文档库 最新最全的文档下载
当前位置:文档库 › 第七章 典型光学系统及其像质评价

第七章 典型光学系统及其像质评价

第七章  典型光学系统及其像质评价
第七章  典型光学系统及其像质评价

第七章典型光学系统及其像质评价

一、选择题

1、在用照相机拍摄景物时,要获得较大的景深,应该()

A、增大照相系统的入瞳直径 B.、将对准平面置于无穷远处

C、.选用长焦距镜头 D.、增大光圈数

2、对于照相系统,正确的陈述是()

A、焦距变大,可使像增大

B、光圈变大,可使像面照度增大

C、光圈变大,可使像面照度不均匀程度变大

D、相对孔径决定了照相系统的分辨率

3、照相系统的三个重要参数是()

A、视场角、分辨率和焦距

B、视场角、相对孔径和焦距

C、视场角、数值孔径和焦距

D、视场角、相对孔径和分辨率

4、拍摄人像艺术照,为突出主要人物,使背景模糊,应选用()

A、大焦距、小F数和小对准距离

B、大焦距、大F数和小对准距离

C、大焦距、大F数和大对准距离

D、小焦距、小F数和小对准距离

二、填空

1、人眼的物方焦距要比像方焦距();若某人的远点距离为眼后1m,则需要佩戴()度的老花镜,其焦距为()mm。

2、望远镜系统的光学结构特点是()和()。使用伽利略望远镜观察物体时,孔径光阑是(),视场光阑是()。由于该系统的入窗与物面不重合,所以观察大视场时一般存在()现象。

3、摄影物镜的三个重要参数是()、()和()。其中()影响像面的照度和分辨率。对摄影系统而言,焦距越长,景深越();入瞳直径越大,景深越();拍摄距离越远,景深越()。

4、在变焦距光学系统中,对像面移动进行补偿的方法主要有机械补偿法和()两种。机械补偿法中,焦距的变化是通过()来实现的,其变倍比为()。

三、简答题

1、显微系统的组成和工作原理

2、摄影(照相)系统组成与成像原理

四、计算题

1、有一个显微镜系统,物镜的放大率为-25×,目镜的倍率为10×(均按薄透镜),物镜的共轭距为195mm。求;

(1)系统的等效焦距和总倍率;

(2)物体的位置;

(3)物镜和目镜的焦距;

(4)光学筒长;

(5)物镜和目镜的间距;

2、一开普勒望远镜,物镜焦距f0ˊ=200mm,目镜焦距f eˊ=25mm,物方视场角2ω=80,渐晕系数K=50%,为了使目镜通光口径D=23.7mm,在物镜后焦面上放一场镜,试求:

(1)场镜焦距;

(2)若该场镜试平面在前的平凸薄透镜,折射率n=1.5,求其球面的曲率。

《典型光学系统》.(DOC)

第七章 典型光学系统 1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离; (3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。 解: ① 21-== r l R )/1(m ∴ m l r 5.0-= ②P R A -= D A 8= D R 2-= ∴D A R P 1082-=--=-= m P l p 1.01011-=-== ③f D ' =1 ∴m f 1-=' ④D D R R 1-=-=' m l R 1-=' ⑤P R A '-'= D A 8= D R 1-=' D A R P 9-=-'=' m l P 11.09 1-=-='

2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。 已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-' %50=K 求:① Γ ② 2y ③l 解:①f D P '-'-=Γ1 25 50 1252501250 -+=''-+'=f P f eye

92110=-+= ②由%50=K 可得: 18.050 *2182=='='P D tg 放ω ωωtg tg '=Γ ∴02.09 18.0==ωtg D y tg =ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二: 18.0='ωtg mm tg y 45*250='='ω mm l 200-=' mm f e 250=' mm l 2.22-= y y l l X '==='=92.22200β mm y 102= ③ l P D '-'= mm D P l 20025050-=-=-'=' f l l '=-'111 25112001=--l mm l 22.22-= 3.一显微镜物镜的垂轴放大率为x 3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。 (1)求显微镜的视觉放大率。

光学系统与像差全套答案

c 2?解:由 n -得: v I =30 °有几何关系可得该店反射和折射的光线间的夹角为 6、若水面下 200mm 处有一发光点,我们在水面上能看到被该发光点照亮的范围 (圆直 径) 有多大? 解:已知水的折射率为 1.333,。由全反射的知识知光从水中到空气中传播时临界角为: 1 Sin l m 半= =0.75,可得I m =48.59 ; tanl m =1.13389,由几何关系可得被该发光点照 n 1.333 光在水中的传播速度:V 水 3 1Q8(m/S) 2.25(m/s) 1.333 光在玻璃中的传播速度:v 玻璃 C 3 1 沁 1.818(m/s) 1.65 n 玻璃 5米的路灯(设为点光源)1.5米处,求其影子长度。 1 7 x 解:根据光的直线传播。设其影子长度为 X ,则有 可得x =0.773米 5 1.5 x 4.一针孔照相机对一物体于屏上形成一 60毫米高的像。若将屏拉远 70毫米。试求针孔到屏间的原始距离。 3?—高度为1.7米的人立于离高度为 50毫米,则像的高度为 解:根据光的直线传播,设针孔到屏间的原始距离为 X ,则有 卫_ 50 x 60 可得x =300 (毫米) x 5.有一光线以60 的入射角入射于■:'的磨光玻璃球的任一点上, 到球表面的另一点上,试求在该点反射和折射的光线间的夹角。 其折射光线继续传播 解:根据光的反射定律得反射角 I =60 °而有折射定律 n sin I nsin I 可得到折射角 90 °

亮的范围(圆直径)是2*200*1.13389=453.6(mm) 7、入射到折射率为;- ..「1二的等直角棱镜的一束会聚光束(见图1-3),若要求在斜面上发生全反射,试求光束的最大孔径角--' 解:当会聚光入射到直角棱镜上时,对孔径角有一定的限制,超过这个限制,就不会发生全反射了。 1 由sinl m —,得临界角I m 41.26 n 得从直角边出射时,入射角i 180 l m 90 45 3.74 由折射定律■S匹丄,得U 5.68即2U 11.36 sinU n

光学传递函数的测量和像质评价

光学传递函数的测量和像质评价 引言 光学传递函数是表征光学系统对不同空间频率的目标函数的传递性能,是评价光学系统的指标之一。它将傅里叶变换这种数学工具引入应用光学领域,从而使像质评价有了数学依据。由此人们可以把物体成像看作光能量在像平面上的再分配,也可以把光学系统看成对空间频率的低通滤波器,并通过频谱分析对光学系统的成像质量进行评价。到现在为止,光学传递函数成为了像质评价的一种主要方法。 一、实验目的 了解光学镜头传递函数的基本测量原理,掌握传递函数测量和成像品质评价的近似方法,学习抽样、平均和统计算法,熟悉光学软件的应用。 二、基本原理 光学系统在一定条件下可以近似看作线性空间中的不变系统,因此我们可以在空间频率域来讨论光学系统的响应特性。其基本的数学原理就是傅里叶变换和逆变换,即: dxdy y x i y x )](2exp[,ηξπψηξψ+-=??) (),( (1) ηξηξπηξψψd d y x i y x )](2exp[),(),(+=?? (2) 式中),(ηξψ是),(y x ψ的傅里叶频谱,是物体所包含的空间频率),(ηξ的成分含量,低频成分表示缓慢变化的背景和大的轮廓,高频成分表示物体细节,积分范围是全空间或者是有光通过空间范围。 当物体经过光学系统后,各个不同频率的正弦信号发生两个变化:首先是调制度(或反差度)下降,其次是相位发生变化,这一综合过程可表为 ),(),(),(ηξηξψηξφH ?= (3) 式中),(ηξφ表示像的傅里叶频谱。),(ηξH 成为光学传递函数,是一个复函数,它的模为调制度传递函数(modulation transfer function, MTF ),相位部分则为相位传递函数(phase transfer function, PTF )。显然,当H =1时,表示象和物完全一致,即成象过程完全保真,象包含了物的全部信息,没有失真,光学系统成完善象。由于光波在光学系统孔径光栏上的衍射以及象差(包括设计中的余留象差及加工、装调中的误差),信息在传递过程中不可避免要出现失真,总的来讲,空间频率越高,传递性能越差。要得到像的复振幅分布,只需要将像的傅里叶频谱作一次逆傅里叶变换即可。 在光学中,调制度定义为 min max min max I I I I m +-= (4) 式中max I 、min I 表示光强的极大值和极小值。光学系统的调制传递函数可表为给定空间频率

数字式光学传递函数测量和透镜象质评价

实验八 数字式光学传递函数的测量和像质评价实验 1.实验目的 了解光学镜头传递函数测量的基本原理; 掌握传递函数测量和成像品质评价的近似方法; 学习抽样、平均和统计算法。 2. 基本原理 光学传递函数(Optical transfer function, OTF )表征光学系统对不同空间频率目标的传递性能,广泛用于对系统成像质量的评价。 傅里叶光学证明了光学成像过程可以近似作为线形空间中的不变系统来处理,从而可以在频域中讨论光学系统的响应特性。任何二维物体ψo (x , y )都可以分解成一系列x 方向和y 方向的不同空间频率(f x ,f y )简谐函数(物理上表示正弦光栅)的线性叠加: o o (,)(,)exp 2(),(1)x y x y x y x y f f i f x f y df df ψπ∞∞ -∞-∞??= Φ+???? 式中Φo (f x ,f y )为ψo (x , y )的傅里叶谱,它正是物体所包含的空间频率(f x ,f y )的成分含量,其中低频成分表示缓慢变化的背景和大的物体轮廓,高频成分则表征物体的细节。 当该物体经过光学系统后,各个不同频率的正弦信号发生两个变化:首先是调制度(或反差度)下降,其次是相位发生变化,这一综合过程可表为 i o (,)(,)(,),(2)x y x y x y f f H f f f f Φ=?Φ 式中Φi (f x ,f y )表示像的傅里叶谱。H (f x ,f y )称为光学传递函数,是一个复函数,它的模为调制度传递函数(modulation transfer function, MTF ),相位部分则为相位传递函数(phase transfer function, PTF )。显然,当H =1时,表示像和物完全一致,即成像过程完全保真,像包含了物的全部信息,没有失真,光学系统成完善像。 由于光波在光学系统孔径光栏上的衍射以及像差(包括设计中的余留像差及加工、装调中的误差),信息在传递过程中不可避免要出现失真,总的来讲,空间频率越高,传递性能越差。 对像的傅里叶谱Φi (f x ,f y )再作一次逆变换,就得到像的复振幅分布:

工程光学习题参考答案第七章典型光学系统

第七章 典型光学系统 1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离; (3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。 解: ① 21 -== r l R )/1(m ∴ m l r 5.0-= ② P R A -= D A 8= D R 2-= ∴ D A R P 1082-=--=-= m P l p 1.010 1 1-=-== ③f D '= 1 ∴m f 1-=' ④D D R R 1-=-=' m l R 1-=' ⑤P R A '-'= D A 8= D R 1-=' D A R P 9-=-'=' m l P 11.09 1 -=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。 eye

已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-' %50=K 求:① Γ ② 2y ③l 解: ① f D P '-'- =Γ1 25 501252501250-+=''-+'= f P f 92110=-+= ②由%50=K 可得: 18.050 *218 2=='= 'P D tg 放ω ωωtg tg '= Γ ∴02.09 18 .0==ωtg D y tg = ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二: 18.0='ωtg Θ mm tg y 45*250='='ω mm l 200-=' mm f e 250=' mm l 2.22-= y y l l X '==='= 92.22200βΘ mm y 102= ③ l P D '-'= mm D P l 20025050-=-=-'=' f l l '=-'11125 112001=--l mm l 22.22-= 3.一显微镜物镜的垂轴放大率为x 3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。

第七章 典型光学系统及其像质评价

第七章典型光学系统及其像质评价 一、选择题 1、在用照相机拍摄景物时,要获得较大的景深,应该() A、增大照相系统的入瞳直径 B.、将对准平面置于无穷远处 C、.选用长焦距镜头 D.、增大光圈数 2、对于照相系统,正确的陈述是() A、焦距变大,可使像增大 B、光圈变大,可使像面照度增大 C、光圈变大,可使像面照度不均匀程度变大 D、相对孔径决定了照相系统的分辨率 3、照相系统的三个重要参数是() A、视场角、分辨率和焦距 B、视场角、相对孔径和焦距 C、视场角、数值孔径和焦距 D、视场角、相对孔径和分辨率 4、拍摄人像艺术照,为突出主要人物,使背景模糊,应选用() A、大焦距、小F数和小对准距离 B、大焦距、大F数和小对准距离 C、大焦距、大F数和大对准距离 D、小焦距、小F数和小对准距离 二、填空 1、人眼的物方焦距要比像方焦距();若某人的远点距离为眼后1m,则需要佩戴()度的老花镜,其焦距为()mm。 2、望远镜系统的光学结构特点是()和()。使用伽利略望远镜观察物体时,孔径光阑是(),视场光阑是()。由于该系统的入窗与物面不重合,所以观察大视场时一般存在()现象。 3、摄影物镜的三个重要参数是()、()和()。其中()影响像面的照度和分辨率。对摄影系统而言,焦距越长,景深越();入瞳直径越大,景深越();拍摄距离越远,景深越()。 4、在变焦距光学系统中,对像面移动进行补偿的方法主要有机械补偿法和()两种。机械补偿法中,焦距的变化是通过()来实现的,其变倍比为()。 三、简答题 1、显微系统的组成和工作原理 2、摄影(照相)系统组成与成像原理

四、计算题 1、有一个显微镜系统,物镜的放大率为-25×,目镜的倍率为10×(均按薄透镜),物镜的共轭距为195mm。求; (1)系统的等效焦距和总倍率; (2)物体的位置; (3)物镜和目镜的焦距; (4)光学筒长; (5)物镜和目镜的间距; 2、一开普勒望远镜,物镜焦距f0ˊ=200mm,目镜焦距f eˊ=25mm,物方视场角2ω=80,渐晕系数K=50%,为了使目镜通光口径D=23.7mm,在物镜后焦面上放一场镜,试求: (1)场镜焦距; (2)若该场镜试平面在前的平凸薄透镜,折射率n=1.5,求其球面的曲率。

工程光学第八章知识点

第八章典型光学系统 ●通常把光学系统分为10个大类: (1)望远镜系统 (2)显微镜系统 (3)摄影系统 (4)投影系统 (5)计量光学系统 (6)测绘光学系统 (7)物理光学系统 (8)光谱系统 (9)激光光学系统 (10)特殊光学系统(光电系统、光纤系统等) 第一节眼睛的光学成像特性 1.眼睛的结构 生理学上把眼睛看作一个器官 眼睛包括角膜、水晶体、视网膜等部分 人眼的光学构造: ●角膜:由角质构成的透明的球面薄膜,厚度为0.55mm,折射率为1.3771; ●前室:角膜后的空间,充满折射率为1.3774的水状液体; ●虹彩:位于前室后,中间有一圆孔,称为瞳孔,它限制了进入人眼的光束口径,可随景物的亮暗随时 进行大小调节; ●水晶体:由多层薄膜组成的双凸透镜,中间硬外层软,各层折射率不同,中心为1.42,最外层为1.373, 自然状态下其前表面半径为10.2mm,后表面半径为6mm,水晶体周围肌肉的紧张和松驰可改变前表面 的曲率半径,从而改变水晶体焦距; 2.眼睛的视觉特性 ●应用光学把眼睛看作一个光学系统 ●人眼对不同波长的光的敏感度不同,就形成了 视觉函数 ●人眼灵敏峰值波长在555nm(黄绿光) 3.眼睛的调节和适应 1.调节 ●眼睛成像系统对任意距离的物体自动调焦的过程称为眼睛的调节 ●眼睛所能看清的最远的点称为“远点”,远点距用lr表示,正常眼lr = ∞ ●眼睛所能看清的最近的点称为“近点”,近点距用lp表示,正常眼的近点距随年龄而变 化 ●眼睛的调节能力用“视度”来表示,远点视度用R表示,近点视度用P表示: ● 11 r p R P l l = = (8-2) ●视度的单位是“屈光度”,屈光度(D)等于以米为单位的距离的倒数,即1D=1m-1 ●如某人的近点为-0.5m,则用视度表示为P=1/(-0.5)=-2D

工程光学习题参考答案第七章典型光学系统

第七章 典型光学系统 1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离; (3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。 解: ① 21 -== r l R )/1(m ∴ m l r 5.0-= ② P R A -= D A 8= D R 2-= ∴ D A R P 1082-=--=-= m P l p 1.010 1 1-=-== ③f D ' = 1 ∴m f 1-=' ④D D R R 1-=-=' m l R 1-=' ⑤P R A '-'= D A 8= D R 1-=' D A R P 9-=-'=' m l P 11.09 1 -=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。 eye

已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-' %50=K 求:① Γ ② 2y ③l 解: ① f D P '-'- =Γ1 25 501252501250-+=''-+'= f P f 92110=-+= ②由%50=K 可得: 18.050 *218 2=='= 'P D tg 放ω ωωtg tg '=Γ ∴02.09 18 .0==ωtg D y tg = ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二: 18.0='ωtg Θ mm tg y 45*250='='ω mm l 200-=' mm f e 250=' mm l 2.22-= y y l l X '==='= 92.22200βΘ mm y 102= ③ l P D '-'= mm D P l 20025050-=-=-'='

光学系统像质评价

消色差双胶合透镜设计 设计性实验 一、实验目的 掌握zemax光学设计软件的使用,能进行光学器件的设计和仿真,理解各种光学设计的基本分析原理,了解像差的基本概念、意义。 二、实验内容 设计一个校正球差的消色差双胶合镜,作为望远镜物镜。孔径D=10 cm,c1=0.002957 cm-1,c2=-0.020184 cm-1,c3=-0.00771 cm-1。厚度t1=1.9 cm,t2=1.3 cm。玻璃选择:第一透镜选BaK1 (1.5725、57.55),第一透镜选BaSF2 (1.66446、35.83)。如图所示。 三、实验仪器 计算机、光学系统设计软件Zemax。 四、实验原理 几何光学设计主要采用光线追迹法(Ray tracing)来分析光线在光学系统中的传输路径。通过光线追迹法可以确定系统的一些基本参数,如焦距、光阑,入射光瞳、出射光瞳、入射窗、出射窗等。通过光线追迹法还可以分析系统像差。 五、实验步骤 步骤一:创建设计 建立新文件,并保存。 步骤二:系统参数设置 1 将单位设置为毫米,将入射光瞳直径设置为100毫米。方法:System-General。如下图。

2 对计算视场进行设计,设置了两个视场(0度和3度),本系统中视场的影响不大,因为物处于无穷远。方法:System-Fields。如下图。 步骤三:面输入 输入三个面,如图所示。插入光学面的方法为:Edit-Insert Surface或Edit-Insert After。

编辑好透镜数据之后可以查看透镜的光学结构,方法为:Analysis-Layout-2D Layout。 步骤四:系统参数计算 计算系统数据的方法:Report-System Data。结果一般如下图所示。我们记录几个数据:EFL、BFL、入瞳直径、出瞳位置与直径。 计算光线追迹数据的方法:Analysis-Calculations-Ray trace。我们只查看近轴光线数据,一般如下图所示。

第13章 典型光学系统

1. 一双200度的近视眼,其远点在什么位置?矫正时应佩戴何种眼镜?焦距多大? 若镜片的折射率为1.5,第一面的半径是第二面半径的4倍,求眼镜片二个表面的半径。 解: 2. 一个5倍伽利略望远镜,物镜的焦距为120mm ,当具有 1000 度深度近视眼的人和具有500度远视眼的人观察用它观察时,目镜分别应向何方向移动多少距离? 解:由望远镜放大率公式'2 ' 1f f -=Γ,而物镜的焦距120'1=f mm 可求得目镜焦距 24'2 -=f mm,有公式1000 ' 2Nf l ± =?,式中'2f 为目镜的焦距。 当10-=N 时,可求得76.5-=?l mm; 当5=N 时,可求得88.2=?l mm. 4.有一16D 的放大镜,人眼在其后50mm 处观察,像位于眼前400mm 处,问物面应在什么位置?若放大镜的直径为15mm ,通过它能看到物面上多大的范围? 解:

5.有一显微镜系统,物镜的放大率,目镜的倍率为(设均为薄 透镜) ,物镜的共轭距为195mm,求物镜和目镜的焦距、物体的位置、光学筒长、物镜与目镜的间隔、系统的等效焦距和总倍率。 解: 6.一个显微镜系统,物镜的焦距为15mm,目镜的焦距为25mm,设均为薄透镜,二者相距190mm,求显微镜的放大率、物体的位置以及系统的等效焦距和倍率。如果用来作显微摄影,底片位于离目镜500mm的位置,问整个显微镜系统应向何方向相对于物面移动多少距离?整个系统的横向放大率为多少? 解: 7.一显微镜物镜由相距20mm的二薄透镜组成,物镜的共轭距为195mm,放大率为-10×,且第一透镜承担总偏角的60%,求二透镜的焦距。

工程光学习题解答__第八章_典型光学系统

第八章 典型光学系统 1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离; (3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。 解: ① 21 -== r l R )/1(m ∴ m l r 5.0-= ② P R A -= D A 8= D R 2-= ∴ D A R P 1082-=--=-= m P l p 1.010 1 1-=-== ③f D '= 1 ∴m f 1-=' ④D D R R 1-=-=' m l R 1-=' ⑤P R A '-'= D A 8= D R 1-=' D A R P 9-=-'=' m l P 11.09 1 -=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。 eye

已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-' %50=K 求:① Γ ② 2y ③l 解: ① f D P '-'- =Γ1 25 501252501250-+=''-+'= f P f 92110=-+= ②由%50=K 可得: 18.050 *218 2=='= 'P D tg 放ω ωωtg tg '= Γ ∴02.09 18 .0==ωtg D y tg = ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二: 18.0='ωtg mm tg y 45*250='='ω mm l 200-=' mm f e 250=' mm l 2.22-= y y l l X '==='= 92.22200β mm y 102= ③ l P D '-'= mm D P l 20025050-=-=-'=' f l l '=-'11125 112001=--l mm l 22.22-= 3.一显微镜物镜的垂轴放大率为x 3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。

工程光学-郁道银-第七章典型光学系统课后习题答案

第七章习题 1.一个人近视程度是(屈光度),调节范围是8D,求: (1)其远点距离; (2)其近点距离; (3)配带100度的近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。 解:远点距离的倒数表示近视程度 2.一放大镜焦距,通光孔径,眼睛距放大镜为50mm, 像距离眼睛在明视距离250mm,渐晕系数K=50%,试求:(1)视觉放大率;(2)线视场;(3)物体的位置。 解:

3.一显微物镜的垂轴放大倍率,数值孔径NA=0.1,共轭距L=180mm, 物镜框是孔径光阑,目镜焦距。 (1)求显微镜的视觉放大率; (2)求出射光瞳直径; (3)求出射光瞳距离(镜目距); (4)斜入射照明时,,求显微镜分辨率; (5)求物镜通光孔径; 设物高2y=6mm,渐晕系数K=50%,求目镜的通光孔径。 解:

4.欲分辨0.000725mm的微小物体,使用波长,斜入射照明, 问: (1)显微镜的视觉放大率最小应多大? (2)数值孔径应取多少适合? 解:此题需与人眼配合考虑 5.有一生物显微镜,物镜数值孔径NA=0.5,物体大小2y=0.4mm,照明灯丝 面积,灯丝到物面的距离100mm,采用临界照明,求聚光镜焦距和 通光孔径。 解: 视场光阑决定了物面大小,而物面又决定了照明的大小

6.为看清4km处相隔150mm的两个点(设),若用开普勒望远 镜观察,则: (1)求开普勒望远镜的工作放大倍率; (2)若筒长L=100mm,求物镜和目镜的焦距; (3)物镜框是孔径光阑,求出设光瞳距离; (4)为满足工作放大率要求,求物镜的通光孔径; (5)视度调节在(屈光度),求目镜的移动量; (6)若物方视场角,求像方视场角; (7)渐晕系数K=50%,求目镜的通光孔径; 解: 因为:应与人眼匹配

工程光学习题解答--第七章-典型光学系统

工程光学习题解答--第七章-典型光学系统

————————————————————————————————作者:————————————————————————————————日期:

第七章 典型光学系统 1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离; (3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。 解: ① 21 -== r l R )/1(m ∴ m l r 5.0-= ② P R A -= D A 8= D R 2-= ∴ D A R P 1082-=--=-= m P l p 1.010 1 1-=-== ③f D '= 1 ∴m f 1-=' ④D D R R 1-=-=' m l R 1-=' ⑤P R A '-'= D A 8= D R 1-=' D A R P 9-=-'=' m l P 11.09 1 -=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。 eye ● l '- P ' D

已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-' %50=K 求:① Γ ② 2y ③l 解: ① f D P '-'- =Γ1 25 501252501250-+=''-+'= f P f 92110=-+= ②由%50=K 可得: 18.050 *218 2=='= 'P D tg 放ω ωωtg tg '= Γ ∴02.09 18 .0==ωtg D y tg = ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二: 18.0='ωtg mm tg y 45*250='='ω mm l 200-=' mm f e 250=' mm l 2.22-= y y l l X '==='= 92.22200β mm y 102= ③ l P D '-'= mm D P l 20025050-=-=-'=' f l l '=-'111 25 112001=--l mm l 22.22-= 3.一显微镜物镜的垂轴放大率为x 3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。

工程光学习题参考答案第七章 典型光学系统教学资料

工程光学习题参考答案第七章典型光学系 统

第七章 典型光学系统 1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离; (3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。 解: ① 21 -== r l R )/1(m ∴ m l r 5.0-= ②P R A -= D A 8= D R 2-= ∴D A R P 1082-=--=-= m P l p 1.010 1 1-=-== ③f D '= 1 ∴m f 1-=' ④D D R R 1-=-=' m l R 1-=' ⑤P R A '-'= D A 8= D R 1-=' D A R P 9-=-'=' m l P 11.09 1 -=-='

2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大 率;(2)线视场;(3)物体的位置。 已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-' %50=K 求:① Γ ② 2y ③l 解: ①f D P ' -'- =Γ1 25 50 1252501250-+=''-+'= f P f 92110=-+= ②由%50=K 可得: 18.050 *218 2=='= 'P D tg 放ω ωωtg tg '= Γ ∴02.09 18 .0==ωtg D y tg = ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二: 18.0='ωtg mm tg y 45*250='='ω eye

光学传递函数及像质评价实验

实验十一 光学传递函数测量及像质评价实验 光学成像系统是信息(结构、灰度、色彩)传递系统,从物面到像面,输出图像的质量取决于光学系统的传递特性。在频域中分析光学系统的成像质量时,可以把光学成像系统看成是一个低通空间滤波器,将输入信息分解成各种空间频率分量。通过考察这些空间频率分量在通过系统的传递过程中丢失、衰减、相位移动等变化,也就是研究系统的空间频率传递特性即光学传递函数(OTF ,Optical Transfer Function ),来获取成像的空间频谱特性。光学传递函数的性质主要体现在:它定量反映了光学系统的孔径、光谱成分以及像差大小所引起的综合效果;用它来讨论光学系统时,其可靠性依赖于光学系统对线性和空间不变性的满足程度;用它来分析讨论物像之间的关系时,不受试验物形式的限制;可以用各个不同方位的一维光学传递函数来分析处理光学系统,简化了二维处理;它可以根据设计结果进行计算,也能对已制成的光学系统进行测量。可见,光学传递函数表征光学系统对物体或图像中不同频率的信息成分的传递特征,可用于光学系统成像质量的评价。本实验利用非相干面光源、光栅、透镜、CCD (Charge-coupled Device ,电荷耦合元件)图像传感器、数据采集和处理系统,测出光学成像系统的光学传递函数曲线图,并对成像质量作出评价。 一、实验目的 1.了解光学传递函数及其测量方法。 2.掌握传递函数测量和像质评价的近似方法。 3.熟悉抽样、平均和统计算法。 二、实验仪器 面光源、凸透镜、CCD 图像传感器、数据采集及处理系统、计算机、导轨(滑块)、调节支座(支架)、干版架、可调节光阑。 三、实验原理 1. 光学传递函数 一个确定的物分布可看成许多个δ函数的线性组合,每个δ函数在像面上均有对应的脉冲响应。如果是非相干照明,则物面上任意两个脉冲都是非相干的,它们的脉冲响应在像面上也是非相干叠加,也就是强度叠加。假设非相干成像系统是强度的线性系统,成像空域不变,则该系统物像关系满足以下卷积积分: 0000000??????(,)(,)(,)(,)(,) i i i I i i g i i I i i I x y K I x y h x x y y dx dy K I x y h x y ∞ ∞-∞-∞=--=??? (1)

相关文档
相关文档 最新文档