组份的色谱峰。根据出峰位置,确定组分的名称,根据峰面积确定浓度大小。 对—个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。而其中气相色谱分离条件的选择至为关键。主要涉及以下几个方面: 1. 载气对柱效的影响: 载气对柱效的影响主要表现在组分在载气中的扩散系数D m(g)上,它与载气分子量的平方根成反比,即同一组分在分子量较大的载气中有较小的D m(g) 。根据速率方程: (1)涡流扩散项与载气流速无关; (2)当载气流速u 小时,分子扩散项对柱效的影响是主要的,因此选用分子量较大的载气,如N2、Ar,可使组分的扩散系数D m(g)较小,从而减小分子扩散的影响,提高柱效; (3)当载气流速u 较大时,传质阻力项对柱效的影响起主导作用,因此选用分子量较小的气体,如 H2、He 作载气可以减小气相传质阻力,提高柱效。 2. 载气流速(u)对柱效的影响: 从速率方程可知,分子扩散项与流速成反比,传质阻力项与流速 成正比,所以要使理论塔板高度H最小,柱效最高,必有一最佳流速。 对于选定的色谱柱,在不同载气流速下测定塔板高度,作H-u 图。 由图可见,曲线上的最低点,塔板高度最小,柱效最高。该点所 对应均流速即为最佳载气流速。在实际分析中,为了缩短分析时间, 选用的载气流速稍高于最佳流速。 3. 固定液的配比又称为液担比。

实验四 高效液相色谱法测定水体中的苯酚及α-萘酚

高效液相色谱法测定水体中的苯酚和α-萘酚 一、实验目的 1、了解色谱法的分离原理,初步学会使用高效液相色谱仪; 2、利用高效液相色谱仪分离测定水体中的苯酚及α-萘酚。 二、实验原理 1、色谱法的分离原理 溶于流动相中的各待测组分经过色谱柱固定相时,由于各组分与固定相发生作用(吸附、分配、离子吸收、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出,达到分离的目的,又称色层法、层析法。 2、高效液相色谱仪使用原理 高效液相色谱仪由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成四个系统即高压输液系统、进样系统、分离系统和检测系统。 储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。 正是根据物质的定性与定量关系,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待测物所含有的物质。 3、苯酚及α-萘酚的分离原理及标准溶液准备 对于一些组分比较简单的已知范围的混合物,或无已知物的情况下,可以利用保留值定性。保留值的大小取决于分配系数之比,即与组分的性质、固定液的性质及柱温有关,与固定液的用量、柱长、流速及填充情况无关。在一定操作条件下,用对照品配成不同浓度的对照液,定量进样,用峰面积或峰高对对照品的量(或浓度)做校正曲线,求回归方程,然后在相同条件下分析试样,计算含量,这种方法称为校正曲线法。通常截距近似为零,若截距较大,说明存在一定的系统误差。本实验,苯酚的波长为270nm,α-萘酚的波长为295nm。使得两种物质

高效液相色谱仪简介

高效液相色谱仪简介 系统组成、工作原理 高效液相色谱仪的系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内, 由于样品溶液中的各组分在两相中具有不同的分配系数, 在两相中作相对运动时, 经过反复多次的吸附- 解吸的分配过程, 各组分在移动速度上产生较大的差别, 被分离成单个组分依次从柱内流出, 通过检测器时, 样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。 高效液相色谱 (high performance liquid chromatography, HPLC)也叫高压液相色谱(high pressure liquid chromatography)、高速液相色谱(high speed liquid chromatography)、高分离度液相色谱(high resolution liquid chromatography)等。是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱。又因分析速度快而称为高速液相色谱。 高效液相色谱是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效液相色谱的色谱柱一般比较粗,长度也远小于气相色谱柱。HPLC应用非常广泛,几乎遍及定量定性分析的各个领域。 使用高效液相色谱时,液体待检测物被注入色谱柱,通过压力在固定相中移动,由于被测物种不同物质与固定相的相互作用不同,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待侧物所含有的物质。高效液相色谱作为一种重要的分析方法,广泛的应用于化学和生化分析中。高效液相色谱从原理上与经典的液相色谱没有本质的差别,它的特点是采用了高压输液泵、高灵敏度检测器和高效微粒固定相,适于分析高沸点不易挥发、分子量大、不同极性的有机化合物。 发展历史

高效液相色谱实验

化学与材料工程学院 环境监测分析实验报告 实验名称:高效液相色谱分析苯-甲苯混合物 专业班级:应化13 学号: 150313135 姓名:朱建南 指导教师:翟春 实验地点:敬行楼A210 实验日期: 2016年 11月 28日

高效液相色谱实验 一、实验目的 1.了解HPLC仪器的基本构造和工作原理,掌握HPLC的基本操作; 2.学习苯-甲苯混合物的定性分析方法; 3.评价色谱柱柱效; 4.了解色谱定量操作的主要方法以及各自特点; 5.学习未知样品的定量分析方法。 二、实验原理 不同组分因在互不相溶的流动相与固定相中的分配比不同,当两相做相对运动时,组分在两相之间反复进行多次分配,最终实现不同组分的分离。 色谱仪器的构成:包括高压输液系统、进样系统、分离系统,检测系统等 1.色谱定性分析方法 a保留时间定性 b 峰高增量定性 2.色谱定量分析方法 a 归一化法,要求所有组分必须全部出峰。 b 标准曲线法(外标法)。简单、方便, 结果受到操作技术因素以及具体色谱条件影响较大。 三、仪器与试剂 LC-1602A型高效液相色谱仪、甲醇(色谱纯) 、苯、甲苯、苯-甲苯 四、高效液相色谱仪操作步骤 1. 流动相的预处理 甲醇溶液,用0.45μm 有机滤膜过滤,超声波清洗器脱气10~20 min,装入流动相贮液瓶。 2. 准备苯-甲苯混合试样和苯、甲苯标样 3. 高效液相色谱仪操作 a 依次高压输液泵和检测器电源开关; b 打开色谱工作站,在仪器控制面板中,设置波长,并开灯; c打开三通阀,在仪器控制面板中,设置流速为5ml/min, 启动高压泵,排除流路中的气泡。排气结束后,点击停止按钮,停止高压泵。 d 关闭三通阀,设置最小压力(0.1)和最大压力(20),并设置实验需要的流速 (0.5ml/min),启动高压泵。 e用平头微量注射器洗涤进样口后,取试液30 μL,将进样阀柄置于“Load”位置时

实验四__高效液相色谱实验(3.7)

实验一高压液相色谱系列实验 一、实验目的 1.熟悉岛津液相色谱仪的整套装置、工作原理、工作流程;会较熟练操作和使用LC Solution工作站。 2.掌握外标法测定植物胡萝卜素的实验方法。 二、实验原理 液相色谱法就是同一时刻进入色谱柱中的各组分,由于在流动相和固定相之间溶解、吸附、渗透或离子交换等作用的不同,随流动相在色谱柱中运行时,在两相间进行反复多次(103~106次)地分配过程,使得原来分配系数具有微小差别的各组分,产生了保留能力明显差异的效果,进而各组分在色谱柱中的移动速度就不同,经过一定长度的色谱柱后,彼此分离开来,最后按顺序流出色谱柱而进入信号检测器,在记录仪上或色谱数据机上显示出各组分的色谱行为和谱峰数值。测定各组分在色谱图上的保留时间(或保留距离),可直接进行组分的定性;测量各峰的峰面积,即可作为定量测定的参数,采用工作曲线法(即外标法)测定相应组分的含量。 液相色谱仪工作原理图 高效液相色谱仪是实现液相色谱分离分析过程的装置,如上图所示。贮液器中存贮的载液(用作流动相的液体常需除气)经过过滤后由高压泵输送到色谱柱入口(当采用梯度洗脱时,一般需用双泵系统来完成输送)。样品由进样器注入载液系统,而后送到色谱柱进行分离。分离后的组分由检测器检测,输出信号供给记录仪或数据处理装置。如果需收集馏分作进一步分析,则在色谱柱出口将样品馏分收集起来,对于非破坏型检测器,可直接收集通过检测器后的流出液。其中输液泵,色谱柱及检测器是仪器的关键部件。

三、仪器与试剂 1.仪器 1)液相色谱仪(岛津公司) 2)微量注射器、容量瓶等 2.试剂 甲醇(色谱纯)、二次蒸馏水、胡萝卜素、异丙醇、乙腈 四、实验条件 UV检测器:280nm 流动相:乙腈:醇=4:1 流速:1.0ml/min 进样量:20 μl 柱温:25 五、实验步骤 1、熟悉仪器基本构成、流动相的流路系统;熟悉仪器的基本操作 2.配制测定溶液各取200ul胡萝卜素标准溶液及样品溶液于2ml试管中混合。 3.开启电脑及色谱仪各部分,等系统稳定后准备使用。 4.用微量注射器准确抽取20.0 μL溶液,注射入进样口。注意不要将气泡抽入针筒。在相同的色谱条件下,以内标法确定样品的浓度。 六、思考题 1.如何快速建立未知物的液相色谱方法?一般应考虑哪些主要因素?如何选择合适的色谱柱? 2.哪些条件会影响浓度测定值的准确性? 3. 与气相色谱法比较,液相色谱法有那些优点?

高效液相色谱技术(HPLC)

140 7 高效液相色谱技术(HPLC ) 高效液相色谱(HPLC :High Performance Liquid Chromatography )是化学、生物化 学与分子生物学、医药学、农业、环保、商检、药检、法检等学科领域与专业最为重要的 分离分析技术,是分析化学家、生物化学家等用以解决他们面临的各种实际分离分析课题 必不可缺少的工具。国际市场调查表明,高效液相色谱仪在分析仪器销售市场中占有最大 的份额,增长速度最快。 高效液相色谱的优点是:检测的分辨率和灵敏度高,分析速度快,重复性好,定量精 度高,应用范围广。适用于分析高沸点、大分子、强极性、热稳定性差的化合物。其缺点 是:价格昂贵,要用各种填料柱,容量小,分析生物大分子和无机离子困难,流动相消耗 大且有毒性的居多。目前的发展趋势是向生物化学和药物分析及制备型倾斜。 7.1 基本原理 固定相 流动相 A B C C B A 固定相 —— 柱内填料,流动相 —— 洗脱剂。 HPLC 是利用样品中的溶质在固定相和流动相之间分配系数的不同,进行连续的无数 次的交换和分配而达到分离的过程。 通常,按溶质(样品)在两相分离过程的物理化学性质可以作如下的分类: 分配色谱:—— 分配系数 亲和色谱:—— 亲和力 吸附色谱:—— 吸附力 离子交换色谱:—— 离子交换能力 凝胶色谱(体积排阻色谱):—— 分子大小而引起的体积排阻 分配色谱又可分为:

正相色谱:固定相为极性,流动相为非极性。 反相色谱:固定相为非极性,流动相为极性。用的最多,约占60~70%。 固定相(柱填料): 固定相又分为两类,一类是使用最多的微粒硅胶,另一类是使用较少的高分子微球。后者的优点是强度大、化学惰性,使用pH范围大,pH=1~14,缺点是柱效较小,常用于离子交换色谱和凝胶色谱。 最常使用的全孔微粒硅胶(3~10μm)是化学键合相硅胶,这种固定相要占所有柱填料的80%。它是通过化学反应把某种适当的化学官能团(例如各种有机硅烷),键合到硅胶表面上,取代了羟基(-OH)而成。它是近代高效液相色谱技术中最重要的柱填料类型。 使用微粒硅胶要特别注意它的使用pH范围是2~7.5,若过碱(>pH7.5),硅胶会粉碎或溶解;若过酸(<pH2),键合相的化学键会断裂。 键合相使用硅胶作基质的优点是:①硅胶的强度大;②微粒硅胶的了孔结构和表面积易人为控制。③化学稳定性好。 硅胶( SiO2?n H2O) :OH OH —Si—O—Si— 重要的键合相是:硅烷化键合相,它是硅胶与有机硅烷反应的产物。 最常用的键合相键型是: —Si—O—Si—C R1R1 —Si—OH + X—Si—R —Si—O—Si—R + HX R2R2 硅胶有机硅烷键合相 X ━Cl,CH3O,C2H5O等。 R ━烷:C8H17(即C8填料),C10H21,C18H37等。 R1、R2 ━X、CH3等。 最常用的“万能柱”填料为“C18”,简称“ODS”柱,即十八烷基硅烷键合硅胶填料(Octadecylsilyl,简称ODS)。这种填料在反相色谱中发挥着极为重要的作用,它可完成高效液相色谱70~80%的分析任务。由于C18(ODS)是长链烷基键合相,有较高的碳含量和更好的疏水性,对各种类型的生物大分子有更强的适应能力,因此在生物化学分析工作中应用的最为广泛,近年来,为适应氨基酸、小肽等生物分子的分析任务,又发展了 141

高效液相色谱实验

高效液相色谱实验I. 色谱柱的评价 请在实验前预习《基础分析化学实验(第二版)》137-140页。 【目的】 (1) 了解高效液相色谱仪的工作原理; (2) 学习评价液相色谱反相柱的方法。 【原理】 高效液相色谱是色谱法的一个重要分支。它采用高压输液泵和小颗粒的填料,与经典的液相色谱相比,具有很高的柱效和分离能力。色谱柱是色谱仪的心脏,也是需要经常更换和选用的部件,因此,评价色谱柱是十分重要的。而且对色谱柱的评价也可以检查整个色谱仪的工作状况是否正常。 评价色谱柱的性能参数主要有: (1)柱效(理论塔板数)n 式中t r 为测试物的保留时间,W 1/2为色谱峰的半峰宽。 (2)容量因子k ’ 式中t 0为死时间,通常用已知在色谱柱上不保留的物质的出峰时间作死时间。 (3) 相对保留值(选择因子)α 式中k 1’和k 2’分别为相邻两峰的容量因子,而且规定峰1的保留时间小于峰2的。 (4) 分离度R s 式中t r1、t r2分别为相邻两峰的保留时间,W b1、W b2分别为两峰的底宽。对于高斯峰来讲,W b =1.70W 1/2。 为达到好的分离,我们希望n 、α和R s 值尽可能大。一般的分离(如α=1.2,R s =1.5),需n 达到2000。柱压一般为104 kPa 或更小一些。本实验采用多核芳烃作测试物,尿嘧啶为死时间标记物,评价反相色谱柱。 【仪器和试剂】 Waters 510高效液相色谱仪(由Waters 510高压输液泵,Rheodyne 7725i 进样器,440检测器和记录仪组成) 色谱柱:5 cm ×4.6 mm I.D., YWG-C 18H 37 (ODS),10 μm 流动相:甲醇-水(80+20) 样品I : 含尿嘧啶 (0.010 mg ·mL -1)、萘 (0.010 mg ·mL - 1)、联苯 (0.010 mg ·mL -1)、菲(0.006 mg ·mL - 1)的甲醇混合溶液; 样品I I :尿嘧啶的甲醇溶液;萘的甲醇溶液;联苯的甲醇溶液;菲的甲醇溶 液。溶液浓度约为0.01mg ·mL - 1; 【实验内容】 (1)准备流动相。将色谱纯甲醇和色谱纯水按比例配制200mL 溶液,混合 均匀并经超声波脱气后加入到仪器储液瓶中。 (2)检查电路连接和液路连接正确以后,接通高压泵、检测器和记录仪的电 源。设定操作条件为:流速1.0 mL ·min - 1,压力上限2?104 kPa (约3000 psi),检测波长254 nm (该仪器检测波长已固定),灵敏度0.2 AUFS , 记录仪走纸速度1.0 cm ·min - 1,记录灵敏度为5 mV 。开启记录仪走纸开关记录基线。并调节基线到合适位置(一般为距右10%处)。 (3)待基线平稳后(建议观察检测器的读数显示),将进样阀手柄拨到“Load ” 的位置,使用专用的液相色谱微量注射器取5μL 样品注入色谱仪进样口,然后将手柄拨到“Inject ”位置,同时按一下检测器的标记按钮,同时计时,记录色谱图。 (4)重复(3)的实验两次。 (5)用同样方法进纯样品的甲醇溶液,确定出峰顺序。 (6)根据三次实验所得结果计算色谱峰的保留时间、半峰宽,然后计算色谱 柱参数n 、k ’,以及相邻两峰的α、R s (7)将流速降为0,待压力降为0后关机。 思考题 1. 高效液相色谱与气相色谱相比有什么相同点和不同点? 2. 如何保护色谱柱延长使用寿命? 2 2/1r )/(54.5W t n =0 0r /)('t t t k -=1 2'/'αk k =) /()(2b2b1r1r2s W W t t R +-=

高效液相色谱实验报告

联苯、甲苯、萘和菲以及它们混样的高效液相色谱分析 实验目的 1.熟练掌握高效液相色谱相关仪器的操作流程。 2.通过高效液相色谱的方法对已知物质进行分析 3.通过谱图分析,掌握运用谱图数据处理目标物质的方法。 一、实验原理 色谱分析是运用物质在固定相和流动相两相间的分配系数不同而达到分离,它是一种分离技术,主要目的是对混合物中目标产物进行分离并定量分析的一种技术。 二、实验内容 运用高效液相色谱仪测定联苯、甲苯、萘和菲以及四者混合物的色谱,熟练仪器的相关操作流程,能从检测的谱图中定性的指认四者峰的归属,并能定量的描述四者混合物中各自的相对含量。 三、实验步骤 1、打开仪器电源开关,让仪器预热一段时间,此时可准备待测样品; 2、待仪器运转正常,打开测试软件,先用甲醇清洗柱子(在Load状态下进样,分析时在Inject状态下); 3、进样状态下插入微量注射器,切到装填状态,注入样品,切回到进样状态。 4、点击分析按钮,输入分析的样品名; 5、数据分析,通过软件查看积分面积。 五、实验结果

液相色谱图 (1)混样 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0min 0.01.0 2.0 3.0 4.0 5.0 6.0 mV(x100) Detector A:254nm 1.722/15606 3.034/1116886 3.383/709768 4.037/2542977 5.046/7069594 (2)联苯 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0min 0.00.51.0 1.5 2.02.5 3.03.5 4.04.5 5.05.5 6.06.5 mV(x100)Detector A:254nm 1.731 2.578 4.147 5.213

高效液相色谱检测技术及其研究现状

吉林农业大学 植物化学技术进展 课程论文 题目名称: 高效液相色谱检测技术及其研究现状学生姓名:黄磊 院系:食品科学与工程学院 专业年级: 2016级农产品加工及贮藏工程 指导教师:张晶职称:教授 2016年 12 月 18 日

高效液相色谱检测技术及其研究现状 黄磊 (吉林农业大学,吉林省,长春市,邮编2888号) 摘要:高效液相色谱具有高选择性、准确的特点,使用起来简洁方便。本文主要介绍了高效液相色谱的使用原理,使用方法,应用范围以及研究进展。 关键词:高效液相色谱;应用范围;研究进展 High performance liquid chromatography and its research status Huang Lei (Jilin Agricultural University, Jilin Province, Changchun City, zip code No. 2888) Abstract:high performance liquid chromatography (HPLC) has high selectivity and accuracy. This paper mainly introduces the principle, usage, application scope and research progress of HPLC. Key words: high performance liquid chromatography; application scope; research progress 高效液相色谱(Highperformanceliquidchromatography,HPLC)也叫高压液相色,是在经典液相色谱法和气相色谱法的基础上发展起来的新型分离分析技术。鉴于其简便、快速、灵敏、准确的特点,至今,已在生物工程、制药工业、食品工业、环境监测、石油化工等领域获得广泛的应用。 1.基本理论 人们对色谱基础理论进行不懈的研究,提出了众多的理论。其中比较著名的有: 1.塔板理论。在1941年由Martin和Synge[1]提出,该理论将色谱过程比拟为蒸馏过程,把色谱柱看成是由一系列平衡单元—理论塔板所组成。在每一个塔板高度内,组分在流动相和固定相之间的分配平衡能瞬间达成;2平衡色谱理论。在1940年由Wilson[2]提出,该理论认为在整个色谱过程中,组分在流动相和固定相之间的分配平衡能瞬间达成; 3.双膜理论。Funk[3]等人把流动相和固定相看成是两块相互紧密接触的平面薄膜,整个传质阻力为流动相膜的传质阻力和固定相膜的传质阻力所构成,组分在界面接触处达到 分配平衡。4.速率理论。该理论认为组分在流动相和固定相之间有限的传质速率是影响色谱区域谱带扩张的主要因素,而轴向扩散的影响可以忽略;5.纵向扩散理论。由Amundson[4]等人通过大量实验提出,该理论认为在色谱过程中,组分在流动相的轴向扩散是影响色谱区域谱带扩张的主要因素,而有限的 传质速率对区域谱带扩张没有影响;制备分离的色谱模型和分析分离的模型相似,但在具体操作中两 者的指导思想却有着本质的不同。在制备分离中,人们总是希望在尽可能短的时间里得到尽可能多的纯组分。欲得到负载必须以分离效果为代价,即在保持最低分辨率的前提下,使柱子超载以得到最大的物料通过量。而分析分离中在最短时间里得到最大的分离效率则是人们希望得到的[5]。制备分离选择的是高柱效、高柱容量的色谱柱,而且使色谱柱在超载状态下工作。所谓超载,通常将理论塔板数下降10%时柱容量[6]。较为理想的制备条件的选择包括上柱量,容量因子,选择性以及柱效[7]。

相关文档