文档库 最新最全的文档下载
当前位置:文档库 › 固体物理课件密堆积

固体物理课件密堆积

固体物理 第三章思考题--参考 不作要求

第三章 晶格振动与晶体热学性质习题课 1. 引入玻恩卡门条件的理由是什么? [解答] (1) 方便于求解原子运动方程. 由本教科书的(3.4)式可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难. (2) 与实验结果吻合得较好. 对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N 个原子构成的的原子链, 硬性假定0 ,01==N u u 的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(参见本教科书§3.2与§3.4). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件. 2. 什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事? [解答] 为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N 个原子构成的晶体的晶格振动, 可等效成3N 个独立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这3N 个简正振动模式的线形迭加. 简正振动数目、格波数目或格波振动模式数目是一回事, 这个数目等于晶体中所有原子的自由度数之和, 即等于3N . 3. 长光学支格波与长声学支格波本质上有何差别? [解答] 长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波. 4. 讨论晶体中声子数目与温度的关系 [解答] 频率为i ω的格波的(平均) 声子数为 11 )(/-= T k i B i e n ωω , 即每一个格波的声子数都与温度有关, 因此, 晶体中声子数目不守恒, 它是温度的变量. 按照德拜模型, 晶体中的声子数目N’为 ωνπωωωωωωωd 2311d )()('0 3 22 /0 ? ????? ????? ??-==D B i D p c T k V e D n N . 作变量代换 T k x B ω = ,

黄昆固体物理习题-第三章 晶体的热性质

第三章习题参考解答

3.1已知一维单原子链,其中第j 个格波,在第n 个格点引 起的位移μnj 为: δj 为任意位相因子。并已知在较高温度下每个格波的平均能量为kT ,具体计算每个原子的平方平均位移。 ) sin(j j j j nj naq t δωαμ++=2 1 )(sin 1 2 = ++? dt q n t T j j j T δαω根据 =2nj μ 2 2 22 1)(sin j j j j j q n t αδαωα=++解:其中T =2π/ωj 为振动周期,所以:

格波的平均动能: ∑?=n nj m E 2 2 1 μN m j j 224 1ωα=一维单原子链可以认为是经典的简谐运动,因此有: )(cos 212 22j j j j n j q n t m δαωωα++=∑平均动能=平均势能= 格波平均能量=kT 2 1 21其中:M =ρL

其中振幅 2 22j j Nm kT ωα=得: kT N m E j j 2 14122= =ωα所以有:2 2221j j nj Nm kT ωαμ ==所以,每个原子的平方平均位移: ∑∑∑===2 22 1 21j j nj n Nm kT ωαμμ其中:M =ρL

3.2 讨论N个原胞的一维双原子链(相邻原子间距为a),其2N个格波解,当M=m时与一维单原子链结果一一对应。 解:质量为M的原子位于2n-1,2n+1,2n+3……。 质量为m的原子位于2n,2n+2,2n+4 ……。

牛顿运动方程 体系有N个原胞,有2N个独立的方程方程的解: A,B有 非零解

固体物理答案 第3章

3.1 已知一维单原子链,其中第j 个格波,在第n 个格点引起的位 移 nj μ为: s i n (n j j j j a t n a q μωδ =++ j δ为任意相位因子。并已知在较高温度下每个格波的平均能量为B k T 。 具体计算每个原子的平方平均位移。 解:(1)根据2011 sin ()2 T j j j t naq dt T ωδ?++= 其中2j T π ω= 为振动周期, 所以222 21 sin ()2 nj j j j j j a t naq a μωδ=++= (2) 第j 个格波的平均动能 (3) 经典的简谐运动有: 每个格波的平均动能=平均势能=1 2格波平均能量=12 B k T 振幅222B j j k T a Nm ω=, 所以 2 22 12B nj j j k T a Nm μω==。 而 每 个原子 的平方平均位移为: 222221()2 B n nj nj j j j j j j k T a Nm μμμω====∑∑∑∑ 。 3.2讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 个格波的解。当m M =时与一维单原子链一一对应。 解:(1)一维双原子链: 22q a a π π - ≤< 声学波:1 222 2 411sin ()m M mM aq mM m M ωβ-????+??=--????+???? ?? 当m M =时,有 2 224(1cos )sin 2 aq aq m m ββω-= -= 。

光学波:1 222 2 411sin ()m M mM aq mM m M ωβ+?? ??+??=+-????+???? ?? 当m M =时,有 2 2 24(1cos )cos 2 aq aq m m ββω+= += 。 (2)一维双原子链在m M =时的解 22224sin 2422cos 2aq m q aq a a m βωπ π βω-+?=??- ≤< ? ?=?? 与一维单原子链的解 224sin 2 aq q m a a βπ π ω=- ≤< 是一一对应的。 3.5已知NaCl 晶体平均每对离子的相互作用能为: 其中马德隆常数 1.75,9a n ==,平衡离子间距0 2.82r =?。 (1) 试求离子在平衡位置附近的振动频率。 (2) 计算与该频率相当的电磁波的波长,并与NaCl 红外吸收频 率的测量只值61μ进行比较。 解:(1)处理小振动问题,一般可采用简谐近似,在平衡位置附近,可将互作用能展开至偏差0r r δ=-的二次方项。 22400002 00 ()() 1()()()2U r U r U r U r O δδδδδδδδδδ==?+?++=+?+?+?? (1) 其中 00 () 0U r δδδ=?+=? 为平衡条件。 由0r 已知可确定β: 2 1 0n q r n αβ-= 。 (2) 根据(1)式,离子偏离平衡位置δ所受的恢复力为:

(完整)北京化工大学高等固体物理习题课有答案

北京化工大学第二学期研究生课程:固体物理(2) 样题 一、简答题 1.请导出一维双原子链的色散关系,并讨论在长波极限时光学波和声学波原子的振动 特点。 双原子(M>m)一维晶格 运动方程:md2x2n+1/dt2=k s(x2n+2-2x2n+1+x2n) Md2x2n+2/dt2=k s(x2n+3+x2n+1-2x2n+2) 方程的解是以角频率为ω的简谐振动: x2n+1=Ae i{ωt-q(2n+1)a} x2n=Be i{ωt-q2na} x2n+2=Be i{ωt-q(2n+2)a} x2n+3=Ae i{ωt-q(2n+3)a} 由牛顿方程与简谐振动方程得: -mω2A=k s(e iqa+e -iqa)B-2k s A -Mω2B=k s(e iqa+e -iqa)A-2k s A 上式可改写为:(2k s-mω2)A-(2k s cosqa)B=0 -(2k s cosqa)A+(2k s-Mω2)B=0

若A、B有异于零的解,则其行列式必须等于零, 即有解条件2k s-mω2-2k s cosqa 行列式为0 -2k s cosqa 2k s-Mω2 得:ω2={(m+M)±[m2+M2+2mMcos(2qa)]1/2}k s/mM 说明:频率与波矢之间存在着两种不同的色散关系,即对一维复式格子,可以存在两种独立的格波(对于一维简单晶格,只能存在一种格波)。两种不同的格波各有自己的色散关系: ω12={(m+M)-[m2+M2+2mMcos(2qa)]1/2}k s/mM ω22={(m+M)+[m2+M2+2mMcos(2qa)]1/2}k s/mM 声学波与光学波的比较

固体物理第三章晶格振动与晶体的热力学函数

第三章 晶格振动与晶体的热力学函数 一、 填空体 1. 若在三维空间中,晶体由N 个原胞组成,每个原胞有一个原子,则共有_ 3 N_个独立的 振动,_ N__个波矢, 3N_支格波。 2. 体积为V 的ZnS 晶体,如果晶胞的体积为Ω,则晶格振动的模式书为24N/Ω 。 3. 三维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 3。 4. 某三维晶体由N 个原胞组成,每个原胞内有3个原子。考虑晶体的晶格振动,其色散关系共有 9N 支,其中 3N 支声学波,包括 2N 支横声学波, 1N 支纵声学波;另有 6N 支光学波。 5. 二维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 2。 6. 一维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 。 7. 三维绝缘体晶体的低温平均内能与温度T 的关系为U~T 4。 8.二维绝缘体晶体的低温平均内能与温度T 的关系为U~T 3。 9. 一维绝缘体晶体的低温平均内能温度T 的关系为U~T 2。 10.绝缘体中与温度有关的内能来源于 晶格振动能 。 11.导体中与温度有关的内能来源于 晶格振动能 和 价电子热运动动能 。 12. 某二维晶体由N 个原胞组成,每个原胞内有2个原子。考虑晶体的晶格振动,其色散关系共有 4N 支,其中 2N 支声学波,包括 N 支横声学波, N 支纵声学波;另有 2N 支光学波。 13. 某一维晶体由N 个原胞组成,每个原胞内有3个原子。考虑晶体的晶格振动,其色散关系共有 3N 支,其中 N 支声学波,包括 N 支横声学波, 0 支纵声学波;另有 2N 支光学波。 14.晶格振动的元激发为 声子 ,其能量为 ω ,准动量为 q 。 15德拜模型的基本假设为:格波作为弹性波、 介质是各向同性介质。 16.对三维体积为V 的晶体,波矢空间中的波矢密度为: 3 ) 2(V π ;对二维面积为S 的晶体,波矢空间中的波矢密度为:2 )2(S π ;对一维长度为L 的晶体,波矢空间中的波矢密度为: π 2L 。 二、基本概念 1. 声子 晶格振动的能量量子。 2.波恩-卡门条件 即周期性边界条件,设想在实际晶体外,仍然有无限多个相同的晶体相连接,各晶体中相对应的原子的运动情况都一样。 3.波矢密度 波矢空间单位体积内的波矢数目,三维时为3 c )2(V π,Vc 为晶体体积。 4. 模式密度 单位频率间隔内模式数目。 5.晶格振动。 答:由于晶体内原子间存在着相互作用,原子的振动就不是孤立的,而要以波的形式在晶体中传播,形成所谓格波,因此晶体可视为一个互相耦合的振动系统,这个系统的运动就叫晶格振动。

固体物理第三章

班级 成绩 学号 Chapter 3 晶格振动与晶体的热学性质 姓名 (lattice vibration and its heat characteristics) 一、简要回答下列问题(answer the following questions): 1、在晶格常数为a 的一维单原子晶格中,波长λ=8a 和波长λ=8a/5的格波所对应的原子 振动状态有无不同? 试画图加以说明。 [答]对于一维单原子链,由q=2π/λ知,λ=8a 时,q =π/4a ,λ=8a /5时,q =5π /4a ,二者的aq 相差π,不是2π的整数倍,因此,两个格波所对应的原子振动状态不同。 如上图,当两个格波的位相差为2π的整数倍时,则它们所对应的原子的振动状态相同。 2、什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事? [答]在简谐振动下,由N 个原子构成的晶体的晶格振动,可等效成3N 个独立的谐振子的 振动,每一个谐振子的振动模式称为简正振动模式。格波振动通常是这3N 个简正振动模式的线性叠加。 简正振动数目、格波数目或格波振动模式数目是是一回事,其数目等于晶体中所有原子的自由度之和,即等于3N 。 3、晶体中声子数目是否守恒?在极低温下,晶体中的声子数与温度T 之间有什么样的关 系? [答]频率为ωi 的格波的平均声子数为 : 1 1)(/-= T k i B e n ωω 即每一个格波的声子数都与温度有关,因此晶体中的声子数目不守恒,它随温度的改变而改变。 以德拜模型为例。晶体中的声子数目为

ωωωωd g n N D )()('0 ? = 其中 令 T k x B ω = 则 123'2/0 3 3233 -= ? x T B e dx x C T k V N D θπ 在极低温度下,θD /T →∞,于是 3 3 133233 20 3 3233 )2(23123'T n C T Vk e dx x C T k V N n B x B ∑ ? ∞=∞ =-= ππ 即在温度极低时,晶体中的声子数目与T 3 成正比。 4、爱因斯坦模型在低温下与实验存在偏差的根源是什么?而在极低温度下,德拜模型为 什么与实验相符? [答]爱因斯坦模型的格波的频率大约为1013 Hz ,属于光学支频率。而光学格波在低温时对 热容的贡献非常小,低温下对热容贡献大的主要是长声学波。所以爱因斯坦模型在低温下与实验存在偏差的根源是没有考虑声学波对热容的贡献。 在极低温度下,不仅光学波得不到激发,而且声子能量较大的短声学格波因为未能被激发,得到的激发只是声子能量较小的长声学格波。长声学格波即弹性波。德拜模型只考虑弹性波对热容的贡献。因此,温度越低,德拜模型与实验结果符合得越好。 5、格波与弹性波有何不同? [答]格波与弹性波相比都具有波的形式,但两者又有不同之处: (1) 对于一维单原子链格波解为: ) (naq t i n Ae u -=ω 弹性波的解为: ) (qx t i n Ae u -=ω 在弹性波的解中, x 表示空间任意一点,而在格波解中只能取na 格点的位置. (2) 弹性波的色散关系是线性的,ω=cq, c 是弹性波的波速; 而格波的色散关系:|2 1 sin |2 aq m β ω= 所表示的是周期函数:)()2(q a q ωπ ω=+ , 且ω 有极大值m m βω2= 。 但当q 很小时,一维单原子链的色散关系与连续弹性介质波的色散关系趋于一致: cq q m a =≈β ω 而且c 就是把原子链看成弹性链时,弹性波的波速. ωωπωωd C V d g 2 3 223 )(=

固体物理第三章

1对一维简单格子晶体,其晶格振动仅存在(声学)波,而一维复式晶体振动既有(声学)波,又有(光学)波 2在一维单原子链的晶格振动中,有(1)支声学波、(0)支光学波。 3声子是(晶格振动的能量量子化),其能量和准动量分别为 ()。 4晶格振动的能量量子称为( 声子)。 5对于三维包含有N个原胞的某晶体,每个晶体中含n 个原子,则其格波数为(3Nn),其中光学波支数为((3n-3)N),声学支数为(3N)。 6长光学支格波与长声学支格波本质上有何差别? 长光学支格波的特征是每个原胞内的不同原子做相对振动,振动频率较高,它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波 7温度一定,一个光学波的声子数目多呢,还是声学波的声子数目多? 8对同一个振动模式,温度高时的声子数目多呢,还是温度低时的声子数目多呢? [解答]设温度TH〉TL,由于(e?ω/kBTH,所以对同一个振动模式,温度?1)大于(e?ω/kBTL?1)高时的声子数目多于温度低时的声子数目。 9晶体中声子数目是否守恒? 频率为ω1的格波的(平均) 声子数为即每一个格波的声子数都与温度有关,因此,晶体中声子数目不守恒,它是温度的变量。 10晶格比热容的爱因斯坦模型和德拜模型采用了什么简化假设?各取得了什么成就?各有什么局限性?为什么德拜模型在极低温度下能给出精确结果?

11考虑一双原子链的晶格振动,链上最近邻原子间的力常数交错地等于c和10c,令两种原子的质量相等,并且最近邻的间距是a/2,试求k=0和k=π/a处的ω(k),并粗略画出色散关系。本题模拟双原子分子晶体,如H2等。

(完整版)固体物理胡安第三章课后答案

3.1 在单原子组成的一维点阵中,若假设每个原子所受的作用力左右不同,其力常数如图所示相间变化,且21 ββ>。 试证明在这样的系统中,格波仍存在着声频支和光频支,其格波频率为 ?? ??????????????+-±+=212 21221212 )2(sin 411M )(ββββββωqa 证明: 第2n 个原子所受的力 1 21122221212121222)()()(-+-++++-=-+-=n n n n n n n n u u u u u u u F ββββββ 第2n+1个原子所受的力 n n n n n n n n u u u u u u u F 22121122112221222112)()()(ββββββ+++-=-+-=++++++ 这两个原子的运动方程: 2122221121 21122112222()()n n n n n n n n mu u u u mu u u u ββββββββ+-+++=-+++=-+++&&&& 方程的解 ????? ? +-+? ???? ? -==q a n t i n q a n t i n Be u Ae u 2)12(122)2(2ωω 代入到运动方程,可以得到

B A e e B m A B e e A m q a i q a i q a i q a i )()(21222122122212ββββωββββω+-??? ? ??+=-+-??? ? ??+=--- 经整理,有 0)(0)(22122212221221=-+-??? ? ?? +=??? ? ??+--+--B m A e e B e e A m q a i q a i q a i q a i ωββββββωββ 若A ,B 有非零解,系数行列式满足 222 12 122 2 21212,0,a a i q i q a a i q i q m e e e e m ββωββββββω--+-+=++- 根据上式,有 ? ? ??????????????+-±+=212 21221212 )2(sin 411M )(ββββββωqa 3.3 (a) 设单原子链长度L=Na 波矢取值2q h Na π =? 每个波矢的宽度2q Na π=,状态密度 2Na π dq 间隔内的状态数2Na dq π ,对应±q ,ω取相同值 因此()22Na dq dq ρωπ =? 一维单原子链色散关系,2aq ω?? = ??? 令 00sin 2aq ωωω?? = = ???

固体物理 第三章 晶格振动与晶体的热力学函数

第三章 晶格振动与晶体的热力学函数 一、填空体 1. 若在三维空间中,晶体由N 个原胞组成,每个原胞有一个原子,则共有_ 3 N_个独立的 振动,_ N__个波矢, 3N_支格波。 2. 体积为V 的ZnS 晶体,如果晶胞的体积为Ω,则晶格振动的模式书为24N/Ω 。 3. 三维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 3。 4. 某三维晶体由N 个原胞组成,每个原胞内有3个原子。考虑晶体的晶格振动,其色散关系共有 9N 支,其中 3N 支声学波,包括 2N 支横声学波, 1N 支纵声学波;另有 6N 支光学波。 5. 二维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 2。 6. 一维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 。 7. 三维绝缘体晶体的低温平均内能与温度T 的关系为U~T 4。 8.二维绝缘体晶体的低温平均内能与温度T 的关系为U~T 3。 9. 一维绝缘体晶体的低温平均内能温度T 的关系为U~T 2。 10.绝缘体中与温度有关的内能来源于 晶格振动能 。 11.导体中与温度有关的内能来源于 晶格振动能 和 价电子热运动动能 。 12. 某二维晶体由N 个原胞组成,每个原胞内有2个原子。考虑晶体的晶格振动,其色散关系共有 4N 支,其中 2N 支声学波,包括 N 支横声学波, N 支纵声学波;另有 2N 支光学波。 13. 某一维晶体由N 个原胞组成,每个原胞内有3个原子。考虑晶体的晶格振动,其色散关系共有 3N 支,其中 N 支声学波,包括 N 支横声学波, 0 支纵声学波;另有 2N 支光学波。 14.晶格振动的元激发为 声子 ,其能量为 ω ,准动量为 q 。 15德拜模型的基本假设为:格波作为弹性波、 介质是各向同性介质。 16.对三维体积为V 的晶体,波矢空间中的波矢密度为: 3 ) 2(V π ;对二维面积为S 的晶体,波矢空间中的波矢密度为: 2 )2(S π ;对一维长度为L 的晶体,波矢空间中的波矢密度为: π 2L 。 二、基本概念 1. 声子 晶格振动的能量量子。 2.波恩-卡门条件

北京化工大学高等固体物理习题课有答案

北京化工大学第二学期研究生课程:固体物理 (2) 样 题 一、简答题 1. 请导出一维双原子链的色散关系,并讨论在长波极限时光学波和声学波原子的振动特点。 运动方程: md 2x 2n+1/dt 2=k s (x 2n+2-2x 2n+1+x 2n ) Md 2x 2n+2/dt 2=k s (x 2n+3+x 2n+1-2x 2n+2) 方程的解是以角频率为ω的简谐振动: x 2n+1=Ae i{ωt-q(2n+1)a} x 2n =Be i{ωt-q2na} x 2n+2=Be i{ωt-q(2n+2)a} x 2n+3=Ae i{ωt-q(2n+3)a} 由牛顿方程与简谐振动方程得: -m ω2A=k s (e iqa +e -iqa )B-2k s A -M ω2B=k s (e iqa +e -iqa )A-2k s A 上式可改写为:(2k s -m ω2)A-(2k s cosqa)B=0 -(2k s cosqa)A+(2k s -M ω2)B=0 a 2a ° ° ° ? ? ? m M 双原子( M >m )一维晶格

若A、B有异于零的解,则其行列式必须等于零, 即有解条件2k s-mω2-2k s cosqa -2k s cosqa 2k s-Mω2 行列式为0 得:ω2={(m+M)±[m2+M2+2mMcos(2qa)]1/2}k s/mM 说明:频率与波矢之间存在着两种不同的色散关系,即对一维复式格子,可以存在两种独立的格波(对于一维简单晶格,只能存在一种格波)。两种不同的格波各有自己的色散关系: ω12={(m+M)-[m2+M2+2mMcos(2qa)]1/2}k s/mM ω22={(m+M)+[m2+M2+2mMcos(2qa)]1/2}k s/mM 声学波与光学波的比较 相邻原子的振动方向振动的 频率 长波极限 振动 质点 振动质点 的质量 同号 双原 子 异号 双原 子 声学波相同慢原胞重连续介 质的弹 性波 光学波相反快异号 原子 相对 振动 轻 产生 电偶 极矩, 发射 电磁 波

高等固体物理笔记

第八章半导体物理 第一节半导体能带 1.半导体基本性质:①在半导体中掺入杂质,可以大大提升半导体电导率 ②温度上的微小变化可以极大地改变半导体电阻 ③光照会使半导体电阻率减小,电导率增大 2.本征半导体:不存在任何杂质与缺陷的半导体,其价带一般为满带 导带:能量恰好高于价带的一条,一般呈全空或未填满状态,记作(conduct)价带:所有被电子占满的能带中能量最高的一条(价电子能带),记作(valence)3.直接带隙:导带底和价带顶都在k=0,如砷化镓 间接带隙:导带底和价带顶不都在k=0,如硅和锗 第二节杂质半导体 1.施主型杂质:杂质原子替代半导体原子后,其价电子脱离束缚,能量进入导带 如以磷为代表的V族元素 施主能级:该价电子电离前处于束缚态(禁带),该状态能级略低于导带底 此能级称为施主杂质能级,记作(dope) 施主电离能:施主能级到导带底之间的能量差 N型半导体:掺有施主型杂质的半导体 2.受主型杂质:杂质原子替代半导体原子后,邻近电子因填补空缺而留下一价带空穴 如以硼为代表的III族元素

受主能级:该价电子移动前处于禁带,该状态能级略高于价带顶 此能级称为受主杂质能级,记作(accept) 受主电离能:价带顶到受主能级之间的能量差 P型半导体:掺有受主型杂质的半导体 3.载流子:N型半导体中载流子为导带电子,P型半导体中载流子为价带空穴 浅杂质:施主/受主电离能低于的杂质,称为浅(能级)杂质 当施主浓度>受主浓度时,表现为N型半导体,反之P型半导体深杂质:施主/受主电离能可与禁带宽度相比/接近禁带宽度的杂质,称为深(能级)杂质特点为能级反转——施主能级接近价带顶,受主能级接近导带底深能级:深杂质能级可以俘获载流子并束缚它,它分为陷阱和复合中心两类型 载流子陷阱:若被深能级俘获的载流子可以重新激发到能带,称深能级为陷阱 载流子复合中心:若深能级同时俘获一对电子和空穴,则它们复合消失 第三节半导体载流子统计分布(浅能级) 1.本征激发:载流子只能由价带顶附近电子激发至导带来形成,有 本征半导体载流子密度:

相关文档