文档库 最新最全的文档下载
当前位置:文档库 › 电池性能及测试培训资料

电池性能及测试培训资料

电池性能及测试培训资料
电池性能及测试培训资料

电池性能及测试

l电池:指通过正负极之间的反应将化学能转化为电能的装置.

l电池如何分类

★干电池carbon-zinc drybatteries

★碱锰电池alkaline-

★一次性电池manganesebatteries primarybatteries

★锂电池lithiumbatteries

★铅酸电池

★leadbatteries化学电池

★二次电池镍镉电池(NI-CD)chemicalbatteries(secondarybatteries)

★镍氢电池NI-MH

★锂离子电池Li-ion

★其它other

★燃料电池fuelcell

★物理电池physicalenergy

★太阳电池solarcell

l●一次电池:指无法进行充电,仅能放电的电池,但一次电池容量一般大于同等规格充电电池,如锌锰、碱性干电池,锂扣电池,锂亚电池等。

●二次电池:指可反复充电再循环的电池,如铅酸、镍镉、镍氢、锂离子、锂聚合物、

燃料、锌、铝、镁空气电池等。

●其它:燃料电池,物理电池,太阳电池。

l纽扣电池都有哪些类型,分别适用于哪些设备?

1.氧化银电池:高且稳定的电压自放电每年5%,用于手表、照相机、便携式计算器等.

2.碱-锰电池:电池电压随放电时间会下降,自放电每年3%,用于电子设备、便携计算器、低价

手表等.

3.锂-锰电池:低自放电,每年1%,只适用于低载设备便携计算器、手表、远程控制等.

4.锌-空气电池:高容量,在不被活化的情况下自放电每年3%,用于助听设备、照相机、呼叫等

装置.

5.锌汞电池:具有发展前途的产品,自放电每年2%,如果不正确使用,大量露置会污染环境.用

于助听装置、照相机、手表等.

l电池测试名称

●额定容量:指电池在充满电后,空载状态下放电至截止电压时,所能释放出的电能量,一

般以mAh或Ah(1Ah = 1000mAh)符号来表示。电池长期使用后,释放的电量会下降。

容量由于充放电是在一定的C-倍率条件下进行的,因此电池的容量与C-倍率直接相关。电

池的额定容量是指0.2C条件下测试得到的电容量。C-倍率越大,电池的放电率越小。充电容量(Ah或者mAh)=充电电流×充电时间,放电容量(Ah或者mAh)=放电电流×放电时间。一般而言,0.2C电流放电基本能够达到95%~100%放电率,而1C电流放电只能能够达到90%放电率左右,由于充电受电池原材料本身特性影响,相应需要多充一部分时间,大致是同等电流放电时间的120~160%,例如,NI-MH AA1800mAh,以0.2C(360mA)充电约需6~8小时,而以0.2C(360mA)放电约可以达到5小时。

●额定电压:指电池正负极材料因化学反应而造成的电位差, 由此产生的电压值。不同电池由于正负极材料不同,产生的电压是不一样的,电池电压会随着充电的过程而不断上升至某一值,会随着放电的过程而不断下降至某一值。

●开路电压:指电池在无负载的情况下,电池正负极之间的电压。开路电压与电池的剩余能量有一定的联系,因此,电池显示器是利用这种关系而制造。

●内阻:指电池内部由化学材料自动生成的阻抗,内阻越小,电池的充放电性能越好。电池内阻包含直流电阻和交流电阻。影响电池内阻的因素有:①电解质的成份;②正负电极片中的成份配方;③正负电极片的几何面积以及比表面积;④金属基片(铜箔和铝箔);⑤电解液与正负电极片接口状态;⑥温度;⑦充电状态(电池的开路电压);⑧测量频率高低;⑨电池的内部结构设计。

●C:用来表示电池充放电时电流大小的比率,即倍率。如1200mAh的电池,0.2C表示240mA(1200mAh的0.2倍率),1C表示1200mA(1200mAh的1倍率)。充放电效率充放电效率也与C(倍率)相关,在0.2C条件下,聚合物锂电池的充放电效率应该在

99.8%。充放电效率=放电容量/充电容量× 100%

●放电截止电压:指电池充满电后进行放电,放完电时达到的电压(若继续放电则为过度放电,对电池的寿命和性能有极大的损伤)。

●放电深度:与电池额定容量比较,放电量的比率。

●过充(放)电:指超过电池规定的充(放)电状态,若继续充(放)电可能造成电池漏液或劣化。

●能量密度:指单位体积或单位质量所释放的能量,一般用体积能量密度(wh/l)和质量能量密度(wh/kg)表示。

●自放电:电池充满电之后,在与外电路没有接触和常温放置的条件下,其电容量会自然衰减。在储存过程中,电池蓄电容量会逐渐下降,其减少的容量与额定容量的比例,称为自放电率。通常,环境温度对其影响较大,过高温度会加速电池的自放电。电池容量衰减(自放电率)的表达方法为:%/月。镍镉、镍氢电池的自放电率为20-25%/月,锂电池的自放电率为2-5%/月。

●循环寿命:二次电池经历一次充放电称为一个周期或一次循环。在一定的放电制度下,电池容量降至规定值之前,电池所经受的循环次数称为循环寿命。二次电池在反复充放电的使用下,电池容量会逐渐下降,一般以电池的额定容量为标准,当电池容量降至其60%或80%时的充放电次数称为循环寿命。

●记忆效应:电池的记忆效应是指在下一次充电时所能充电的百分比。为了消除电池的记忆效应,在下一次充电之前,必须先完全放电,然后再充电。只有这样,才能百分之百的充满电池。镍氢、锂电池均无记忆效应。

● CC/CV:CC即恒流,以固定的电流对电池充(放)电;CV即恒压,以固定的电压对电池充电,充电电流会随着电压的上升而下降。对铅酸电池一般采用恒压方式充电,对镍镉、镍氢电池一般采用恒流方式充电,对锂离子电池一般采用先恒压(4.2V/节)后恒流方式充电。

●涓流充电:指以小于0.1C电流对电池充电,一般在电池接近充满电时,进行补充充电时采用涓流充电方式充电,在此情况下,电池使用寿命较长。

●-△V:这是在电池接近充满电时,电压达到一个峰值后,对其继续充电,电压会有瞬间的微量下降,一般在3~5mV之间,充电芯片多根据-△V值对电池进行控制。

●△V/△t:这是在电池接近充满电时,电池表面温度会随着时间而快速上升,,以每分钟上升的温度作为充电截止条件,一般设定在每分钟上升1度作为截止点。

●充放电率: 充电状态和放电深度都是电池保有值。充放电状态以百分比率来表示,以满充电和满放电为100%。充电状态称为SOC;放电深度称为DOD。如:DOD=250mAh/800mAh × 100%=31.25%。

?二次电池性能主要包括哪些方面?

主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等。

?电池的可靠性测试项目有哪些?

1.循环寿命

2.不同倍率放电特性

3.不同温度放电特性

4.充电特性

5.自放电特性

6.不同温度自放电特性

7.存贮特性

8.过放电特性

9.不同温度内阻特性

10.高温测试

11.温度循环测试

12.跌落测试

13.振动测试

14.容量分布测试

15.内阻分布测试

16.静态放电测试

?电池的安全性测试项目有哪些?

1.内部短路测试

2.持续充电测试

3.过充电

4.大电流充电

5.强迫放电

6.跌落测试

7.从高处跌落测试

8.穿刺实验

9.平面压碎实验

10.切割实验

11.低气压内搁置测试

12.热虐实验

13.浸水实验

14.灼烧实验

15.高压实验

16.烘烤实验

17.电子炉实验

?什么是电池的额定容量?

指在一定放电条件下,电池放电至截止电压时放出的电量.IEC标准规定镍镉和镍氢电池在20±5℃环境下,以0.1C充电16小时后以0.2C放电至1.0V时所放出的电量为电池的额定容量,以C5表示.而对于锂离子电池,则规定在常温、恒流(1C)、恒压(4.2V)控制的充电条件下,充电3h,再以0.2C放电至2.75V时,所放出的电量为其额定容量,电池容量的单位有Ah,mAh(1Ah=1000mAh).

?什么是电池的放电残余容量?

当对可充电电池用大电流(如1C或以上)放电时,由于电流过大使内部扩散速率存在的“瓶颈效应”,致使电池在容量未能完全放出时已到达终点电压,再用小电流如0.2C还能继续放电,直至1.0V/支时所放出的容量称为残余容量.

?什么是电池的标称电压、开路电压、中点电压、终止电压?

电池的标称电压指的是在正常工作过程中表现出来的电压,二次镍镉镍氢电池标称电压为

1.2V;二次锂电池标称电压为3.6V;

开路电压指在外电路断开时,电池两个极端间的电位差;

终点电压指电池放电实验中,规定的结束放电的截止电压;

中点电压指放电到50%容量时电池的电压,主要用来衡量大电流放电系列电池高倍率放电能力,是电池的一个重要指标.

?电池常见的充电方式有哪几种?

镍镉和镍氢电池的充电方式:

1.恒流充电:整个充电过程中充电电流为一定值,这种方法最常见;

2.恒压充电:充电过程中充电电源两端电压保持一恒定值,电路中的电流随电池电压升高而

逐渐减小.

3.恒流恒压充电:电池首先以恒流充电,当电池电压升高至一定值时,电压保持不变,电路中

电流降至很小,最终趋于0.

锂电池的充电方式:

恒流恒压充电:电池首先以恒流充电,当电池电压升高至一定值时,电压保持不变,电路中电流降至很小,最终趋于0.

?什么是电池的标准充放电?

IEC国际标准规定的镍镉和镍氢电池的标准充放电方法为:

首先将电池以0.2C放电至1.0V/支,然后以0.1C充电16小时,搁置1小时后,以0.2C 放至1.0V/支,即为对电池标准充放电.

?脉冲充电对电池性能有什么影响?

由于镍镉电池在常规充电时容易极化,常规恒压或恒流充电均会使电解液持续产生氢气体,其氧气在内部高压作用下,渗透至负极与镉板作用生成CdO,造成极板有效容量下降.脉冲

充电一般采用充与放的方法.即充5秒钟,就放1钞钟.这样充电过程产生的氧气在放电脉冲下将大部分被还原成电解液.不仅限制了内部电解液的气化量,而且对那些已经严重极化的旧电池,在使用本充电方法充放电5-10次后,会逐渐恢复或接近原有容量.

?什么是涓流充电?

涓流充电是用来弥补电池在充满电后由于自放电而造成的容量损失.一般采用脉冲电流充电来实现上述目的.根据以往测试的经验,电池在充满电后,在40℃环境下由于自放电损失的容量大约是标称容量的5%.从理论上讲,以C/500的电流持续充电即可弥补自放电造成的容量损失C*5/100*24h*C/500,但是,由于电流太小,实际上充电效率非常低,使得基本无法充进电.我们采用脉冲充电方法可以解决这个问题.用C/10充电1.2秒,搁置58.8秒.按照上述条件每天充电的容量约为标称容量的5%.一般而言,脉冲充电的方式在以下范围内较为适合,可根据实际情况选用.充电电流:C/20,充电时间:0.1秒到60秒.

涓流充电的例子:

充电高充电低脉冲周期S每天充电容量电流时间电流时间C/10 1.2s 0C 58.8s 60s标准容量的5% C/20 2.4s 0C57.6s 60sC/100.6s0C 29.4s30s

?什么是充电效率?

指电池在一定放电条件下放至某一截止电压时放出的容量与输入的电池容量的比值,它可按照以下公式计算:

充电效率=(放电电流×放电至截止电压的时间/充电电流×充电时间)×100%

输入的能量部分用来将活性物质转换为充电态,部分消耗在副反应上来产生氧气,充电效率受到充电速率和环境温度的影响,充电时充电电流必须在一定范围内,电流太小或太大充电效率都很低,由于电池还存在自放电,致使电池无法充满电.

?什么是电池的功率输出?

电池的功率输出指在单位时间里输出能量数的能力,它是根据放电电流I和放电电压V来计算的:

P=U×I单位:瓦特

电池的内阻越小,输出功率越高;电池的内阻应小于用电器的内阻,否则电池本身消耗的功率还要大于用电器消耗的功率,这是不经济的,而且可能损坏电池,在额定电压条件下电池的输出功率随电极表面积的增大工作温度的上升而上升,反之亦然.

?什么是二次电池的自放电,不同类型电池的自放电率是多少?

自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力.一般而言,自放电主要受制造工艺、材料、储存条件的影响.自放电是衡量电池性能的主要参数之一.一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象.IEC标准规定镍镉及镍氢电池充满电后,在温度为20±5℃,湿度为65±20%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标.

与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月

?什么是24小时自放电测试?

★镍镉和镍氢电池的自放电测试为:

由于标准荷电保持测试时间太长,一般采用24小时自放电来快速测试其荷电保持能力,将

电池以0.2C放电至1.0V.1C充电80分钟,搁置15分钟,以1C放电至10V,测其放电容量C1,再将电池以1C充电80分钟,搁置24小时后测1C容量C2,C2/C1×100%应小于15%

★锂电池的自放电测试为:

一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至3.0V,恒流恒压1C充电至4.2V,截止电流:10mA,搁置15分钟后,以1C放电至3.0V测其放电容量C1,再将电池恒流恒压1C充电至4.2V,截止电流100mA,搁置24小时后测1C容量C2,C2/C1×100%应大于99%.

?什么是电池的内阻,怎样测量?

电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极容易极化,产生极化内阻,故无法测出其真实值;而测其交流内阻可免除极化内阻的影响,得出真实的内值.

交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA 的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值.

?充电态内阻与放电态内阻有何不同?

充电态内阻指电池100%充满电时的内阻,放电态内阻指电池充分放电后的内阻.

一般来说,放电态内阻不太稳定,且偏大;充电态内阻较小,阻值也较为稳定.在电池的使用过程中,只有充电态内阻具有实际意义,在电池使用的后期,由于电解液的枯竭以及内部化学物质活性的降低,电池内阻会有不同程度的升高.

?什么是IEC标准循环寿命测试?

★IEC规定镍镉和镍氢电池标准循环寿命测试为:

电池以0.2C放至1.0V/支后

1.以0.1C充电16小时,再以0.2C放电2小时30分(一个循环).

2.0.25C充电3小时10分,以0.25C放电2小时20分(2-48个循环).

3.0.25C充电3小时10分,以0.25C放至1.0V(第49循环)

4.0.1C充电16小时,搁置1小时,0.2C放电至1.0V(第50个循环),对镍氢电池重复1-4

共400个循环后,其0.2C放电时间应大于3小时;对镍隔电池重复1-4共500个循环,其0.2C放电时间应大于3小时.

★IEC规定锂电池标准循环寿命测试为:

电池以0.2C放至3.0V/支后,1C恒流恒压充电到4.2V,截止电流20MA,搁置1小时后,再以0.2C放电至3.0V(一个循环)反复循环500次后容量应在初容量的60%以上.

?什么是标准耐过充测试?

★IEC规定镍镉和镍氢电池的标准耐过充测试为:

将电池以0.2C放电至1.0V/支,以0.1C连续充电28天,电池应无变形,漏液现象,且过充电后其0.2C放电至1.0V的时间应大于5小时.

★IEC规定锂电池的标准耐过充测试为:

⑴将电池0.2C放电至3.0V

⑵用电流I任意设置10V电压对电池充电充电时间为T=2.5×C5/I

⑶电池最终不爆炸和起火

?什么是标准荷电保持测试?

★IEC规定镍镉和镍氢电池的标准荷电保持测试为:

电池以0.2C放至1.0/支,后以0.1C充电16小时,在温度为20±5℃,湿度为65±20%条件下储存28天后,再以0.2C放电至1.0V,镍镉电池放电时间应不小于195min,而镍氢电池应大于180min.

★国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准).

电池以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20±5℃下储存28天后,再以0.2C放电至2.75V计算放电容量,再与电池标称容量相比,应不小于初始容量的85%.

?什么是电池的内压,电池正常内压一般为多少?

电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料、制造工艺、结构、使用方法等因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高:

例如过充电正极:4OH--4e2H2O+O2

产生的氧气透过隔膜纸与负极复合:

2Cd+O22CdO

如果负极反应的速度低于正极反应的速度,产生的氧气来不及被消耗掉,就会造成电池内压升高.

?什么是内压测试?

★镍镉和镍氢电池内压测试为:

将电池以0.2C放至1.0V后,以1C充电3小时,根据电池钢壳的轻微形变通过转换得到电池的内压情况,测试中电池不应彭底,漏液或爆炸.

★锂电池内压测试为:(UL标准)

模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓.

具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA,然后将其放在气压为

11.6Kpa,温度为(20±3℃)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液.

?什么是短路实验?

将充满电的电池在防爆箱内用一根导线连接正负极短路,电池不应爆炸或起火.

?什么是跌落测试?

将电池组充满电后从三个不同方向于1m高处跌落于硬质橡胶板上,每个方向做2次,电池组电性能应正常,外包装无破损.

?什么是振动实验?

★镍镉和镍氢电池振动实验方法为:

电池以0.2C放电至1.0V后,0.1C充电16小时,搁置24小时后按下述条件振动:

振幅:4mm

频率:1000次,分XYZ三个方向各振动30分钟.

振动后电池电压变化应在±0.02V之间,内阻变化在±5m以内

★锂电池振动实验方法为:

电池以0.2C放电至3.0V后1C充电恒流恒压充电到4.2V,截止电流10mA,搁置24小

时后按下述条件振动:

振幅0.8mm

使电池在10HZ-55HZ之间振动,每分钟以1HZ的震动速率递增或递减.

振动后电池电压变化应在±0.02V之间,内阻变化在5m以内.

?什么是碰撞实验?

★镍镉和镍氢电池碰撞实验方法为:

电池以0.2C放电至1.0V后,在20±5℃下,以0.1C充电16小时,安装到碰撞测试台上按如下条件测试:

峰值加速度为98m/S2(10g),相应脉冲时间D为16m/s,相应速度变化为1.00m/s,碰撞1000次结束后,电池应在20±5℃下搁置1-4小时以0.2C放电至1.0V的放电时间应不小于5小时

★锂电池碰撞实验方法为国家标准

电池以0.2C放电至3.0V后在20±5℃下以1C恒流恒压充电到4.2V,截止电流10mA,安装到碰撞测试台上按如下条件测试:

峰值加速度在100m/S2,脉冲持续时间为16ms,碰撞次数为1000±10,碰撞结束后目测电池外观应无异常现象,然后以1C恒流放电至2.75V,然后在(20±5℃)的条件下,进行1C 充放电循环直至放电容量不少于初始容量的85%,但循环次数不多于3次.

?什么是撞击实验?

电池充满电后,将一个15.8mm直径的硬质棒横放于电池上,用一个20磅的重物从

610mm的高度掉下来砸在硬质棒上,电池不应爆炸起火或漏液.

?什么是穿刺实验?

电池充满电后,用一个直径为2.0mm~25mm的钉子穿过电池的中心,并把钉子留在电池内,电池不应该爆炸起火.

?什么是高温加速实验?

由于标准荷电保持测试时间较长,对镍氢电池一般采用高温加速实验.将充满电后的电池储存在45℃环境中3天(等效于电池在常温下搁置28天),在常温下搁置1小时后,以0.2C 放电至1.0V,要求放电时间不大于3小时.

?什么是高温高湿测试?

★镍镉和镍氢电池高温高湿测试为:

电池以0.2C放电至1.0V后,1C充电75分钟后将其置与温度66℃,85%湿度条件下储存192小时(8天),于常温常湿下搁置2小时,电池不应变形或漏液,容量恢复应在标称容量的80%以上.

★锂电池高温高湿测试为:(国家标准)

将电池1C恒流恒压充电到4.2V,截止电流10mA,然后放入(40±2℃),相对湿度为

90%-95%的恒温恒湿箱中搁置48h后,将电池取出在(20±5℃)的条件下搁置2h,观测电池外观应该无异常现象,再以1C恒流放电到2.75V,然后在(20±5℃)的条件下,进行1C 充电,1C放电循环直至放电容量不少于初始容量的85%,但循环次数不多于3次.

?什么是温升实验?

将电池充满电后放进烘箱,以每分钟5℃的速度升高烘箱温度,一直到烘箱温度达150℃,并将150℃保持10分钟,电池不应爆炸或起火.

?什么是温度循环实验?

温度循环实验包含27个循环,每个循环由以下步骤组成:

1.电池从常温转为温度66±3℃,湿度15±5%条件下放置1小时;

2.然后转为在温度为33±3℃,湿度90±5%的条件下放置1小时;

3.然后条件转为温度为-40±3℃放置1小时;

4.电池在温度为25℃下搁置0.5小时.

此4步即完成一个循环,经过此27个循环实验后,电池应该无漏液,爬碱,生锈,或其它异常情况出现.

?什么是温度震荡实验?

该实验需要两个恒温箱,其中一个为66℃,一个为-40℃,每一个循环由下面步骤组成:电池在-40℃放置1小时后,在5秒内转移到66℃烘箱内烘烤1小时,这个循环实验应该从低温开始,然后在高温结束,整个过程应为24个循环,电池经过循环实验,应该不会出现任何电性能问题.

?什么是灼烧实验?

在防爆箱内,将充满电的电池在蓝色火焰上烘烤,电池安全阀应在一段时间后开启.

?什么是IEC标准?电池常用标准有哪些?

IEC即国际电工委员会(InternationalElectricalCommission),是由各国电工委员会组成的世界性标准化组织,其目的是为了促进世界电工电子领域的标准化.其中关于镍镉电池的标准为IEC285,关于镍氢电池的标准是IEC61436,锂离子电池目前IEC无标准,一般电池行业依据的是SANYO或Panasonic的标准。

电池常用IEC标准有:镍镉电池的标准为IEC602851999;镍氢电池的标准为

IEC614361998.1;锂电池的标准为IEC619602000.11.

电池常用国家标准有:镍镉电池的标准为GB/T11013-1996GB/T18289-2000;

镍氢电池的标准为GB/T15100-1994GB/T18288-2000;

锂电池的标准为GB/T10077-1998YD/T998-1999,GB/T18287-2000.

另外电池常用标准也有日本工业标准JISC 关于电池的标准及SANYOPANASONIC公司制定的关于电池企业标准.

电动汽车用锂离子动力蓄电池包和系统测试规程

电动汽车用锂离子动力电池包和系统测试规程 范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008 电工电子产品环境试验第2部分:试验方法试验Db 交变湿热(12h+12h循环)(IEC 60068-2-30:2005,IDT) GB/T 2423.43-2008 电工电子产品环境试验第2部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006 电工电子产品环境试验第2部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001 电动汽车安全要求第1部分:车载储能装置(ISO/DIS 6469-1:2000,EQV)GB/T 18384.3-2001 电动汽车安全要求第3部分:人员触电防护(ISO/DIS 6469-3:2000,EQV)GB/T 19596-2004 电动汽车术语(ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 1: General,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 3: Mechanical loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条件和试验第4部分:气候负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 4: Climatic loads,MOD) 术语和定义 1.1 蓄电池电子部件 采集或者同时监测蓄电池单体或模块的电和热数据的电子装置,必要时可以包括用于蓄电池单体均衡的电子部件。 注:蓄电池电子部件可以包括单体控制器。单体电池间的均衡可以由蓄电池电子部件控制,或者通过蓄电池控制单元控制。 1.2 蓄电池控制单元 battery control unit (BCU) 控制、管理、检测或计算电池系统的电和热相关的参数,并提供电池系统和其他车辆控制器通讯的电子装置。 1.3 1 / 20

锂电池测试方法

锂电池性能测试方法 锂电池是一个要求高品质、高安全的产品、消费者在使用时往往不清楚电池的性能,导致在使用时电池的工作效率往往达不到理想目标,有时甚至盲目使用还会引起电池爆炸事件的发生,人生安全也会受到损伤,因此了解电池的性能也是至关重要的。 锂电池性能测试主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等 工具/原料 测试仪 硬质棒 钉子 方法/步骤 方法一、自放电测试 镍镉和镍氢电池的自放电测试为: 由于标准荷电保持测试时间太长,一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至 1.0V.1C充电80分钟,搁臵15分钟,以1C放电至10V,测其放电容量C1, 再将电池以1C充电80分钟,搁臵24小时后测1C容量C2,C2/C1×100%应小于15% 锂电池的自放电测试为:一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至 3.0V,恒流恒压1C充电至 4.2V,截止电流:10mA,搁臵15分钟后,以1C放电至3.0V测其放电容量C1,再将电池恒流恒压1C充电至 4.2V,截止电流100mA,搁臵24小时后测1C容量C2,C2/C1×100%应大于99%. 方法二、内阻测量 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极

容易极化,产生极化内阻,故无法测出其真实值;而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值. 方法三、IEC标准循环寿命测试 IEC规定镍镉和镍氢电池标准循环寿命测试为: 电池以0.2C放至1.0V/支后 1.以0.1C充电16小时,再以0.2C放电2小时30分(一个循环). 2.0.25C充电3小时10分,以0.25C放电2小时20分(2-48个循环). 3.0.25C充电3小时10分,以0.25C放至1.0V(第49循环) 4.0.1C充电16小时,搁臵1小时,0.2C放电至1.0V(第50个循环),对镍 氢电池重复1-4共400个循环后,其0.2C放电时间应大于3小时;对镍隔电池重复1-4共500个循环,其0.2C放电时间应大于3小时. EC规定锂电池标准循环寿命测试 电池以0.2C放至3.0V/支后,1C恒流恒压充电到4.2V,截止电流20MA,搁臵1小时后,再以0.2C放电至3.0V(一个循环)反复循环500次后容量应在初容量的60%以上. 方法四、内压测试 镍镉和镍氢电池内压测试为: 将电池以0.2C放至1.0V后,以1C充电3小时,根据电池钢壳的轻微形变通过转换得到电池的内压情况,测试中电池不应彭底,漏液或爆炸. 锂电池内压测试为:(UL标准)

《锂电池品质知识培训》

《品质知识培训》 一、产品品质检验目的: 产品品质标准的建立,为企业提供了几种: 1.减少了品质纠纷 2.为对外品质保证提供了依据 3.使品检工作有据可依 4.使制造者明确品质要求 二、产品品质标准之适度性 产品品质标准要建立在认同的基础上,根据公司实际生产条件而定,一 个适度的品质标准。有利于提高公司的生产技术水平面和管理水平,即稍高于公司现行可达到的水平。 三、产品品质标准基本内容 产品名称、规格及图示 1. 检测方法、条件 2. 检测设备及工具 3. 品质合格判定标准 4. 产品实物样品 5. 6.产品质量符合性、化学性、物理性、技术指标和参数 四、生产线各工序品质检验标准 1.来料检验 品质部对大部份来料实行抽检,只对电芯和保护板实行全检。品 质部对抽检的来料判定可分为合格、不合格、分选、返加工、特采判 定合格的产品也只是实施抽检而非全检、现客户对产品的要求很高,

且抽样检后判定合格的产品仍有不良品,所以生产线有义务对所有上 线物料进行全检。 在上线全检过程中,检出的不良品可由品质部签样板,生产执行。2.辅料加工 ①. 镍片上锡:确认需要上锡的镍片尺寸符合和业指导书,浸锡尺寸也要符 合作业指导书。如浸锡尺寸太少在生产中容易造成虚焊或焊接不牢,如浸锡尺寸太多,遇易造成镍片弯折不动影响组装。 ②.粘贴胶纸确认需要贴的胶纸及尺寸符合作业指导书要求,确认需要贴 的电芯型号及供应商符合作业的指导书。要求避免贴错。 ③.装五金保护板确认五金无变形、无生锈。五金可完全装配在胶壳上, 无装配等或装配太松现象,保护板可与五金胶壳完全装配,组装到位。3.生产工序 ①. 点焊: 点焊应无烧焦发黑现象,点焊拔脱力单点应> 1.8Kg用夹具紧镍片, 垂 直于点焊面固定在拉力计上进行拉拔,当镍片及电芯有变化时,应重新 再确认。 ②.粘贴胶纸所贴胶纸符合产品要求,所贴胶纸粘贴牢固,无破损起折, 粘贴位置 与工艺只要求一致 ③.锡焊 要求按时间不可超过 3 秒,焊点位置正确,焊点应光滑,大小适当, 虚焊、偏斜。锡点应完全仓住镍片,防止虚假焊。 ④.电芯组装电芯应顺畅装入胶壳,无变形及强行装入现象,电芯装入胶壳后 应确认导线,镍片。电芯间无短路隐患。

电池性能及测试

锂电池性能与测试 1. 二次电池性能主要包括哪些方面? 主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等。 2. 手机电池块有哪些电性能指标怎么测量? 电池块的电性能指标很多这里只介绍最主要的几项电特性: A.电池块容量 该指标反映电池块所能储存的电能的多少是以毫安小时计,例如:1600mAH是意昧着电池以1600mA放电可以持续放电一小时. B.电池块寿命 该指标反映电池块反复充放电循环次数 C.电池块内阻 上面已提到电池块的内阻越小越好但不能是零 D.电池块充电上限保护性能 锂电池充电时,其电压上限有一额定值,在任何情况下,锂电池的电压不允许超过此额定值该额定值。由PCB板上所选用的IC来决定和保证。 E.电池块放电下限保护性能 锂电池块放电时,在任何情况下锂电池的电压不允许低于某一额定值该额定值,由PCB板上所选用的IC来决定和保证。 需要说明的是,在手机中一般锂电池块放电时,尚未到达下限保护值,手机就因电池电量不足而关机。 F.电池块短路保护特性 锂电池块外露的正负极片在被短路时,PCB板上的IC应立即加以判断,并作出反应关断MOSFET。当短路故障排除后,电池块又能立即输出电能,这些均有PCB上的IC来识别判断和执行。 3. 电池的可靠性项目有哪些? 1. 循环寿命 2. 不同倍率放电特性 3. 不同温度放电特性 4. 充电特性 5. 自放电特性 6. 不同温度自放电特性 7. 存贮特性 8. 过放电特性 9. 不同温度内阻特性 10. 高温测试 11. 温度循环测试 12. 跌落测试 13. 振动测试 14. 容量分布测试 15. 内阻分布测试 16. 静态放电测试ESD 4. 电池的安全性测试项目有哪些? 1. 内部短路测试 2. 持续充电测试 3. 过充电 4. 大电流充电 5. 强迫放电 6. 坠落测试 7. 从高处坠落测试 8. 穿透实验 9. 平面压碎实验 10. 切割实验 11. 低气压内搁置测试 12. 热虐实验 13. 浸水实验 14. 灼烧实验 15. 高压实验 16. 烘烤实验 17. 电子炉实验 5. 什么是电池的额定容量? 指在一定放电条件下,电池放电至截止电压时放出的电量。IEC标准规定镍镉和镍氢电池在20+ 5。c环境下,以0.1C充电16小时后以0.2C放电至1.0V时所放出的电量为电池的额定容量,以C5表示而对于锂离子电池,则规定在常温,恒流(1C)恒压(4.2V)控制的充电条件下,充电3 h再以0.2C放电至2.75V时,所放出的电量为其额定容量电池容量,电池容量的单位有Ah,mAh(1Ah=1000mAh). 6. 什么是电池的放电残余容量? 对可充电电池用大电流(如1C或以上)放电时,由于电流过大使内部扩散速率存在的“瓶颈效应”,致使电池在容量未能完全放出时已到达终点电压,再用小电流如0.2C还能继续放电,直至1.0V/支时所放出的容量称为残余容量 7. 什么是电池的标称电压;开路电压;中点电压;终止电压? 电池的标称电压指的是在正常工作过程中表现出来的电压,二次镍镉镍氢电池标称电压为1.2V;二次锂电池标称电压为3.6V。 开路电压指在外电路断开时,电池两个极端间的电位差; 终点电压指电池放电实验中,规定的结束放电的截止电压; 中点电压指放到50%容量时,电池的电压主要用来衡量大电流放电系列电池高倍率放电能力,是电池的一个重要指标 8. 电池常见的充电方式有哪几种? 镍镉和镍氢电池的充电方式: 1. 恒流充电:整个充电过程个中充电电流为一定值,这种方法最常见。 2. 恒压充电:充电过程中充电电源两端保持一恒定值,电路中的电流随电池电压升高而逐渐减小。

IEC锂电池测试标准梳理

IEC锂电池测试标准梳理 评估测试项目 1(1)电性测试 测试项目充电状态电池条件温度评估测试方法标准 1.外部短路完全充电刚生产完的电池室温60℃通过电阻小于50mΩ的电线在两极短路6小时以上没有爆炸、没有着火的现象 2.强行放电完全充电刚生产完的电池正常室温按厂家推荐的电流强行深度放电计算容量的250%。*如果在测试过程中达到安全或保护功能,可以终止测试没有爆炸、没有着火的现象 3.连续充电完全放电刚生产完的电池正常室温按厂家推荐的方法充电,并在指定的电压持续28天没有爆炸、没有着火、没有裂开的现象的现象 过量充电完全放电刚生产完的电池正常室温按厂家推荐的电流充到计算容量的250%。*如果在测试过程中达到安全或保护功能,可以终止测试没有爆炸、没有着火的现象 5.大电流充电完全放电刚生产完的电池正常室温按厂家推荐的充电电流的3倍电流给电池充电至计算容量100%以上没有爆炸、没有着火的现象 1(2)Ⅰ机械性能测试 测试项目充电状态电池条件温度评估测试方法标准 1.振动完全充电或完全放电刚生产完的电池正常室温将电池在XYZ三个方向振动90至100分钟,振幅为0.8mm,频率为10HZ,频率的变化率为1HZ/min。测试后,完全放电电池将被充电到由厂家推荐的完全容量。没有爆炸、没有着火、没有变形的现象 2.加速度完全充电或完全放电刚生产完的电池正常室温以时间为单位加速在初始3毫秒里,平均加速度为75g(g为重力加速度单位),到达顶峰时为125-175g。在每一个XYZ互相垂直的方向振动。测试后,完全放电电池将被充电到厂家推荐的容量。没有爆炸、没有着火、没有变形的现象 3.掉落完全充电或完全放电刚生产完的电池正常室温从1.9m高的地方自由掉落10次到水泥地面上。测试后,完全放电电池将被充电到厂家推荐的容量。没有爆炸、没有着火的现象 1(2)Ⅱ 测试项目充电状态电池条件温度评估测试方法标准 钉子穿过电池完全充电刚生产完的电池正常室温用直径2.5至5mm的钉子穿过电池的纵心轴*将钉子放入电池内6h。没有爆炸、没有着火的现象 5.挤压完全充电刚生产完的电池正常室温将电池放在两块扁铁板间以使电池的纵轴心与扁铁板平行,再给电池施加13kN的压力没有爆炸、没有着火的现象 6.撞击完全充电刚生产完的电池正常室温将一个圆柱形木棒(直径为7.9mm)越过电池顶部,与电池纵心轴垂直。9.1kg相当重量从61cm高度掉落下来。没有爆炸、没有着火的现象 7.10m掉落完全充电刚生产完的电池正常室温从10m高的地方任意将电池掉落到水泥地面上。没有爆炸、没有着火的现象 1(3)Ⅰ环境性能测试 测试项目充电状态电池条件温度评估测试方法标准 1.高温储存完全充电刚生产完的电池(a)在温度100℃的烤箱中储存5小时后将电池放在温度为20℃的地方放置24h(b)在60℃的烤箱中储存30天后将电池放置在温度20℃的地方24小时没有爆炸、没有着火的现象

电动汽车用磷酸铁锂动力电池的制作及性能测试_英文_概要

ISSN 1674-8484CN 11-5904/U 汽车安全与节能学报, 2011年, 第2卷第1期J Automotive Safety and Energy, 2011, Vol. 2 No. 1Manufacture and Performance Tests of Lithium Iron Phosphate Batteries Used as Electric Vehicle Power ZHANG Guoqing, ZHANG Lei, RAO Zhonghao, LI Yong (Faculty of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China Abstract: Owing to the outstanding electrochemical performance, the LiFePO 4 power batteries could be used on electric vehicles and hybrid electric vehicles. A kind of LiFePO 4 power batteries, Cylindrical 26650, was manufactured from commercialized LiFePO 4, graphite and electrolyte. To get batteries with good high-current performance, the optimal content of conductive agent was studied and determined at 8% of mass fraction. The electrochemical properties of the batteries were investigated. The batteries had high discharging voltage platform and capacity even at high discharge current. When discharged at 30 C current, they could give out 91.1% of rated capacity. Moreover, they could be fast charged to 80% of rated capacity in ten minutes. The capacity retention rate after 2 000 cycles at 1 C current was 79.9%. Discharge tests at - 20 ℃ and 45 ℃ also showed impressive performance. The battery voltage, resistance and capaci ty varied little after vibration test. Through the safety tests of nail, no in ? ammation or explosion occurred. Key words: hybrid and electric vehicles; power batteries; lithium iron phosphate; lithium ion batteries; 电动汽车用磷酸铁锂动力电池的制作及性能测试 张国庆、张磊、饶忠浩、李雍

锂离子电池性能测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日 实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1.熟悉、掌握锂离子电池的结构及充放电原理。 2.熟悉、掌握锂离子正极材料的制备过程及工艺。 3.熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO2,Li x NiO2或Li x Mn2O4,负极采用锂-碳层间化合物Li x C6。电解质为溶有锂盐LiPF6,LiAsF6,LiClO4等的有机溶液。溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)和氯碳酸酯(CIMC)等。在充放电过程中,Li+在两极间往返嵌入和脱出,被形象的称之为“摇椅电池”。 锂离子电池充放电原理和结构示意图如下。 锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiM x O y(+ 其电池反应为: LiM x O y+nC Li1-x M x O y+Li x C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn2O4、乙炔黑、PVDF、无水乙醇、电解液(1M LiPF6溶与体积比EC:DEC:EMC=1:1:1

锂电池保护板比较完整的性能测试

锂电池保护板比较完整的性能测试 一、管理IC(如TI、O2,MCU等)数据写入部份的: 1、I2C资料写入及核对,如O 2、DS、TI、及各家MCU方案等 2. 写入生产日期(当天日期)和系列号--- Write Serial Number and Manu date 备注:SMBUS,I2C,HDQ通信口等; A.Current/Voltage Offset 校正 B.Voltage Gain 校正及读值比较Voltage Calibration C.Temperature 校正及读值比较Temperature Calibration D. Current Gain 校正及读值比较--- Current Calibration ※二、基体特性部份: 3.开路电压测试:测量加载电压后,MOS管是否能正常打开; 4. 带载电压测试:测量保护板的带载能力,从而反应保护直流阻抗 5. VCC电压测量(芯片的工作电压是否正常) 6. 芯片的工作频率测量(芯片的工作晶振频率) 7. 导通电阻测量(MOS管及FUSE阻值测量); 8. 识别电阻—IDR测量; 9. 热敏电阻---THR; 10. 正常状态的静态功耗电流&休眠静态功耗(sleep) 11、关断状态的(Shout Down)静态功耗电流; 三:保护特性部分测试: 12. 单节电池过充保护测试(COV), A、保护下限:测试保护板是否提前保护,影响电池容量值; B、保护上限:测试保护板是否有保护,影响电池的安全性; C、保护延时间上、下限:保护延时间是否在设计范围; D、恢复测试:保护后,是否能恢复,关系电池能否再次使用问题。 13. 单节电池过放保护测试(CUV); A、保护值上下限:一个是,电池能否放到最底值,容量能否完全放出来,一个是一定要保护,否则影响电池的寿命; B、保护延时间:保护延时间是否在设计范围, C、恢复值、恢复时间:保护后,是否能恢复,关系电池能否再次使用问题。 14. PACK电池过压保护测试(POV)保护值、保护延时间、恢复值、恢复时间(如果有测COV,POV不用测,一般比较不建议只测POV,因为总组的POV即使有保护,并不代表每一节的都能够保护,万一有某一节不保护了,那就很危险。) 15. PACK电池低压保护测试(PUV);保护值、保护延时间、恢复值、恢复时间;原理同CUV,CUV有测CUV,可不测PUV,理由同POV; 16. 充电过流保护(OCCHG); A、保护值上下限:电流太小,关系充电时间,电流过大,关系电池寿命; B、保护延时间:关系电池发热堪至烧保护板问题; C、恢复值、恢复时间:电池的再次使用; 17. 放电过流保护(OCDSG); A、保护值上下限:显得优为重要,下限,不能提前保护,否则影响功率,车跑不快、电动工具转不动等,上限一定保护,不保护导至烧电机、电池发热等问题; B、保护延时间上下限:这个也比较重要,下限不保护,如果提前保护了,电动工具,会导致旋不紧;上限不保护,可能导致烧电机、电池发热等问题;

锂电池基础知识100问

锂电池基础知识100问

11、什么是电池的容量? 电池的容量有额定容量和实际容量之分。电池的额定量是指设计与制造电池时规定或保证电池在一定的放电条件下,应该放出最低限度的电量。Li-ion规定电池在常温、恒流(1C)恒压(4.2V)控制的充电条件下充电3h,电池的实际容量是指电池在一定的放电条件下所放出的实际电量,主要受放电倍率和温度的影响(故严格来讲,电池容量应指明充放电条件)。容量常见单位有:mAh、Ah=1000mAh)。 12、什么是电池内阻? 是指电池在工作时,电流流过电池内部所受到的阻力。有欧姆内阻与极化内阻两部分组成。电池内阻大,会导致电池放电工作电压降低,放电时间缩短。内阻大小主要受电池的材料、制造工艺、电池结构等因素的影响。是衡量电池性能的一个重要参数。注:一般以充电态内阻为标准。测量电池的内阻需用专用内阻仪测量,而不能用万用表欧姆档测量。 13、什么是开路电压? 是指电池在非工作状态下即电路无电流流过时,电池正负极之间的电势差。一般情况下,Li-ion充满电后开路电压为4.1-4.2V左右,放电后开压为3.0V左右,通过电池的开路电压,可以判断电池的荷电状态。 14、什么是工作电压? 又称端电压,是指电池在工作状态下即电路中有电流过时电池正负极之间电势差。在电池放电工作状态下,当电流流过电池内部时,不需克服电池的内阻所造成阻力,故工作电压总是低于开路电池,充电时则与之相反。Li-ion 的放电工作电压在3.6V左右。 15、什么是放电平台? 放电平台是恒压充到电压为4.2V并且电电流小于0.01C时停充电,然后搁置10分钟,在任何们率的放电电流下下放电至3.6V时的放电时间。是衡量电池好坏的重要标准。 16、什么是(充放电)倍率?时率? 是指电池在规定的时间内放出其额定容量时所需要的电流值,它在数据值上等于电池额定容量的倍数,通常以字母C表示。如电池的标称额定容量为600mAh为1C(1倍率),300mAh则为0.5C,6A(600mAh)为10C.以此类推. 时率又称小时率,时指电池以一定的电流放完其额定容量所需要的小时数.如电池的额定容量为600mAh,以600mAh的电流放完其额定容量需1小时,故称600mAh的电流为1小时率,以此类推. 17、什么是自放电率? 又称荷电保持能力,是指电池在开路状态下,电池所储存的电量在一定条件下的保持能力。主要受电池制造工艺、材料、储存条件等因素影响。是衡量电池性能的重要参数。 注:电池100%充电开路搁置后,一定程度的自放电正常现象。在GB标准规定LI-ion后在20±2℃条件下开条件下开路搁置28天。可允许电池有容量损失。 18、什么是内压?

动力电池充放电效率测试方法及特性

电动汽车能量流研究需要考虑电池充放电效率的影响,然而目前针对不同充放电模式下的充放电效率研究并不充分,实验方法、测试系统与分析结果仍不具备普遍适用性。因此,本文提出了一种电动汽车充放电效率表征方法和试验方法,并搭建了测试台架系统;在此基础上,针对某款电动汽车动力电池,定量研究了不同充电模式、放电工况下充放电效率的变化规律,从而为整车能量流研究提供了一种有效的动力电池充放电效率测试方法,接下来就为大家详细的讲解一下希望对大家有所帮助。 1 动力电池及其充放电效率 动力电池是电动汽车的能量来源,锂离子电池以其高能量密度和功率密度、长循环寿命、低自放电率等优势,成为电动汽车的首选动力电池;其中,磷酸铁锂电池(LiFePO4)和三元锂离子电池(NCA、NMC)等具有更高的安全性能,因此广泛应用于电动汽车领域。图1 所示为锂离子电池的基本结构与工作原理示意图,其充放电过程是通过Li+在正负极柱之间嵌入和脱出实现的。 2 实验平台和测试方法 实验平台结构包含试验箱、电池模拟器、12V 开关电源、冷却循环水机、上位机等试验仪器及设备。其中,动力电池系统在实验过程中放置于试验箱内,由高压线连接至电池模拟器,通过控制电池模拟器的功率及电流方向,实现动力电

池不同模式下的充放电;同时电池充放电数据通过CAN 总线进行通讯,并上传至上位机系统。实验过程中,电池模拟器及电池管理系统BMS 实时检测动力电池组总电压、单体电压、电池组温度等参数并设置保护措施,从而保证实验过程电池处于安全工作状态。 3 实验及结果分析 实验用动力电池系统采用三元电芯作为单体电池,整体模块标称能量为46kwh。充放电过程中,设置系统总电压、单体电压、温度等参数的安全范围;一旦检测到参数超出上下限安全阈值,将电池模拟器输出电流设置为0,并切断电池模拟器与动力电池系统的连接。 实验过程中,分别采用2.6kw 慢充、6.6kw 定功率充电、快充、1/3C 标准充电(15.3kw)以及1C 充电(46kw)对电池包进行充电,并通过变功率、45kw、6.5kw 、14.9kw 以及28.4kw 等效模拟车辆NEDC 工况、1C 放电、60km/h 等速、90km/h 等速、120km/h 等5 种驾驶工况。 杭州固恒能源科技有限公司从事于新能源汽车后市场领域,专注于动力电池的应用以及循环利用等方面的研发、生产、销售,并提供全套检测维护解决方案的高新技术企业。产品涉及动力电池检测与维护、数据监测与存储、电池模组级单体电池的高效分选以及成组、储能管理系统等设备领域,客户遍及国内各动力电池厂家,新能源汽车厂家、梯次利用回收企业以及储能应用等企业。

锂离子电池最新各种性能测试

锂离子电池最新各种性能测试 1 20℃放电性能测试 首先要进行预循环处理,在环境温度20±5℃的条件下,以0.2CA充电,当电池端电压达到充电限制电压4.2V(GB/T18287-2000规定)后,搁置0.5h~1h,再以0.2CA电流放电到终止电压2. 75V(GB/T18287-2000规定)。在20℃放电性能之前进行预循环处理,能有效激活电池的内部组织结构,给以下各项试验做准备。 在环境温度20±5℃的条件下,以0.2CA充电,当电池端电压达到充电限制电压4.2V后,改为恒压充电,直到充电电流小于或等于0.01CA,最长充电时间不大于8h,停止充电,这时,我们可以清晰的看到电脑仪器上显示出的充电示意图形。在充电过程中,一定要注意时间和充电电流的问题,充电电流达到或等于0.01CA即可,时间不易太长,一般都不超过8h。时间过长会造成过度充电,将会对锂离子电池中过多的锂离子硬塞进负极碳结构里去,这样其中一些锂离子再也无法释放出来,严重的会造成电池的损坏,会影响后面的试验数据结果。电池充电结束后,搁置0.5~1h在20±5℃的温度条件下,以0.2CA电流放电到终止电压2.75V,时间应不低于5小时。 上述充放电重复循环5次,当有一次循环符合GB/T18287-2000中4.2.1的规定放电到终止电压2.75V,时间应不低于5小时。该试验即可停止,有些电池在第一个循环放电时间和终止电压没有达到标准要求,这不意味着电池不合格,是因为电池中的一些聚合物质没被充分地激活,待到第二个循环后被激活,可能就会达到标准要求。 2 锂离子电池的高温性能试验(温度55±2℃) 高温性能试验是测试电池在高温的环境条件下的工作状态,由于在高温的条件下锂离子电池中的物质会发生很大变化,主要测试它的放电时间和安全性。电池按GB/T18287-2000中5.3.2.2条规定充电结束后,将电池放入55±2℃的高温箱中恒温2h,然后以1CA电流放电至终止电压,放电时间应符合标准4.3条规定,时间不小于51分钟,电池外观应无变形和爆炸现象,如有爆炸现象立即切断电源,把测试线从测试仪表上取下。此试验要严格控制好箱体温度,注意温度不易太高。 3 恒定湿热性能试验(温度40℃,相对湿度90%~95%,时间48h) 恒定湿热性能试验是测试电池在温度相对偏高,湿度较大的野外环境下的工作状态,电池按GB /T18287-2000中5.3.2.2条规定充电结束后,将电池放入40±2℃,相对湿度90%~95%的恒温恒湿箱中搁置48h后,将电池取出在环境温度20±5℃的条件下搁置2h,目测电池外观,应符合标准4.7.1的规定,再以1CA电流放电至终止电压,放电时间应符合标准4.7.1的规定不低于36mi n,电池外观应无明显变形、锈蚀、冒烟或爆炸。 4 振动试验 振动试验是测试电池在不平稳的有振幅的特殊条件下的工作状态。电池按GB/T18287-2000中5.3.2.2条规定充电结束后,将电池直接安装或通过夹具安装在振动台的台面上,按下面的振动频

锂电池技术与测试方法

锂离子电池技术与测试方法 目 录 第一部分 1.1 锂离子电池简介 ----------------------------2 1. 2. 锂离子电池组成 -------------------------3 1. 3. 锂离子电池原理 -------------------------4 1. 4. 锂离子电池的种类 ------------------------5 1. 5. 锂离子电池优缺点 ------------------------7 1. 6. 如何正确使用锂离子电池 ------------------8 第二部分 ST-BTJCY3000型智能电池充电放电检测仪 2.1. 性能特点 --------------------------------10 2.2. 技术指标 --------------------------------11 2.3 技术支持与网站信息 -----------------------12 第三部分 聚合物锂离子电池规格、测试方法和标准 3.1.聚 合 物 锂 离 子 充 电 电 池 规 格--------------15 3.2.测试标准 ------------------------------------------16 3.3.文档参考的国标依据 --------------------------------18

第一部分 1.1 锂离子电池简介 1.1.1锂离子电池(Li-ion Batteries)是锂电池发展而来。在介绍 Li-ion之前,应先介绍锂电池。举例来讲,以前照相机里用的扣式电池就属于锂电池。锂电池的正极材料是二氧化锰或亚硫酰氯,负极是锂。电池组装完成后电池即有电压,不需充电.这种电池也可能充电,但循环性能不好,在充放电循环过程中,容易形成锂枝晶,造成电池内部短路,所以一般情况下这种电池是禁止充电的。 1.1.2后来,日本索尼公司发明了以炭材料为负极,以含锂的化合物 作正极,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出, 又运动回正极。回正极的锂离子越多,放电容量越高。 1.1.3我们通常所说的电池容量指的就是放电容量。在Li-ion的充 放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。

动力电池重要全参数定义及测量计算方法

动力电池重要参数定义及测量计算方法 1.概述 本文档的编写主要是为了方便公司内部研发人员更加快速清楚地认识电池的一些重要特性参数及其测量计算方法。主要包括动力电池的荷电状态SOC,电池健康状态SOH,内阻R等。 此文档主要参考了动力电池的国家标准与行业标准,以及网上的一些权威资料信息,同时结合自身工作经验整合编写而成。 2.电池荷电状态SOC及估算方法 2.1 电池荷电状态SOC的定义 电池的荷电状态SOC被用来反映电池的剩余电量情况,其定义为当前可用容量占初始容量的百分比(国标)。 美国先进电池联合会(USABC)的《电动汽车电池实验手册》中将SOC定义如下:在指定的放电倍率下,电池剩余电量与等同条件下额定容量的比值。 SOC=Q O/Q N 日本本田公司的电动汽车(EV Plus)定义SOC如下: SOC = 剩余容量/(额定容量-容量衰减因子) 其中剩余容量=额定容量-净放电量-自放电量-温度补偿 动力电池的剩余电量是影响电动汽车的续驶里程和行驶性能的主要因素,准确的SOC估算可以提高电池的能量效率,延长电池的使用寿命,从而保证电动汽车更好的行驶,同时SOC也是作为电池充放

电控制和电池均衡的重要依据。 实际应用中,我们需要根据电池的可测量值如电压电流结合电池内外界影响因素(温度、寿命等)来实现电池SOC的估算算法。但是SOC受自身内部工作环境和外界多方面因素而呈非线性特性,所以要实现良好的SOC估算算法必须克服这些问题。目前,国内外在电池SOC估算上已经部分实现并运用到工程上,如安时法、内阻法、开路电压法等。这些算法共同特点是易于实现,但是对实际工况中的内外界影响因素缺乏考虑而导致适应性差,难以满足BMS对估算精度不断提高的要求。所以在考虑SOC受到多种因素影响后,一些较为复杂的算法被提出,例如:卡尔曼滤波算法、神经网络算法、模糊估计算法等新型算法,相比于之前的传统算法其计算量大,但精度更高,其中卡尔曼滤波在计算精度和适应性上都有很好的表现。 2.2几种SOC估算算法简介 (1)安时法 安时法又被称为电流积分法,也是计算电池SOC的基础。假设当前电池SOC初始值为SOC0,在经过t时间的充电或放电后SOC为: Q0是电池的额定容量,i(t)是电池充放电电流(放电为正)。 事实上,SOC定义为电池的荷电状态,而电池荷电状态就是电池电流的积分,所以理论上讲安时法是最准确的。同时,它也易于实现,只需测量电池充放电电流和时间,而在实际工程应用时,采用离散化计算公式如下:

锂电池性能测试简介

锂电池性能测试简介 充电及低公害。 各种先进电池中最被重视的商品化电池。所以在此以介绍锂离子电池为主。 可从 压 例。 止电压)又有[CV]的精准。 2.C-V曲线 C-V曲线是描充电池在充电、放电过程中电压及电容量间的关系。充电曲线能让工程师了解如何设计电池充电器,而放电曲线能使工程师在设计电路时正确的掌握电池的特性。例如最佳的工作电压、不同温度C-rate下的电池电容量。

我们也可从电池目前的电压对照C-V曲线:以斜率大小负值概略估算电池的残存容量(Residual Capacity)。因此C-V曲线是了解电池的重要工具。 2、分电池(Cell)性能测试 已组装之分电池,俗称单位电池(以下简称电池)。 在组装后静置8-12小时后为让电解液充份浸润极板,即依下列程序进行测试作 2.) 锂离子电池的化成:除了是使电池作用物质藉第一次充电转成正常电化学作用 钝化膜在锂离子电池的电化 商除将材 料及制程列为机密外化成条件也被列为该公司电池制造的重要机密。 相同于极板测试:将电池实际活化物总量换算理论电容量,以低C-rate C N。因此充、放电电流可以C-rate即C N的系数来表示其大小,关系如下式: I=M* C N I:充、放电电流大小(mA) M:倍率C-rate(hr-1) C N:N小时内完全放电的额定电容量(mAhr)

例如:电池之5小时率容量C5=300mAhr,则C-rate为0.5之充、放电电流大小 将是: I=M* C5=(0.5 hr-1)*(300mAhr)=150mA 电池化成过程中会有大量的能量耗损,最可能是用于钝化膜的形成。 3.电池电容量测试 再依下列步骤 容量在初期会有减少的情形。电池的放电电容量自0.753mA向下减少。待电池电化 有些化成程序亦包含了数十次的充放电 4. 3到520 5.自放电率测试 选取化2到37日放电一 采取积分记录。 于第28

电动汽车用动力蓄电池技术要求及试验方法-新能源

《电动客车安全要求》 征求意见稿编制说明 一、工作简况 1、任务来源 为引导和规范我国电动客车产业健康可持续发展,提高电动客车安全技术水平,落实工业和信息化部建设符合电动客车特点的整车、电池、电机、高压线束等系统的安全条件及测试评价标准体系的要求,全国汽车标准化技术委员会于2016年8月启动了本强标的立项和编制工作。 2、主要工作过程 根据有关部门对电动客车安全标准制定工作的要求,全国汽车标准化技术委员会电动车辆分技术委员会组织成立“电动客车安全要求工作组”(以下简称工作组),系统开展电动客车安全要求标准的制定工作。 (1)GB《电动客车安全要求》于2016年底完成立项(计划号20160968-Q-339),2016年12月29日在南充电动汽车整车标准工作组会议上组建了标准制定的核心工作组,启动了强标制定工作,并由起草组代表介绍了标准的背景、编制思路、以及与相关标准的协调性关系。 (2) 2017年2月-3月,基于已开始执行的《电动客车安全技术条件》(工信部装[2016]377号,以下简称《条件》)的工作基础,工作组向电动客车行业主要企业、检测机构等16家单位征求《条件》的实施情况反馈与强制性国标制定建议。 (3) 2017年4月18日,工作组在重庆组织召开标准制定讨论会,会议对《条件》制定情况进行了回顾,对收集到的《条件》执行情况进行了分析讨论。根据讨论结果,针对共性问题形成了专项征求意见表。 (4) 2017年5月-6月,工作组根据重庆会议讨论结果向行业进行强标制定专项意见征求意见。 (5) 2017年6月6日,在株洲召开工作组会议,会议对专项征求意见期间收集的反馈意见进行研究讨论。 (6)2017年6月-10月,工作组依据意见反馈情况和会议讨论结果进行标

动力电池热管理系统性能试验方法

动力电池热管理系统性能试验方法 1 范围 本标准规定了动力电池热管理系统性能的试验方法。 本标准适用于乘用车用动力电池热管理系统,商用车用动力电池热管理系统可以参考。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2900.41-2008 电工术语原电池和蓄电池 GB/T 19596-2017 电动汽车术语(ISO 8713:2002,NEQ) GB/T 31467.2电动汽车用锂离子动力蓄电池包和系统第2部分:高能量应用测试规程QC/T 468-2010 汽车散热器 GB/T 18386-2017 电动汽车能量消耗率和续驶里程试验方法 GB 18352.6-2016 轻型汽车污染物排放限制及测量方法(中国第六阶段) 3 术语和定义 GB/T 2900.41-2008、GB/T 19596-2017中界定的以及下列术语和定义适用于本文件。 3.1 动力电池热管理系统 battery thermal management system 综合运用各种技术手段,具备动力电池冷却、加热、保温和均温等功能,保证动力电池在不同环境下正常工作的系统。同时,该系统可以在动力电池发生热失控时提供报警信号,具备安全防护功能。通常,动力电池热管理系统包括主动式热管理系统和被动式热管理系统两种。 3.2 被动式热管理系统 passive thermal management systems 基于热传导、热辐射、热对流等热量传输原理,只依靠冷却或加热流体因为温度因素缓慢流动自然完成热量输入输出交换的热管理系统。该类系统通常适用于单体产热量小于 5W的电池。 3.3 主动式热管理系统 active thermal management systems 基于热传导、热辐射、热对流等热量传输原理,使用耗能部件消耗能量完成热量输入输出交换的系统。主动式热管理系统包括主动空气冷却加热系统和主动液体冷却加热系统两种,根据需要采用流体串行流动和并行流动两种方式实现热交换。 3.4 主动式空气冷却加热系统 Active Air Cooling and Heating Systems 又称风冷系统,利用空气作为热量交换载体控制分配动力电池系统内部温度的系统。该系统通常使用风扇和管道完成空气在电池系统内的流动,分为直接接触式和间接接触式两种。空气可以从电池系统外部进入并排出电池系统外,也可以在电池系统内部循环实现电池冷却或加热功能;若空气仅在电池内部循环,则电池系统内部通常需要有空气冷却装置(通常为空调蒸发器)、空气加热装置和空气循环风扇。该类系统通常适用于单体产热量

相关文档
相关文档 最新文档