文档库 最新最全的文档下载
当前位置:文档库 › 人教版八年级数学讲义最短路径问题(含解析)(2020年最新)

人教版八年级数学讲义最短路径问题(含解析)(2020年最新)

人教版八年级数学讲义最短路径问题(含解析)(2020年最新)
人教版八年级数学讲义最短路径问题(含解析)(2020年最新)

第6讲最短路径问题

知识定位

讲解用时:5分钟

A、适用范围:人教版初二,基础较好;

B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习最短路径

问题,现实生活中经常涉及到选择最短路径问题,最值问题不仅使学生难以理解,也是中考中的一个高频考点。本节将利用轴对称知识探究数学史上著名的“将军饮马问题”。

知识梳理

讲解用时:20分钟

两点之间线段最短

C D

A B

E

A地到B地有3条路线A-C-D-B,A-B,A-E-B,那么选哪条路线最近呢?

选A-B,因为两点之间,直线最短

垂线段最短

如图,点P是直线L外一点,点P与直线上各

点的所有连线中,哪条最短?

PC最短,因为垂线段最短

两点在一条直线异侧

A

P

L B 如图,已知A点、B点在直线L异侧,在L上选一点P,使PA+PB最短.

连接AB交直线L于点P,则PA+PB 最短.

依据:两点之间:线段最短

两点在一条直线同侧

相传,古希腊亚历山大里亚城里有一位

久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不

得其解的问题:

从图中的A地出发,到一条笔直的河边

l饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?

作法:

1、作B点关于直线L的对称点B’;

2、连接AB’交直线L于点C;

3、点C即为所求.

证明:在直线L上任意选一点C’(点C’不与C重合),连接AC’、BC’、B’C’.

在△AB’C’中,

AC’+B’C’>AB’

∴AC’+BC’>AC+BC

所以AC+BC最短.

课堂精讲精练

【例题1】

已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是()

A.B.

C.D.

【答案】D

【解析】根据作图的方法即可得到结论.

解:作B关于直线l的对称点,连接这个对称点和A交直线l于P,则PA+PB的值最小,

∴D的作法正确,

故选:D.

讲解用时:3分钟

解题思路:本题考查了轴对称﹣最短距离问题,熟练掌握轴对称的性质是解题的关键.

教学建议:学会处理两点在直线同侧的最短距离问题.

难度: 3 适应场景:当堂例题例题来源:无年份:2018

【练习1.1】

如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需

管道最短的是()

A. B.

C.D.

【答案】D

【解析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间

的距离.

解:作点P关于直线L的对称点P′,连接QP′交直线L于M.

根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.

故选:D.

讲解用时:3分钟

解题思路:本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别.

教学建议:学会处理两点在直线同侧的最短距离问题.

难度: 3 适应场景:当堂练习例题来源:无年份:2018

【练习1.2】

如图,A、B在直线l的两侧,在直线l上求一点P,使|PA﹣PB|的值最大.

【答案】见解析

【解析】作点A关于直线l的对称点A′,则PA=PA′,因而|PA﹣PB|=|PA′﹣PB|,则当A′,B、P在一条直线上时,|PA﹣PB|的值最大.

解:作点A关于直线l的对称点A′,连A′B并延长交直线l于P.

讲解用时:3分钟

解题思路:本题考查的是作图﹣轴对称变换,熟知“两点之间线段最短”是解答

此题的关键.

教学建议:学会作对称点,通过“两点之间线段最短”进行解题.

难度: 4 适应场景:当堂练习例题来源:无年份:2018

【例题2】

如图,A、B在直线l的同侧,在直线l上求一点P,使△PAB的周长最小.

【答案】

【解析】由于△PAB的周长=PA+AB+PB,而AB是定值,故只需在直线l上找一点P,使PA+PB最小.如果设A关于l的对称点为A′,使PA+PB最小就是使PA′+PB最小.

解:作法:作A关于l的对称点A′,

连接A′B交l于点P.

则点P就是所要求作的点;

理由:在l上取不同于P的点P′,连接AP′、BP′.

∵A和A′关于直线l对称,

∴PA=PA′,P′A=P′A′,

而A′P+BP<A′P′+BP′

∴PA+BP<AP′+BP′

∴AB+AP+BP<AB+AP′+BP′

即△ABP周长小于△ABP′周长.

讲解用时:3分钟

解题思路:本题考查了轴对称﹣最短路线问题解这类问题的关键是把两条线段的

和转化为一条线段,运用三角形三边关系解决.

教学建议:把三角形的周长用线段表示出来,通过转化成一条线段利用两点之间

线段最短进行解题.

难度: 3 适应场景:当堂例题例题来源:无年份:2018

【练习2.1】

(Ⅰ)如图①,点A、B在直线l两侧,请你在直线l上画出一点P,使得PA+PB 的值最小;

(Ⅱ)如图②,点E、F在直线l同侧,请你在直线l上画出一点P,使得PE+PF 的值最小;

(Ⅲ)如图③,点M、N在直线l同侧,请你在直线l上画出两点O、P,使得OP=1cm,且MO+OP+PN的值最小.

(保留作图痕迹,不写作法)

【答案】见解析

【解析】(I)图①,显然根据两点之间,线段最短,连接两点与直线的交点即

为所求作的点;

(II)图2,作E关于直线的对称点,连接FE′即可;

(III)图③,画出图形,作N的对称点N′,作NQ∥直线l,NQ=1cm,连接MQ

得出点O即可.

解:(I)如图①,连接A、B两点与直线的交点即为所求作的点P,这样PA+PB 最小,理由是:两点之间,线段最短;

(II)如图②,先作点E关于直线l的对称点E′,再连接E′F交l于点P,则PE+PF=E′P+PF=E′F,由“两点之间,线段最短”可知,点P即为所求的点;

(III)如图③,

作N关于直线l的对称点N′,过N′作线段N′Q∥直线l,且线段N′Q=1cm,连接MQ,交直线l于O,在直线l上截取OP=1cm,如图,连接NP,

则此时MO+OP+PN的值最小.

讲解用时:5分钟

解题思路:本题考查了轴对称﹣最短路线问题的应用,题目比较典型,第三小题有一定的难度,主要考查学生的理解能力和动手操作能力.

教学建议:学会作对称点,通过“两点之间线段最短”进行解题.

难度:4 适应场景:当堂练习例题来源:无年份:2018

【例题3】

如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,求△CDM周长的最小值.

【答案】10

【解析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.

解:连接AD,

∵△ABC是等腰三角形,点D是BC边的中点,

∴AD⊥BC,

∴S△ABC=BC?AD=×4×AD=16,解得AD=8,

∵EF是线段AC的垂直平分线,

∴点C关于直线EF的对称点为点A,

∴AD的长为CM+MD的最小值,

∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.

讲解用时:5分钟

解题思路:本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.

教学建议:想办法利用对称的知识将两条线段转化成一条线段,利用垂线段最短进行解题.

难度:4 适应场景:当堂例题例题来源:无年份:2018

【练习3.1】

如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F 是AD边上的动点,求BF+EF的最小值.

【答案】5

【解析】过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小,证△ADB ≌△CEB得CE=AD=5,即BF+EF=5.

解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,

∵等边△ABC中,BD=CD,

∴AD⊥BC,

∴AD是BC的垂直平分线(三线合一),

∴C和B关于直线AD对称,

∴CF=BF,

即BF+EF=CF+EF=CE

∵AD⊥BC,CE⊥AB,

∴∠ADB=∠CEB=90°,

在△ADB和△CEB中,

∴△ADB≌△CEB(AAS),

∴CE=AD=5,

即BF+EF=5.

故答案为:5.

讲解用时:4分钟

解题思路:本题考查的是轴对称﹣最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.

教学建议:想办法利用对称的知识将两条线段转化成一条线段,利用垂线段最短进行解题.

难度:4 适应场景:当堂练习例题来源:无年份:2018

【例题4】

如图所示,在一条河的两岸有两个村庄,现要在河上建一座小桥,桥的方向与河流垂直,设河的宽度不变,试问:桥架在何处,才能使从A到B的距离最短?

【答案】见解析

【解析】虽然A、B两点在河两侧,但连接AB的线段不垂直于河岸.关键在于使AP+BD最短,但AP与BD未连起来,要用线段公理就要想办法使P与D重合起来,利用平行四边形的特征可以实现这一目的.

解:如图,作BB'垂直于河岸GH,使BB′等于河宽,

连接AB′,与河岸EF相交于P,作PD⊥GH,

则PD∥BB′且PD=BB′,

于是PDBB′为平行四边形,故PB′=BD.

根据“两点之间线段最短”,AB′最短,即AP+BD最短.

故桥建立在PD处符合题意.

讲解用时:4分钟

解题思路:此题考查了轴对称﹣﹣﹣最短路径问题,要利用“两点之间线段最短”,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题.目前,往往利用对称性、平行四

边形的相关知识进行转化,以后还会学习一些线段转化的方法.

教学建议:将3条线段进行转化成一条线段.

难度:4 适应场景:当堂例题例题来源:无年份:2018

【练习4.1】

作图题

(1)如图1,一个牧童从P点出发,赶着羊群去河边喝水,则应当怎样选择饮

水路线,才能使羊群走的路程最短?请在图中画出最短路线.

(2)如图2,在一条河的两岸有A,B 两个村庄,现在要在河上建一座小桥,桥

的方向与河岸方向垂直,桥在图中用一条线段CD表示.试问:桥CD建在何处,才能使A到B的路程最短呢?请在图中画出桥CD的位

置.

【答案】见解析

【解析】(1)把河岸看做一条直线,利用点到直线的所有连接线段中,垂直线

段最短的性质即可解决问题.

(2)先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置.

解:(1)根据垂直线段最短的性质,即可画出这条从草地到河边最近的线路,如

图1所示:

(2)先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置.如图2,

讲解用时:4分钟

解题思路:此题考查了垂直线段最短的性质的在解决实际问题中的灵活应用,解题的关键是灵活运用垂直线段最短的性质作图.

教学建议:掌握求最短路径的几种基本题型和方法.

难度: 3 适应场景:当堂练习例题来源:无年份:2018

【例题5】

如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是多少?

【答案】30°

【解析】由于点C关于直线MN的对称点是B,所以当B、P、D三点在同一直线上时,PC+PD的值最小

解:连接PB.

由题意知,∵B、C关于直线MN对称,

∴PB=PC,

∴PC+PD=PB+PD

当B、P、D三点位于同一直线时,PC+PD取最小值,

连接BD交MN于P,

∵△ABC是等边三角形,D为AC的中点,

∴BD⊥AC,

∴PA=PC,

∴∠PCD=∠PAD=30°

讲解用时:3分钟

解题思路:此题考查了线路最短的问题、等边三角形的性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.

教学建议:学会转移对称线段,利用垂线段最短进行解题.

难度: 3 适应场景:当堂例题例题来源:无年份:2018

【练习5.1】

已知,如图△ABC为等边三角形,高AH=10cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为多少?

【答案】10cm

【解析】连接PC,根据等边三角形三线合一的性质,可得PC=BP,PD+PB要取最小值,应使D、P、C三点一线.

解:连接PC,

∵△ABC为等边三角形,D为AB的中点,

∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10cm

讲解用时:3分钟

解题思路:此题主要考查有关轴对称﹣﹣最短路线的问题,注意灵活应用等边三角形的性质.

教学建议:学会转移对称线段,利用垂线段最短进行解题.

难度: 3 适应场景:当堂练习例题来源:无年份:2018

【例题6】

如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.

【答案】见解析

【解析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.

解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.

理由:∵P1P=P1E,P2P=P2F,

∴△PP1P2的周长=PP1+P1P2+PP2=EP1+p1p2+p2F=EF,

根据两点之间线段最短,可知此时△PP1P2的周长最短.

讲解用时:5分钟

解题思路:本题考查轴对称﹣最短问题、两点之间线段最短等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.

教学建议:此类问题的解题技巧是做对称点,做定点关于动点所在直线的对称点. 难度:4 适应场景:当堂例题例题来源:无年份:2018

【练习6.1】

知识拓展:如图2,点P在∠AOB内部,试在OA、OB上分别找出两点E、F,使△PEF周长最短(保留作图痕迹不写作法)

【答案】见解析

【解析】作P关于OA、OB的对称点C、D,连接CD角OA、OB于E、F.此时△PEF周长有最小值;

作图如下:

讲解用时:3分钟

解题思路:题主要考查了平面内最短路线问题求法以及三角形的外角的性质和垂

直平分线的性质等知识,根据已知得出对称点的位置是解题关键.

教学建议:此类问题的解题技巧是做对称点,做定点关于动点所在直线的对称点.难度: 4 适应场景:当堂练习例题来源:无年份:2018

【例题7】

如图,∠AOB=30°,点P是∠AOB内一点,PO=8,在∠AOB的两边分别有点R、Q (均不同于O),求△PQR周长的最小值.

【答案】

【解析】根据轴对称图形的性质,作出P关于OA、OB的对称点M、N,连接MN,根据两点之间线段最短得到最小值线段,根据等边三角形的性质解答即可.

解:分别作P关于OA、OB的对称点M、N.

连接MN交OA、OB交于Q、R,则△PQR符合条件.

连接OM、ON,

由轴对称的性质可知,OM=ON=OP=8

∠MON=∠MOP+∠NOP=2∠AOB=2×30°=60°,

则△MON为等边三角形,

∴MN=8,

∵QP=QM,RN=RP,

∴△PQR周长=MN=8,

讲解用时:5分钟

解题思路:本题考查了轴对称﹣最短路径问题,根据轴对称的性质作出对称点是

解题的关键,掌握线段垂直平分线的性质和等边三角形的性质的灵活运用.

教学建议:对称之后,角度也是相同的,做定点关于动点所在直线的对称点. 难度: 4 适应场景:当堂例题例题来源:无年份:2018

【练习7.1】

如图,∠AOB=30°,∠AOB内有一定点P,且OP=10,OA上有一点Q,OB上有一定点R.若△PQR周长最小,求它的最小值.

【答案】10

【解析】先画出图形,作PM⊥OA与OA相交于M,并将PM延长一倍到E,即ME=PM.作PN⊥OB与OB相交于N,并将PN延长一倍到F,即NF=PN.连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则△PQR即为周长最短的三角形.再根据线段垂直平分线的性质得出△PQR=EF,再根据三角形各角之间的关系判断出△EOF的形状即可求解.

解:设∠POA=θ,则∠POB=30°﹣θ,作PM⊥OA与OA相交于M,并将PM延长一倍到E,即ME=PM.

作PN⊥OB与OB相交于N,并将PN延长一倍到F,即NF=PN.

连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则△PQR即为周长最短的三角形.

∵OA是PE的垂直平分线,

∴EQ=QP;

同理,OB是PF的垂直平分线,

∴FR=RP,

∴△PQR的周长=EF.

,且∠EOF=∠EOP+∠POF=2θ+2(30°﹣θ)=60°,

∵OE=OF=OP=10

∴△EOF是正三角形,

∴EF=10,即在保持OP=10的条件下△PQR的最小周长为10.

故答案为:10.

讲解用时:4分钟

解题思路:本题考查的是最短距离问题,解答此类题目的关键根据轴对称的性质作出各点的对称点,即把求三角形周长的问题转化为求线段的长解答.

教学建议:做定点关于动点所在直线的对称点,利用轴对称的性质进行解题.

难度:4 适应场景:当堂练习例题来源:无年份:2018

课后作业

【作业1】

如图,在铁路l的同侧有A、B两个工厂,要在铁路边建一个货场C,货场应建在什么地方,才能使A、B两厂到货场C的距离之和最短?

【答案】见解析

【解析】作点B关于直线l的对称点B′,连接AB′,交l于点C,则点C即为所求点.

解:如图所示:

讲解用时:3分钟

难度: 3 适应场景:练习题例题来源:无年份:2018

【作业2】

用三角板和直尺作图.(不写作法,保留痕迹)

如图,点A,B在直线l的同侧.

(1)试在直线l上取一点M,使MA+MB的值最小.

(2)试在直线l上取一点N,使NB﹣NA最大.

【答案】见解析

【解析】(1)作点A关于直线l的对称点,再连接解答即可;

(2)连接BA,延长BA交直线l于N,当N即为所求;

解:(1)如图所示:

(2)如图所示;

理由:∵NB﹣NA≤AB,

∴当A、B、N共线时,BN﹣NA的值最大.

讲解用时:3分钟

难度: 3 适应场景:练习题例题来源:无年份:2018

【作业3】

如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=6,点F 是AD边上的动点,求BF+EF的最小值.

【答案】6

【解析】过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小,证△ADB ≌△CEB得CE=AD=6,即BF+EF=6.

解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,

∵等边△ABC中,BD=CD,

∴AD⊥BC,

∴AD是BC的垂直平分线(三线合一),

∴C和B关于直线AD对称,

∴CF=BF,

即BF+EF=CF+EF=CE

∵AD⊥BC,CE⊥AB,

∴∠ADB=∠CEB=90°,

在△ADB和△CEB中,

∵,

∴△ADB≌△CEB(AAS),

∴CE=AD=6,

即BF+EF=6.

讲解用时:3分钟

难度: 3 适应场景:练习题例题来源:无年份:2018

人教版八年级数学上册讲义(全册)

八年级数学讲义 第11章 三角形 一、 三角形的概念 1. 三角形的定义 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形的表示 △ABC 中,边:AB ,BC ,AC 或 c ,a ,b . 顶点:A ,B ,C . 内角:∠A ,∠B ,∠C .. 二、 三角形的边 1. 三角形的三边关系:(证明所有几何不等式的唯一方法) (1) 三角形任意两边之和大于第三边:b+c>a (2) 三角形任意两边之差小于第三边:b-ca 时,就可构成三角形. 1.2 确定三角形第三边的取值范围: 两边之差<第三边<两边之和. 2. 三角形的主要线段 2.1三角形的高线 从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线. ①锐角三角形三条高线交于三角形内部一点; ②直角三角形三条高线交于直角顶点; ③钝角三角形三条高线所在直线交于三角形外部一点 2.2三角形的角平分线 三角形一个角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。 三条角平分线交于三角形内部一点. 2.3三角形的中线 连结三角形一个顶点与它对边中点 的线段叫做三角形的中线。 A C B A D

三角形的三条中线交于三角形内部一点. 三、三角形的角 1 三角形内角和定理 结论1:△ABC中:∠A+∠B+∠C=180°※三角形中至少有2个锐角 结论2:在直角三角形中,两个锐角互余.※三角形中至多有1个钝角 注意:①在三角形中,已知两个内角可以求出第三个内角 如:在△ABC中,∠C=180°-(∠A+∠B) ②在三角形中,已知三个内角和的比或它们之间的关系,求各内角. 如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数 2三角形外角和定理 2.1外角:三角形一边与另一边的延长线组成的角叫做三角形的角. 2.2性质: ①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角. ③三角形的一个外角与与之相邻的内角互补 2.3外角个数: 过三角形的一个顶点有两个外角,这两个角为对顶角(相等), 可见一个三角形共有6个外角 四、三角形的分类 (1) 按角分:①锐角三角形②直角三角形③钝角三角形 (2) 按边分:①不等边三角形②底与腰不等的等腰三角形③等边三角形 五多边形及其内角 1、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. 2、正多边形:各个角都相等、各个边都相等的多边形叫做正多边形。 3、多边形的对角线 (1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。 (2)n边形共有条对角线。 4、n边形的内角和等于(n-2)·180°(n≥3,n是正整数)。任意凸形多边形的外角和等于360° ※多边形外角和恒等于360°,与边数的多少无关. ※多边形最多有3个内角为锐角,最少没有锐角(如矩形); ※多边形的外角中最多有3个钝角,最少没有钝角. 5、实现镶嵌的条件:拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边。【考点三】判断三角形的形状 8、若△ABC的三边a、b、c满足(a-b)(b-c)(c-a)=0,试判断△ABC的形状。 9、已知a,b,c是△ABC的三边,且满足a2+b2+c2=ab+bc+ca,试判断△ABC的形状。

浙教版八年级数学下册各章复习讲义 并附带讲义分析

第一章《二次根式》复习 二次根式为了方便,我们把一个数的算术平方根(如)也叫做二次根式。 二、二次根式被开方数不小于0 1、下列各式中不是二次根式的是 ( ) (A )12+x (B )4- (C )0 (D ) ()2b a - 2、判断下列代数式中哪些是二次根式? ⑴21, ⑵16-, ⑶9+a , ⑷12+x , ⑸222++a a , ⑹x -(0≤x ), ⑺()23-m 。 答:_____________________ 3、下列各式是二次根式的是( ) A B 4、下列各式中,不是二次根式的是( ) A . B D . 5、下列各式中,是二次根式是( ). (A )(B (C ) (D )6、若01=++-y x x ,则20052006y x +的值为: ( ) A 、0 B 、1 C 、 -1 D 、 2 7、已知1y =,则y x = 。 8、若x 、y 都为实数,且152********+-+-=x x y ,则y x +2=________。 三、含二次根式的代数式有意义(1)二次根式被开方数不小于0 (2)分母含有字母的,分母不等于0 1、x ( )

(A )x > 45 (B )x <54 (C )x ≥54- (D ) x ≤54- 2、如果x --35是二次根式,那么x 应适合的条件是( ) A 、x ≥3 B 、x ≤3 C 、x >3 D 、x <3 3、求下列二次根式中字母的取值范围 (1)x x --+31 5;(2)22)-(x ; 4、使代数式32 x x -+有意义的x 取值范围是( ) A .2x ≠-; B .32x x <≠-且,; C .32x x ≠且,;≤ D .32x x ≠-且,;≤ 5、求下列二次根式中字母x 的取值范围: ⑴ 12-x , ⑵ 32+x , ⑶ 52-x , ⑷ x x --+22, ⑸ 11-+x x , ⑹ x x -22. 6、二次根式2 12--x x 有意义时的x 的范围是______ 7、求下列二次根式中字母的取值范围: (1)3a +; (2)13a --; (3)21a + 8、使代数式8a a -+有意义的a 的范围是( ) A 、0>a B 、0

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧 例:已知:如图,A ,B 在直线L 的两侧,在L 上求一点P ,使得PA+PB 最小。 解:连接AB,线段AB 与直线L 的交点P ,就是所求。(根据:两点之间线段最短.) 二、 两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短. 解:只有A 、C 、B 在一直线上时,才能使AC +BC 最小.作点A 关于直线“街道”的对称点A ′,然后连接A ′B ,交“街道”于点C ,则点C 就是所求的点. 三、一点在两相交直线内部 例:已知:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B ,C ,组成三角形,使三角形周长最小. 解:分别作点A 关于OM ,ON 的对称点A ′,A ″;连接A ′,A ″,分别交OM ,ON 于点B 、点C ,则点B 、点C 即为所求 分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小 例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥。 A· B M N E

人教版数学八年级下册代数部分综合复习讲义

A B C D h t t t t h h h 0 0 0 0 代数复习 基础知识点 1.若二次根式5x +在实数范围内有意义,则x 的取值范围是( ) A .x >-5 B .x <-5 C .x ≠-5 D .≥x -5 2.下列各式中,最简二次根式是( ) A .27 B .6 C . a 1 D .23a 3.在平面直角坐标系中,直线y kx b =+()0, 0k b <>不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.将直线1y kx =-向上平移2个单位长度,可得直线的解析式为( ) A .3y kx =- B .1y kx =+ C .3y kx =+ D .1y kx =- 5.已知()()1122P 3, P 2, y y -, 是一次函数21y x =+的图象上的两个点,则12, y y 的大小关系是( ) A .12y y > B .12y y < C .12y y = D .不能确定 6.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值 相同,方差分别为,,,,则二月份白菜价格最稳定的市场是( ) A .甲 B .乙 C .丙 D .丁 7.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80.下列关于这组数据描述错误的是( ) A .众数是80 B .平均数是80 C .中位数是75 D .极差是15 8.如图是某蓄水池的横断面示意图,分深水区和浅水区,如果以固定流速向这个蓄水池注水,下面能大致表示水的最大深度h 和时间t 之间的变化关系的图象的是( ) 9.计算:368?-=_________. 10.如图,若设用户上网的时间为x 分钟,A 、B 两种收费方式的费用分别为A y (元)、 B y (元) ,它们的函数图象如图所示,则当上网时间 多于400钟时,选择 种方式省钱. 重点题型1 【二次根式】 例题1:(1)1 2123524 ?÷ (2) () 3482273-÷

八年级下册数学讲义

目录 第一节等腰三角形 (1) 第二节直角三角形 (7) 第三节线段的垂直平分线 (12) 第四节角平分线 (16) 第五节一元一次不等式 (20) 第七节一元一次不等式组 (30) 第八节一元一次不等式组的应用 (33) 第十节图形的平移与旋转 (44) 第十一讲中心对称 (49) 第十二讲本章复习 (54)

第一节等腰三角形 知识点一:等腰三角形的两腰相等,两个底角相等(简写成“等边对等角”) 例1. 等腰三角形的一个角是70°,它的一个底角的度数是。 例2. 已知等腰三角形两边长为4 和3,则周长为。 例3. 如图1,△ABC 中,AB=AC=BD,DA=DC,则∠BAC 的度数是。 图1 图2 知识点二:等腰三角形的三线合一即等腰三角形顶角的平分线平分底边并且垂直于底边,也就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合 例4. 如图2,在三角形ABC 中,AB=AC。 若AD⊥BC,则,; 若BD=CD,则,; 若AD 平分∠BAC,则,; 例5. 如图3,在△ABC 中,AB=AC,AD 是BC 边上的中线,BE⊥AC 于点 E.求证:∠CBE=∠B AD. 知识点三:两边相等证等腰三角形 例6. 如图,点D,E 分别在△ABC 的边AC 和BC 上,AE 与BD 相交于点F,∠1=∠2;AD=BE。 求证:△ABF 是等腰三角形. 1

知识点四:两角相等证等腰三角形(等角对等边) 例7. 如图1,△ABC 中,AB=AC,∠A=36°,BD、CE 分别为∠ABC 与∠ACB 的角平分线, 且相交于点F,则图中的等腰三角形有() A. 6 个 B. 7 个 C. 8 个 D. 9 个 例8. 如图,点D,E 分别在△ABC 的边AC 和BC 上,AE 与BD 相交于点F,∠1=∠2;AD=BE。 求证:△ABC 是等腰三角形. 知识点五:角平分线+平行线=等腰三角形 例9. 在△ABC 中,∠ABC 和∠ACB 的平分线交于点E,过点E 作MN∥BC 交AB 于M,交AC 于N,求证:BM+CN=MN 2

初中数学最短路径问题典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题”。 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据:两点之间线段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线 “街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是 所求的点. 三、一点在两相交直线内部 例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.

解:分别作点A 关于OM ,ON 的对称点A ′,A ″;连接A ′,A ″,分别交OM ,ON 于点B 、点C ,则点B 、点C 即为所求 分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小 例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何 处 才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与 河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥。 证明:由平移的性质,得 BN ∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE 中,∵AC+CE >AE, ∴AC+CE+MN >AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。 例:如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉 作 物,?要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方,?可使所修的渠道最短,试在图中确定该点。 · · C D A B E a A· B M N E

(完整word)新湘教版八年级下册数学复习资料及训练

c b a C B A P E D C B A E D C B A P F E D C B 21A 直角三角形题型训练(一) 1、角平分线: 角平分线上的点到这个角的两边的距离相等 如图,∵AD 是∠BAC 的平分线(或∠1=∠2), PE ⊥AC ,PF ⊥AB ∴PE=PF ·如图,在ΔABC 中,∠C=90°∠ABC 的平分线BD 交AC 于点D, 若BD=10厘米,BC=8厘米,DC=6厘米,则点D 到直线AB 的距 离是________厘米。 ·如图:在△ABC 中,,O 是∠ABC 与∠ACB 的平分线的交点。 求证:点O 在∠A 的平分线上。 2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点 的距离相等 。 如图,∵CD 是线段AB 的垂直平分线, ∴PA=PB ·如图,△ABC 中,DE 是AB 的垂直平分线,AE=4cm ,△ABC 的周长是18 cm ,则△BDC 的周长是__。 ·已知:如图,求作点P ,使点P 到A 、B 两点的距离相等, 且P 到∠MON 两边的距离也相等. 3、勾股定理及其逆定理 ①勾股定理:直角三角形两直角边a 、b 的平方和等 于斜边c 的平方,即222 a b c +=。 求斜边,则22c a b =+;求直角边,则22a c b =-或22 b c a =-。 ·如图是拉线电线杆的示意图。已知CD ⊥AB ,, ∠CAD=60°,则拉线AC 的长是________m 。 ·若一个直角三角形的两边长分别为6和10,那么这个三角形的第三条边长是______。 O C B A O N M · · A B

人教八年级上册数学讲义

八年级数学讲义 第11章三角形 一、三角形的概念 1.三角形的定义由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形的表示 △ABC中,边:AB,BC,AC 或c,a,b. 顶点:A,B,C . 内角:∠A ,∠B ,∠C.. 二、三角形的边 1.三角形的三边关系:(证明所有几何不等式的唯一方法) (1) 三角形任意两边之和大于第三边:b+c>a (2) 三角形任意两边之差小于第三边:b-ca时,就可构成三角形. 确定三角形第三边的取值范围:两边之差<第三边<两边之和. 2.三角形的主要线段 三角形的高线 从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线. ①锐角三角形三条高线交于三角形内部一点; ②直角三角形三条高线交于直角顶点; ③钝角三角形三条高线所在直线交于三角形外部一点 三角形的角平分线

三角形一个角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。三条角平分线交于三角形内部一点. 三角形的中线 连结三角形一个顶点与它对边中点的线段叫做三角形的中线。 三角形的三条中线交于三角形内部一点. 三、三角形的角 1 三角形内角和定理 结论1:△ABC中:∠A+∠B+∠C=180°※三角形中至少有2个锐角 结论2:在直角三角形中,两个锐角互余.※三角形中至多有1个钝角 注意:①在三角形中,已知两个内角可以求出第三个内角 如:在△ABC中,∠C=180°-(∠A+∠B) ②在三角形中,已知三个内角和的比或它们之间的关系,求各内角. 如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数 2三角形外角和定理 外角:三角形一边与另一边的延长线组成的角叫做三角形的角. 性质: ①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角. ③三角形的一个外角与与之相邻的内角互补 外角个数: 过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有6个外角 四、三角形的分类 (1) 按角分:①锐角三角形②直角三角形③钝角三角形 (2) 按边分:①不等边三角形②底与腰不等的等腰三角形③等边三角形

人教版八年级数学下精品讲义

第十六章 二次根式 第一节二次根式的相关概念 一、课标导航 二、核心纲要 1.二次根式 形如()0≥a a 的式子叫做二次根式,“ ”称为二次根号. 注:(1)在二次根式中,被开方数a 可以是数,也可以是单项式、多项式、分式等代数式. (2) 0≥a 是a 为二次根式的前提条件. (3)形如()0≥n n m 的式子也是二次根式,它表示m 与n 的乘积. 2.二次根式的性质 (1) ()00≥≥a a 具有双重非负性. (2) () ()02 ≥=a a a . ()() ()()?? ???<-=>==000032a a a a a a a 或()()?? ?<-≥==002a a a a a a 或()()???≤->==002 a a a a a a . 注:(1)化简2 a 时,一般先将它化成a ,再根据绝对值的意义进行化简. (2) ()2 a 与 2a 的区别和联系.

区别:以a2中的a可以取任意实数,而(a)2中的“必须是非负数.当a<0时,(a)2无意义,而a2=-a. 联系:当a≥0时,(a)2=a2=a. 3.非负数的三种常见形式 (1)绝对值:|a|≥0. (2)偶次幂:a2n≥0(n为正整数). (3)二次根式:a≥0(a≥0). 若|a|+b2+c=0,则a=b=c=0 4.积、商的算术平方根的性质 (1)积的算术平方根的性质:ab=a?b(a≥0,b≥0) (2)商的算术平方根的性质:a b= a b (a≥0,b>0). 5.确定二次根式所含字母的取值范围 若二次根式有意义,只要被开方数大于或等于零即可.即当a≥0时,a有意义. 6.最简二次根式 (1)被开方数中不含分母,即根号内无分母,分母内无根号. (2)被开方数中不含能开得尽方的因数或因式,即开方开得尽. 我们把满足上述两个条件的二次根式叫做最简二次根式. 7.同类二次根式 如果几个二次根式化成最简二次根式后,它们的被开方数相同,那么这几个二次根式就叫做同类二次根式. 注:(1)前提条件:二次根式是最简二次根式. (2)被开方数相同. 本节重点讲解:两个性质,三个概念

人教版初二数学下册同步精编讲义

第1讲二次根式 知识点1 二次根式的概念 二次根式的概念:一般地,我们把形如(a≥0)的式子叫做二次根式. 注意:①“”称为二次根号; ②a(a≥0)是一个非负数. 【典例】 【题干】下列各式中:①;②;③;④;⑤, 一定是二次根式的个数是() A.1 B.2 C.3 D.4 【方法总结】 本题考查了二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.根据二次根式的定义进行判断即可.

【随堂练习】 1.(2018春?滨江区期末)当a=﹣3,则=____. 2.(2018春?东西湖区期中)已知是整数,则满足条件的最小正整数n是____. 知识点2 二次根式有意义的条件 二次根式有意义的条件 判断二次根式有意义的条件: (1)二次根式的概念.形如(a≥0)的式子叫做二次根式. (2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数. (3)二次根式具有非负性.(a≥0)是一个非负数. 【典例】 1.若代数式有意义,则x满足的条件是______________. 【方法总结】 本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.根据二次根式的被开方数大于或等于0可以求出x的范围.注意:当二次根式在分母上时还要考虑分母不能等于零.

【随堂练习】 1.(2018春?汶上县期末)若已知a、b为实数,且+2=b+4,则a+b= ___. 2.(2018春?瑶海区期中)若在实数范围内有意义,则x_____. 3.(2018春?黄陂区期中)若x,y为实数,y=,则4y﹣3x的平方根是____. 知识点3 二次根式的性质与化简 二次根式的性质与化简 (1)二次根式的基本性质: ①≥0;a≥0(双重非负性). ②=a(a≥0). ③=|a|= (2)二次根式的化简: ①利用二次根式的基本性质进行化简; ②利用积的算术平方根的性质和商的算术平方根的性质进行化简.=?(a≥0, b≥0),=(a≥0,b>0) (3)化简二次根式的步骤:

(完整)初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中, 关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短” ,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题” 。 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题” ,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直” ,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB 与直线L 的交点P ,就是所求。(根据:两点之间线段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A、B 到它的距离之和最短. 解:只有A、C 、B在一直线上时,才能使AC +BC最小.作点A 关于 直线“街道”的对称点A′,然后连接A ′B,交“街道”于点C,则 点C 就是所求的点. 、一点在两相交直线内部 例:已知:如图A 是锐角∠ MON 内部任意一点,在∠ MON 的两边 OM ,ON 上各取一点B,C ,组成三角形,使三角形周长最小.

解:分别作点A 关于OM ,ON 的对称点A ′,A OM ,ON 于点B、点C ,则点B、点C 即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长 最小 例:如图,A.B 两地在一条河的两岸,现要在河 上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E, 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE 中,∵ AC+CE >AE, ∴AC+CE+MN >AE+MN, 即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。 例:如图,A、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A、B 两地,问该站建在 连接A ′,A ″,分 别交 B

八年级数学培优讲义下册

第十六章 分式 测试1 从分数到分式 学习要求 掌握分式的概念,能求出分式有意义,分式值为0、为1的条件. 课堂学习检测 一、填空题 1.用A 、B 表示两个整式,A ÷B 就可以表示成的形式,如果除式B 中,该分式的分式. 2.把下列各式写成分式的形式: (1)5÷为. (2)(3x +2y )÷(x -3y )为. 3.甲每小时做x 个零件,做90个零件所用的时间,可用式子表示成小时. 4.n 公顷麦田共收小麦m 吨,平均每公顷的产量可用式子表示成吨. 5.轮船在静水中每小时走a 千米,水流速度是b 千米/时,轮船在逆流中航行s 千米所需要的时间可用式子表示成小时. 6.当x =时,分式 1 3-x x 没有意义. 7.当x =时,分式1 1 2--x x 的值为0. 8.分式 y x ,当字母x 、y 满足时,值为1;当字母x ,y 满足时值为-1. 二、选择题 9.使得分式 1 +a a 有意义的a 的取值范围是( ) A .a ≠0 B .a ≠1 C .a ≠-1 D .a +1>0 10.下列判断错误.. 的是( ) A .当32 =/x 时,分式2 31-+x x 有意义 B .当a ≠b 时,分式2 2b a ab -有意义 C .当2 1- =x 时,分式x x 41 2+值为0 D .当x ≠y 时,分式x y y x --2 2有意义 11.使分式 5 +x x 值为0的x 值是( ) A .0 B .5 C .-5 D .x ≠-5 12.当x <0时, x x | |的值为( ) A .1 B .-1 C .±1 D .不确定 13.x 为任何实数时,下列分式中一定有意义的是( ) A .x x 12+ B . 1 1 2--x x C . 1 1 +-x x D . 1 1 2+-x x

(完整)初中数学最短路径问题典型题型复习

初中数学《最短路径问题》典型题型 知识点:“两点之间线段最短” ,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题” ,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直” ,近两年出现“三折线” 转“直”等变式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L 的两侧,在L上求一点P,使得 PA+PB 最小。 解:连接AB, 线段AB 与直线L 的交点P ,就是所求。(根据:两点之间线段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B 提供牛奶,奶站应建在什么地方,才能使从A、B 到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+ BC最小.作点A 关于直线“街道”的对称点A ′,然后连接A′B,交“街道”于 点C,则点C 就是所求的点. 三、一点在两相交直线内部例:已知:如图A是锐角∠ MON内部任意一点, 在∠ MON的两边OM,ON 上各取一点B,C,组成三角形,使三角形周长 最小. 解:分别作点 A 关于 OM,ON 的对称点 A ′, A ″;连接 A′, A ″,分别 交 OM,ON 于点 B、点 C,则点 B、点 C 即为所求 分析:当 AB、BC和 AC三条边的长度恰好能够体现在一条直线上时,三角形的周长 最小 例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能 使从A 到B 的路径AMNB最短?(假设河的两岸是平行的直线,桥要与 河垂直) 解: 1.将点 B 沿垂直与河岸的方向平移一个河宽到E, 2.连接 AE 交河对岸与点 M, 则点 M 为建桥的位置, MN 为所建的桥。 证明:由平移的性质,得BN∥EM 且 BN=EM, MN=CD, BD ∥CE, BD=CE, B

八年级数学下册培优讲义(人教版)

2016年最新人教版八年级数学下册培优辅导讲义 第1讲 二次根式的概念及性质 考点·方法·破译 1.二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一 个非负数时, 才有意义. 非负性:a a ()≥0是一个非负数. 注意:此性质可作公式 记住,后面根式运算中经常用到. 2. ()( )a aa 20 =≥ 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一 个非负数或非负代数式写成完全平方的形式:a a a =≥() ()20 3. a a a a a a 200==≥-3 B 、x ≥3 C 、 x>4 D 、x ≥3且x ≠4 2x 的取值范围是 -4 3 --x x

3、如果代数式mn m 1+ -有意义,那么,直角坐标系中点P (m ,n )的位置在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 【例3】若y=++2009,则x+y= 解题思路:式子(a ≥0), ,y=2009,则x+y=2014 【变式题组】 1、 ,则x -y 的值为( ) A .-1 B .1 C .2 D .3 2、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值 3、当a 1+取值最小,并求出这个最小值 。 4、已知a b 是1 2 a b + +的值 。 5、若3的整数部分是a ,小数部分是b ,则=-b a 3 。 6、若17的整数部分为x ,小数部分为y ,求 y x 1 2+ 的值 . 【例4】若则 . 【变式题组】 1、若0)1(32 =++-n m ,则m n +的值为 。 2、已知y x ,为实数,且()02312 =-+-y x ,则y x -的值为( ) A .3 B .– 3 C .1 D .– 1 3、已知直角三角形两边x 、y 的长满足|x 2 -4|+652+-y y =0,则第三边长 为 . 4、若 1 a b -+() 2005 _____________ a b -=。 【例5】 化简: 的结果为( )A 、4—2a B 、0 C 、2a —4 D 、4 【变式题组】 1、在实数范围内分解因式: 2 3x -= ;4244m m -+= 429__________,2__________x x -=-+= 2、 1-= 5-x x -5a 50 ,50x x -≥??-≥? 5x =2 ()x y =+()2 240a c --=,= +-c b a 21a -+

精品初中数学竞赛专题讲解最短路径问题(最全资料)(骄阳教育)

初中数学竞赛专题讲解最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查. 【十二个基本问题】 【问题1】 作法 图形 原理 在直线l 上求一点P ,使P A +PB 值最小. 连AB ,与l 交点即为P . 两点之间线段最短. P A +PB 最小值为AB . 【问题2】“将军饮马” 作法 图形 原理 在直线l 上求一点P ,使P A +PB 值最小. 作B 关于l 的对称点B '连A B ',与l 交点即为P . 两点之间线段最短. P A +PB 最小值为A B '. 【问题3】 作法 图形 原理 在直线1l 、2l 上分别求点M 、N ,使△PMN 的周长最小. 分别作点P 关于两直线的对称点P '和P '',连P ' P '',与两直线交点即为M ,N . 两点之间线段最短. PM +MN +PN 的最小值为 线段P 'P ''的长. 【问题4】 作法 图形 原理 分别作点Q 、P 关于直线1l 、2l 的对称点Q '和P '连Q 'P ',与两直线交点即为M ,N . 两点之间线段最短. 四边形PQMN 周长的最小值为线段P 'P ''的长. l A B l P B A l B A l P B' A B l 1 l 2 P l 1 l 2 N M P'' P' P l 1l 2 N M Q'Q P l 1l 2 P Q

最新人教版数学八年级下册:全册知识点归纳资料

八年级下册知识点归纳 第十六章 二次根式 1、二次根式: 形如)0(≥a a 的式子。 二次根式必须满足: ①含有二次根号“”;②被开方数a 必须是非负数;③非负性 2、最简二次根式满足的条件: ①被开方数不含分母或小数; ②被开方数中不含能开得尽方的因数或因式的二次根式。 3、化最简二次根式的方法和步骤: (1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。 (2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。 3、二次根式有关公式 (1) )0()(2≥=a a a (2)?? ???===)<()()>(0a a -0a 00a a 2a a (3)乘法公式)0,0(≥≥?=b a b a ab (4)除法公式)0,0(φb a b a b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。 5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。

第十七章 勾股定理 1. 勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么222c b a =+. 2.勾股定理逆定理:如果三角形三边长a,b,c 满足222c b a =+。,那么这个三角形是直角三角形。 3. 互逆命题:题设、结论正好相反的两个命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 4.直角三角形的性质 (1)直角三角形的两个锐角互余。 (2)在直角三角形中,30的角所对的直角边等于斜边的一半。 (3)如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 222c b a =+. (4)、直角三角形斜边上的中线等于斜边的一半 5、摄影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项。 ① BD AD CD ?=2 ②AB AD AC ?=2③ AB BD BC ?=2 6、常用关系式 由三角形面积公式可得:AB ?CD=AC ?BC 第十八章 平行四边形 1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。 2、平行四边形的性质: ⑴平行四边形的对边相等; ⑵平行四边形的对角相等; ⑶平行四边形的对角线互相平分。

初二数学最短路径问题知识归纳+练习

初二数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题- 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题- 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.

在直线l 上求一点P ,使PB PA -的值最大. 作直线AB ,与直线l 的交 点即为P . 三角形任意两边之差小于 第三边.PB PA -≤AB . PB PA -的最大值=AB . 【问题11】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作B 关于l 的对称点B '作直线A B ',与l 交点即为 P . 三角形任意两边之差小于 第三边.PB PA -≤AB '. PB PA -最大值=AB '. 【问题12】“费马点” 作法 图形 原理 △ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小. 所求点为“费马点”,即满足∠APB =∠BPC =∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P , 点P 即为所求. 两点之间线段最短. P A +PB +PC 最小值=CD . 【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一 点P ,使PD +PE 的和最小,则这个最小值为( ) A .3 B .26 C .3 D 6 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32+ D .4 l B A l P A B l A B l B P A B' A B C P E D C B A A D E P B C

北师大版初三数学下册二次函数中的最短路径问题

二次函数中的最短路径问题 教学目标:能利用轴对称解决二次函数中简单的最短路径问题,体会转化思想。 教学重点:利用轴对称将“最短路径问题”转化为“两点之间,线段最短”问题。 教学难点:确定最短路径的作图及说理。 教学过程: 一、复习回顾 课本原型:(七年级下册)如图,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A,B到它的距离之和最短? 学生回顾基本解法:对称性基本依据:两点之间,线段最短。 二、例题分析15例:已知抛物线, ,OA的中点P出发,先到达对称轴上点F①若一个动22x yx22 点M从的位置,并求FA最后运动到点。确定使点M运动的总路径最短的点. 出这个最短路程的长,再Ex②若一个动点M从P出发,先到达轴上的点 运动的总。确定使点,最后运动到点到达抛物线的对称轴上点FAM. 、点E路径最短的点F的位置,并求出这个最短路程的长

y A x o (PF+AF) 点运功的路程是哪些线段的和?(1)M分析:最短作法是什么?使(PF+AF) 三点共线)F、A(利用对称性,使P、、P两点中哪个点关于对称轴的对称点简便?为什么?取 A 结合图形,怎样求(PF+AF)的最小值? (PE+EF+FA) )这里M点运功的路程是哪些线段的和?(2、求三条线段和的最小值作法是什么?(利用对称性,使P A四点共线)E、F、 P两点中哪个点关于对称轴的对称点简便?为什么?作A、结合图形求解。总结:对比这两个题的解法,找区别与联系。三、课堂练习 CB,的坐标分别为练习1:如图,在直角坐标系中,点A,三点的抛物线

的,,BC,过00(3,),(,3)A,0-1(,)上一动点.ll对称轴为直线,D为对称轴 1()求抛物线的解析式;的坐标;D最小时点AD+CD)求当2(. 为半径作⊙A.3()以点A为圆心,以AD 与⊙A相切;求证:当AD+CD的最小时,直线BD ,)1 (,:练习2如图,在平面直角坐标系中,点A的坐标为3的面积是, X轴上△AOB点在B3(1)求点B的坐标; (2)求过点A、O、B的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;

相关文档
相关文档 最新文档