文档库 最新最全的文档下载
当前位置:文档库 › 永磁同步电机永磁体涡流损耗计算与研究解读

永磁同步电机永磁体涡流损耗计算与研究解读

永磁同步电机永磁体涡流损耗计算与研究解读
永磁同步电机永磁体涡流损耗计算与研究解读

密级:内部高速电主轴永磁同步电机永

磁体涡流损耗计算研究

The calculation and analysis of

high-speed spindle permanent magnet motor eddy current losses in the permanent magnet

学院:电气工程学院

专业班级:电气工程及其自动化0903班

学号:

学生姓名:

指导教师:(副教授)

2013 年 6 月

摘要

永磁同步电机是由永磁体建立励磁磁场的同步电机,电机结构较为简单,降低了加工和装配费用,提高了电机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电机的效率和功率密度。当外磁场发生变化时,永磁体就会产生涡流导致发热。因此,很有必要对转子永磁体内的涡流进行计算和分析,并采取相应的解决办法。

本文主要运用了有限元软件对高速电主轴永磁电机永磁体的涡流损耗进行分析,以得到永磁体涡流损耗的大小和分布规律,并研究永磁体涡流损耗的影响因素,从而为减小永磁体涡流损耗提供依据。

首先建立高速电主轴永磁电机有限元模型,对模型进行激励源加载和剖分,为涡流损耗的分析奠定基础;然后采用上述模型,计算得到永磁体内涡流损耗的大小和分布;分析正弦波供电和变频器供电下永磁体涡流损耗的特点;最后着重研究不同极槽数、转子磁路结构对永磁体涡流损耗的影响,提出减小涡流损耗的措施,为提高电机性能奠定基础。

针对永磁同步电机自身的特点,通过二维电磁场有限元方法分别求解了空载时和负载时电机永磁体内的涡流。采用了瞬态分析,根据瞬态计算出的数据绘出了涡流损耗波形,并得出永磁体内的涡流损耗分布图。最后通过分析波形得出了影响永磁体内涡流的因素以及应采取的措施。

关键词:永磁同步电机;永磁体;涡流损耗;有限元法

I

Abstract

Because of the magnetic field which is built by permanent magnet, permanent magnet synchronous motor (PMSM) has simplified structure and low cost for its machining and installation. Besides, the operational reliability has also been improved. Benefiting from the absence of the exciting current and the excitation loss, the efficiency and the power density have increased.. The eddy current induced in permanent magnet often lead to heat when the external magnetic field is time-varying. So it is necessary to calculate and analyze the eddy current in rotor and to find solutions.

The paper mainly uses the finite element analysis software to analyze high-speed spindle permanent magnet motor eddy current losses in the permanent magnet , so that to get the value and distribution of it. The same time it can study the factors of eddy current loss in the permanent magnet , so as to provide the basis for reducing the eddy current loss.

Firstly, finite element model of the high-speed spindle permanent magnet motor is founded , and the model would be load the excitation source and split , all are laying the foundation for the analysis of eddy current loss ; Then using the above model ,to calculate the value and distribution of eddy current loss in the permanent magnet; characteristics of eddy current loss the permanent magnet under the sine wave power and inverter power is analyzed later; finally focusing on different poles number of slots, the structure of rotor magnetic circuit affect the eddy current loss in the permanent magnet , and take the measures to reduce eddy current loss , to lay the foundation for improving motor performance.

Based on the actual structure of disc type permanent magnet synchronous machines, the magnet field of the machine and the eddy current in the rotor are solved by two-dimensional finite element method (FEM). The calculation is carried out under the condition of load and no-load, respectively. It includes the eddy current caused by the teeth of the stator and the different eddy currents under different running speed conditions. After solution, the magnetic vector potential waveforms

II

and the eddy current waveforms are drawn according to the result data, and distribution figures of the eddy current losses are also obtained. Some influencing factors on the eddy current in the permanent magnet are concluded. Some effective measures are taken according to the analysis of the waveforms.

Keywords: permanent magnet motor;permanent magnets;eddy current loss;finite element method

III

目录

摘要 ........................................................................................................................ I Abstract ......................................................................................................................... II 第1章绪论 .. (1)

1.1高速电主轴永磁同步电机国内外发展状况 (1)

1.2 永磁体涡流损耗的研究现状 (3)

1.3 本课题研究意义及内容 (5)

1.3.1 本课题研究的意义 (5)

1.3.2 本课题研究的内容 (5)

第2章永磁电机转子永磁体内的瞬态场及其分析方法 (7)

2.1 电机电磁场的基本理论依据 (7)

2.1.1 电机电磁场的数理基础 (7)

2.1.2 边界条件的类型及处理方法 (8)

2.2 二维瞬态场分析的特点及其数学模型的建立 (9)

2.3 高速永磁同步电机永磁体内瞬态场的求解 (12)

2.3.1 求解电机电磁场问题的数学方法 (12)

2.3.2 分析涡流场的具体方法 (14)

第3章高速永磁同步电机永磁体内涡流损耗的计算分析 (15)

3.1 永磁体涡流损耗的有限元计算分析 (15)

3.1.1 转子内永磁体涡流损耗的计算 (16)

3.1.2 空载情况下永磁体涡流损耗的计算与分析 (16)

3.1.3 负载情况下永磁体涡流损耗的计算与分析 (19)

3.1.4 不同极槽配合永磁体涡流损耗对比分析 (21)

3.2 本章小结 (23)

第4章分析永磁体涡流损耗对永磁电机性能影响 (25)

4.1 永磁体涡流损耗的影响因素 (25)

4.2 减小永磁体涡流损耗的措施 (27)

第5章总结 (29)

参考文献 (31)

致谢 (34)

I

第1章绪论

1.1高速电主轴永磁同步电机国内外发展状况

永磁电机具有节能高效、结构简单等一系列优点,在当今世界能源短缺的情况下,备受国内外专家学者和业内人士的普遍关注,是电机行业发展中的热点话题,其应用领域也正在不断地扩展。国内外研究人员在永磁电机的性能分析、优化设计等方面也作出了许多研究工作,在电磁场数值计算与电机性能方面取得了许多的研究成果。由于永磁同步发电机不需要直流励磁电源与励磁绕组,容易出问题的集电环和电刷装置则被取消了,成为永磁无刷电机,因此,其结构较为简单,运行可靠性得到提高。

高速电主轴永磁同步电机的出现,主要是因为轴承加工行业,内圆磨削的需要。因为内圆磨削。砂轮直径小,要达到一定的磨削线速度,主轴转速必须足够高。异步电主轴在磨削领域,已经成功应用了很长时间,但由于其带载特性较差,很难实现大吃刀强力磨削。为了提高磨削效率,机床厂家不断提升异步电主轴的功率。就是这样,也无法避免带载就掉速的问题,永磁同步电主轴由于电机特性硬,闭环响应速度快,主轴吃刀带载几乎不调速,对磨削效率和质量都有非常明显的促进。

图1- 1 车床用高速电主轴永磁同步电机

1

图1- 2 电主轴永磁同步电机

永磁同步电主轴与传统电主轴的最大区别是采用了稀土永磁同步电机作为主轴的驱动动力源,除此之外,基本结构与异步电机驱动的电主轴结构基本相同。相对于异步电主轴的诸多不足,永磁同步电主轴具有体积小,转矩密度高,低速大转矩输出,转子发热小等优势,尤其是较高的动态响应速度,很容易实现较高的稳速精度和快速正反转切换,特别适合高速刚性攻丝。但永磁同步电机也有其不足,就是高速运行时需要很好的弱磁扩速控制策略,高速范围不如异步电主轴宽;高精度的控制则需要性能较高的驱动技术支持。稀土磁钢和高性能驱动器的应用则导致永磁同步电主轴的成本远远高于异步电主轴。

而在交流电动机中,永磁同步电动机在稳定运行时的转速与电源频率保持恒定的关系,这一固有特点使得它可以直接用于开环的变频调速系统中,尤其对于由同一变频电源供电的多台电机要求精确的同步的传动系统中也适用,这样就可以将控制系统简化,还可以实现无刷运行,而且由于其比较高的效率和功率因数可以使价格昂贵的配套变频电源的容量减小,因而越来越广泛的应用在各种调速系统中。与过去使用的直流电动机相比,电机的体积减小大概60%左右,总损耗降低20%左右,而且省去了电刷和换向器,维护起来也比较方便。

在诸多的国外科学等领域研究中,Takachashi等人在1994年研制出一台5kW,150000r/min表贴式高速永磁同步电机,该电机的转子磁极采用剩磁较大的钕铁硼材料,转子永磁体保护套采用电阻率较大、拉伸强度较好的玻璃钢材料,该永磁电机是采用电流型逆变器进行供电,有效气隙长度为6mm,是普通永磁

同步电机的10倍多,电机效率高达90%[1]。在2006年Han-Wook Cho等人对于

2

永磁同步电机学习笔记

1.内功率因数角:定子相电流与空载反电势的夹角,定子相电流超前时为正。 2.功率角(转矩角):外施相电压超前空载反电势的角度,是表征负载大小的象征。 3.功率因数角:外施相电压与定子相电流的夹角。 4.内功率因数角决定直轴电枢反应是出于增磁还是去磁状态的因素。 5.实际的空载反电势由磁钢产生的空载气隙磁通在电枢绕组中感应产生,当实际反电势大于临界反电势时,电动机将处于去磁工作状态。空载损耗与空载电流是永磁电机出厂试验的两个重要指标,而空载反电势对这两个指标的影响尤其重大。空载反电势变动时空载损耗和空载电流也有一个最小值,空载反电势设计得过大或过小都会导致空载损耗和空载电流的上升,这是因为过大或过小都会导致空载电流中直轴电流分量急剧增大的缘故。还对电动机的动、稳态性能均影响较大。永磁机的尺寸和性能改变时,曲线定子电流I=f(E)是一条V形曲线。(类似于电励磁同步机定子电流和励磁电流的关系曲线) 6.由于永磁同步电动机的直轴同步电抗一般小于交轴同步电抗,磁阻转矩为一负正弦函数,因而矩角特性曲线上最大值所对应的转矩角大于90度,而不像电励磁同步电机那样小于90度。这是一个特点。 7.工作特性曲线: 知道了空载反电势、直轴同步电抗、交轴同步电抗和定子电阻后,给出一系列不同的转矩角,便可以求出相应的输入功率,定子相电

流和功率因数,然后求出电动机在此时的损耗,便可以得到电动机出去功率和效率,从而得到电动机稳态运行性能与输出功率之间的关系曲线,即为电动机工作曲线。 8.铁心损耗: 电动机温度和负载变化导致磁钢工作点改变,定子齿、轭部磁密也随之变化。温度越高,负载越大,定子齿、轭部的磁密越小,铁耗越小。工程上采用与感应电机铁耗类似的公式,然后进行经验修正。 9.计算极弧系数: 气隙磁密平均值与最大值的比值。它的大小决定气隙磁密分布曲线的形状,因而决定励磁磁势分布的形状、空气隙的均匀程度以及磁路的饱和程度。其大小还影响气隙基波磁通与气隙总磁通比值,即磁钢利用率,和气隙中谐波的大小。 10.永磁电机气隙长度: 是非常关键的尺寸。尽管他对于永磁机的无功电流影响不如感应电机敏感,但对于交直轴电抗影响很大,继而影响电动机的其他性能。还对电动机的装配工艺和杂散损耗影响较大。 11.空载漏磁系数: 是很重要的参数,是空载时总磁通与主磁通之比,是个大于1 的数,反映空载时永磁体向外磁路提供的总磁通的有效利用程度。空载漏磁系数以磁导表示的表达式又正好是负载时外磁路应用戴维宁定理进行等效转换的变换系数,同时由于负载情况的不同,电枢磁动势大小不同,磁路的饱和程度也随之改变,气隙磁导、漏磁导

铁芯损耗中的磁滞损耗和涡流损耗的区分

1 变压器铁芯损耗中的磁滞损耗和涡流损耗的区分 (盐城师范学院, 江苏 盐城 224002) [摘要] 本文介绍了用测试手段区分变压器铁芯损耗中的磁滞损耗和涡流损耗的基本方法,着重阐述了测试原理,测试装置和测试方法以及测试数据处理方法. [Summary] The text emphatically expounded testing principle, testing device, testing method and the method of dealing with testing data. This article introduced the basic method of distinguishing the magnetic resistance wastage and eddy current wastage of transformer core wastage by testing. 关键词 磁滞损耗 涡流损耗 区分方法 0 引言 在变压器铁芯损耗中包含着磁带损耗和涡流损耗,即:()()()c h FC P P P 涡流损耗磁滞损耗铁损+= 通常的电机测试(如变压器铜铁损的测量)仅是测出总的铁损FC P ,而不能进一步区分出其中的磁滞损耗分量和涡流损耗分量。 本文将简要地介绍一下我们用测试的方法来区分铁芯损耗中的磁带损耗和涡流损耗测试原理,采用测试装置,设计的测试方法以及测试结果的验证方法。 1 测试原理 在通常情况下,铁芯损耗的计算公式为: V B f V fB P P P m c m h c a FC 22 2 σσ+=+= (1) 上式是一经验公式,式中h σ,c σ均为与铁芯材料性质有关的系数,f 为电源频率,m B 为铁芯中磁感应强度的最大值,V 为铁芯材料的体积。 令(1)式中的A V B m h =2 σ,B V B m c =2σ,得: 2Bf Af P Fe += (2) 可见,当维持m B 不变时,A 、B 均与频率无关的常数。则有: Bf A f P FC += (3) 依据(3)式,在中心频率为50Hz 附近取一系列不同的频率值,分别测出其对应的Fe P 值,采用线性回归法对测试数据进行处理,即可得到(3) 式中的两个常数A 和B 。由Af P h =和2 Bf P c =即可区分出对应于某一f 值的Fe P 中的h P 分量和 c P 分量。 2 测试装置 1.被测样品:TB 单相变压器。(原边额定电压为220伏,副边为36伏。原边绕组匝数为1000匝,副边绕组匝数为180匝,额定容量为500V A 。) 2.变频电源:SDF-1型直流电动同步发电机组及KGT-1型可控调速器。 3.频率表:Hz D ?3型频率表。 4.功率表:W D ?34型低功率因数瓦特表。测试采用该表的300伏电压档和0.5安电流档。 5.电压表:V D ?26型电压表及MF-10万用表。本次测试采用上述两表的300伏档和50伏档,分别用于测量测试电路中的1U 值和2U 值。 6.电流表:A D ?26型电流表,本次测试采用该表的0.5安档。 3 测试方法 1. 实验装置的电路原理图如下: 2. 在测试中,在改变f 值时应始终保持m B 值不变。

关于Ansoft maxwell中电机铁耗和涡流损耗计算的说明

考虑到最近很多人在问这个问题,因此专门整理出来,供新手参考。 先谈一下什么情况下需要做铁耗分析。对常规交流电机(同步或者异步电机),只有定子铁心才会产生铁耗,转子铁心是没有铁耗的,学过电机的人都明白的。因此,只需要对定子铁心给出B-P曲线(也就是铁损曲线)。注意,B-P 曲线分为单频和多频两种,能给出多频损耗曲线最好,这样maxwell算得准些。设置完铁损曲线以后,还要记得在excitations/set core loss,对定子铁心勾选才行。此时,不需要给定子和转子铁心再施加电导率,这是初学者容易忽视的问题。后处理中,通过result/create transient reports/core loss查看铁耗随时间变化曲线。 再谈一下什么情况下需要做涡流损耗分析。对永磁电机,永磁体受空间高次谐波的影响,会在表面产生涡流损耗;对实心转子电机,由于是大块导体,因此涡流损耗占绝大部分。以上两种情况需要考虑做涡流损耗分析。现以永磁电机为例,具体阐述。对永磁体设置电导率,然后对每个永磁体分别施加零电流激励源,在excitations/set eddy effect,对永磁体勾选。注意,若只考虑永磁体的涡流损耗,而不考虑电机其他部分(定转子铁心)的涡流损耗,则只需要给永磁体赋予电导率值,其他部件不需要赋电导率,这是初学者容易搞错的地方。简而言之,只对需要考虑涡流损耗的部件,施加电导率,零电流激励和set eddy effect。后处理中,通过results/create transient reports/retangular report/solid loss查看涡流损耗随时间变化曲线。最后,再次强调一下,做涡流损耗分析,需要skin depth based refinement 网格剖分才行。 以上方法,适用于Ansoft maxwell 13.0.0及以上版本,并适用于所有电机种类。 一、 MAXWELL分析磁场时,电气设备或电气元件(无论是电机还是变压器)主要包括两个部分,一个是励磁线圈,另外一个是磁性材料。所以总的损耗包括线圈损耗(也叫铜损)和磁芯损耗(也叫铁损)两个部分。其中线圈损耗还包括直流损耗(也就是直流电阻的损耗)和交流损耗(交流电流下的趋肤效应和邻近效应产生的损耗),这个交流损耗也叫做涡流损耗,在涡流场和瞬态场中可以通过设置EDDY EFFECTS来计算。而铁损只能在瞬态场中计算。铁损的计算,主要是由磁芯材料供应商提供的各种频率和工作磁感应强度下的测试数据为基础,使用STEINMETZ方程式,采用插值法得到的。这个铁损已经包含了磁芯的所有损耗,即:磁滞损耗,涡流损耗和剩余损耗。铁损的计算分两种,一种主要是软磁铁氧体(POWER FERRITE),另外一种主要是矽钢片(ELECTRICAL STEEL),两种计算公式不同。 二、 SOLIDLOSS(实体导体损耗)是指任何导体材料的损耗,既可以包含源电流,又可以有涡流电流。 SOLID CONDUCTOR(实体导体)又包含两种,一种是主动导体,即有外加电流的导体,另外一种 是被动导体,即没有外加电流。被动导体又有两种情况,短路和开路。定子和转子其实就是被动导体 ,当然有涡流存在,也就是一种SOLIDLOSS。其实应该还有一种导体损耗,DISPLACEMENT (位移电流),但是通常都很小,一般用于交变电场分析,磁场中很少用。 三、关于powerloss和coreloss

永磁同步电机基础的知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势, 忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相

静止坐标系的变换,如下式所示。 cos sin 22 cos()sin() 33 22 cos()sin() 33 a d b q c u u u u u θθ θπθπ θπθπ ?? ? - ??? ?? ?? =--- ? ?? ?? ?? ?? ? +-+ ?? (2)d/q轴磁链方程: d d d f q q q L i L i ψψ ψ =+ ?? ? = ?? 其中,ψf为永磁体产生的磁链,为常数,0 f r e ω ψ=,而c r p ω ω=是机械角速度,p为同步电机的极对数,ωc为电角速度,e0为空载反电动势,其值为每项 倍。 (3)转矩方程: 3 2 e d q q d T p i i ψψ ?? =- ?? 把它带入上式可得: 3 () 2 33 () 22 e f q d q d q f q d q d q T p i L L i i p i p L L i i ψ ψ ?? =+- ?? =+- 对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq,则不存在磁阻转矩,此时,转矩方程为: 3 2 e f q t q T p i k i ψ == 这里, t k为转矩常数, 3 2 t f k pψ =。

新能源汽车驱动电机电磁力及损耗计算

新能源汽车驱动电机电磁力及损耗计算CaseStudy

?基于已有总成外壳、定子结构尺寸,设计电机转子结构 ?定子结构保持不变 ?定子轴长:170 mm ?定子槽数:48槽 ?定子内径D:142 mm

?基于整车参数确定电机性能规格要求 整车参数 开发目标

?电机性能需求估算?电机最高转速: n max=i?v max 0.377r = 8.048?120 0.377?0.313 ≈8185rpm 考虑10%余量,电机最高转速要求n max>9003rpm ?电机额定功率:(按30min最高持续车速100km/h确定)P e≈29.6kW ?电机额定转速:(按车辆常规转速60km/h确定)n e=i?v50 0.377r = 8.048?60 0.377?0.313 ≈4092rpm T e=9550?P e n e ≈70Nm ?电机额定转矩:

?电机性能需求估算 ?电机最大功率、最大扭矩: n max_100=i?v max 0.377r = 8.048?100 0.377?0.313 ≈6821rpm持续100km/h运行30min电机转速 T vmax_100≥mgf+ C D AV2 21.15 i?η ≥39.5Nm ?由爬坡及0-100km/h加速计算: T max≥220Nm P max≈89kW

?电机性能需求参数表:峰值功率(kW)≥ 89额定功率(kW)≥ 29峰值扭矩(Nm)≥ 220额定扭矩(Nm)≈ 70最高转速(rpm)≥ 9000额定转速(rpm)≈ 4092 ?基于FluxMotor的快速设计 转子:8极 选用V型转子结构 气隙长度:0.8mm

电机损耗计算

Power loss:这个名词,出现在11及之前的版本。指的是感应电流对应的铜耗。比如鼠笼式异步电机转子导条铜耗,永磁体涡流损耗等。在12及更高版本中,该名词已更名为Solidloss。 Solidloss:如上解释,出现在12及更高版本中,指的是大块导体中感应电流产生的铜耗。Coreloss:铁耗。指的是根据硅钢片厂商提供的损耗曲线,求得的铁耗。 Ohmic_loss:感应电流产生的损耗的密度分布。也就是Powerloss或Solidloss的密度。Stranded Loss R:电压源(非外电路中的)对应的绞线铜耗。 Stranded Loss:电流源,外电路中的电压源或电流源,对应的绞线铜耗。 铜耗问题,阐述如下。 铜耗分为2部分,一是主动导体产生的,比如异步和同步电机定子绕组;二是被动导体产生的,比如鼠龙式异步电机转子导条。主动导体一般是多股绞线(也就是stranded),被动导体一般是大块导体(solid)。它们分别对应stranded loss(R)和solid loss。 主动导体损耗:需要设置导体为stranded,并施加电压源,电流源或外电路。当施加的是电压源时,并且给定电机相电阻和端部漏电感(此处针对二维模型)值,则后处理中results/create transient report/retangular report/stranded loss R就是主动导体的损耗,比如异步或同步电机的定子铜耗。当施加的是电流源,外电路中的电压源或电流源时,后处理中results/create transient report/retangular report/stranded loss就是主动导体的损耗。建议选用电压源方法计算铜耗,因为电阻值是由用户指定的,而不是软件根据截面积和长度自动计算出来的,这样可以算得比较准确。 被动导体损耗:只需要给定被动导体的电导率,并且set eddy effect,则后处理中solidloss 即是被动导体的损耗,比如鼠龙式异步电机转子导条。这有点类似于涡流损耗的计算方法,因为涡流损耗和被动导体损耗,都是在非零电导率的导体上产生的。 以上方法,基于Ansoft maxwell 13.0.0及以上版本,并且适用于任何电机。 铁耗分析 对常规交流电机(同步或者异步电机),只有定子铁心才会产生铁耗,转子铁心是没有铁耗的,学过电机的人都明白的。因此,只需要对定子铁心给出B-P曲线(也就是铁损曲线)。注意,B-P曲线分为单频和多频两种,能给出多频损耗曲线最好,这样maxwell算得准些。设置完铁损曲线以后,还要记得在excitations/set core loss,对定子铁心勾选才行。此时,不需要给定子和转子铁心再施加电导率,这是初学者容易忽视的问题。后处理中,通过result/create transient reports/core loss查看铁耗随时间变化曲线。 再谈一下什么情况下需要做涡流损耗分析。对永磁电机,永磁体受空间高次谐波的影响,会在表面产生涡流损耗;对实心转子电机,由于是大块导体,因此涡流损耗占绝大部分。以上两种情况需要考虑做涡流损耗分析。现以永磁电机为例,具体阐述。对永磁体设置电导率,然后对每个永磁体分别施加零电流激励源,在excitations/set eddy effect,对永磁体勾选。注意,若只考虑永磁体的涡流损耗,而不考虑电机其他部分(定转子铁心)的涡流损耗,则只需要给永磁体赋予电导率值,其他部件不需要赋电导率,这是初学者容易搞错的地方。简而言之,只对需要考虑涡流损耗的部件,施加电导率,零电流激励和set eddy effect。后处理中,通过results/create transient reports/retangular report/solid loss查看涡流损耗随时间变化曲线。最后,再次强调一下,做涡流损耗分析,需要skin depth based refinement 网格剖分才行。

效率与损耗

损耗与效率 §1 概述 一、损耗与效率的关系 效率是电机的一个重要性能指标 ↑↑↓→↓↓∑耗材尺寸,,,:,δδB A p B A 效率高低取决→损耗大小p ∑→ 材料性能、绕组型式、电机结构等 高效电机就是设法降低电机的损耗、多用材料。 二、电机损耗分类 铁心中的基本损耗——主要是主磁场在铁心中交变产生的磁滞、涡流损耗 表面损耗:定转子开槽而引起的气隙磁导谐 波磁场在对方铁心表面产生的损耗 空载铁心中附加损耗 脉振损耗:定、转子开槽使对方齿中磁通因电机旋 损耗 转而变化所产生的损耗 电气损耗:工作电机在绕组铜中产生的损耗,包括接触损耗 负载时附加损耗:漏磁场包括谐波磁场在定、转子绕组中、铁心及结构件中引起的各 种损耗 机械损耗:通风损耗、轴承磨擦损耗、电刷和换向器(集电环)磨擦损耗 §2 基本铁耗 产生的原因:由主磁场在铁心内发生变化时所产生的 主磁场的变化:①交变磁化性质:变压器铁心、定转子齿中发生 ②旋转磁化性质:定、转子铁轭中发生的

一、磁滞损耗 1、磁滞损耗系数:单位质量铁磁物质内由交变磁化引起的磁滞损耗h p 2、磁滞损耗耗系数计算 在电机铁心内磁通密度T B 6.10.1≤≤时: 磁密振幅 交变磁化的频率下测在周波频率取决于材料性能的常数------=B f HZ fB p h h h h ) 50(2σσσ (h p 与f 、B 有关,与材料有关) 任意频率下: 2 50 B f p h h σ= 3、旋转磁化引起的磁滞损耗一般较交变磁化放大45-65%(轭磁密一般在1.0-1.5T ) 这在以后计算基本铁耗时用系数a k 考虑。 二、涡流损耗 1、产生的原因: 铁心中的磁场发生变化时,在铁心中感应电势,会产生电流,这电流即涡流。由它引起的损耗为涡流损耗。 2、涡流损耗系数计算 电阻率 钢片密度钢片厚度------??= =ρρπσσFe Fe Fe Fe e e e d d fB p 6) (222 任意频率下: 2)50 ( B f p e e σ= 涡流损耗系数e p 与B 、f 及材料厚度平方Fe ?成正比。 三、轭部及齿部的基本铁耗 1、钢的损耗系数(比损耗) 22)50 (50B f B f p p p e h e h Fe σσ+=+= 2、钢比损耗简便计算 3 .125010 )50 ( f B p p Fe = (瓦/公斤)

Maxwell 铁耗计算和涡流损耗

Maxwell help文件 为Maxwell2D/3D的瞬态求解设置铁芯损耗 一、铁损定义(core loss definition) 铁损的计算属性定义(Calculating Properties for Core Loss(BP Curve) 要提取损耗特征的外特性(BP曲线),先在View/EditMaterial对话框中设置损耗类型(Core Loss Type)是硅钢片(Electrical Steel)还是铁氧体(Power Ferrite)。 以设置硅钢片为例。 1、点击Tools>Edit Configured Libraries>Materials. 或者,在左侧project的窗口中,往下拉会有一个文件夹名为definitions,点开加号,有个materials文件夹,右击,选择Edit All Libraries.,“Edit Libraries”对话框就会出现。 2、点击Add Material,“View/Edit Material”对话框会出现。 3、在“Core Loss Type”行,有个“Value”的框,单击,会弹出下拉菜单,可以拉下选择是硅钢片(Electrical Steel)还是铁氧体(Power Ferrite)。 其他的参数出现在“Core Loss Type”行的下面,例如硅钢片的Kh,Kc,Ke,and Kdc,功率铁氧体的Cm,X,Y,and Kdc。如果是硅钢片,对话框底部的“Calculate Properties for”下拉菜单也是可以使用的,通过它可以从外部引入制造厂商提供的铁损曲线等数据(Kh,Kc,Ke,and Kdc)确定损耗系数(Core Loss Coefficient)。 4、如果你选择的是硅钢片,按如下操作: ①从对话框底部的“Calculate Properties for”下拉菜单中选择损耗系数的确定方法(永磁铁permanent magnet、单一频率的铁损core loss at one frequency、多频率的铁损core loss versus frequency),然后会蹦出BP曲线对话框。 单一频率的损耗:点击图表上面的“Import from file.”可以直接导入BP曲线数据文件,但要“*。Tab”格式文件。如果纵横轴错了,可以点击“Swap X-Y Data”按钮,调换B轴和P 轴的数据,但是B轴和P轴的方向不变。或者直接在左侧的表格中填入对应的B值和P值,行不够了可以点击“Add Row Above”按钮,和“add row below”分别从上面和下面添加行,“append rows”是一口气加好几行,或者删除行“delete rows”。表下面的“frequency”表示当前的BP曲线是在什么频率下的性能。“Thickness”表示硅钢片的厚度,“conductivity”是电导率。点击“OK”确定。 多频率的损耗:打开对话框后左下方有个“Edit”窗口,是添加要设定BP曲线的频率的。分别加上几个频率,如1Hz和2Hz。每填写一个赫兹点一下“Add”按钮,就会把频率添加到上面的表格中。在相应的频率后面有“Edit dataset”按钮,点击可进入BP曲线编辑页面。与单一的相同,可以导入文件或者自己填写BP曲线数据。填完点击“OK”按钮。右侧的图中就会出现设定的BP曲线。在图标下面选择“select frequency”显示单一的左侧亮蓝色的频率下的BP曲线,选择“All frequencies”显示所有频率下的BP曲线。选择“original curve”则BP曲线的第一个点需要从0开始。选择“Regression Curve”则,图中不仅显示设定的BP曲线,还会附加一条BP值的增长趋势曲线。 ②确定BP曲线 ③在“Core Loss Unit”对话框里选择BP曲线的单位 ④输入频率Frequency、硅钢片质量密度Mass Density、导电率Conductivity、厚度Thickness 的值和单位。 Kh——滞后系数(Hysteresis Coefficient) Kc——经典涡流系数(Classical Eddy Coefficient) Ke——过量系数(Excess Coefficient) Kdc——考虑直流偏磁效应的系数

永磁同步电机永磁体涡流损耗计算与研究解读

密级:内部高速电主轴永磁同步电机永 磁体涡流损耗计算研究 The calculation and analysis of high-speed spindle permanent magnet motor eddy current losses in the permanent magnet 学院:电气工程学院 专业班级:电气工程及其自动化0903班 学号: 学生姓名: 指导教师:(副教授) 2013 年 6 月

摘要 永磁同步电机是由永磁体建立励磁磁场的同步电机,电机结构较为简单,降低了加工和装配费用,提高了电机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电机的效率和功率密度。当外磁场发生变化时,永磁体就会产生涡流导致发热。因此,很有必要对转子永磁体内的涡流进行计算和分析,并采取相应的解决办法。 本文主要运用了有限元软件对高速电主轴永磁电机永磁体的涡流损耗进行分析,以得到永磁体涡流损耗的大小和分布规律,并研究永磁体涡流损耗的影响因素,从而为减小永磁体涡流损耗提供依据。 首先建立高速电主轴永磁电机有限元模型,对模型进行激励源加载和剖分,为涡流损耗的分析奠定基础;然后采用上述模型,计算得到永磁体内涡流损耗的大小和分布;分析正弦波供电和变频器供电下永磁体涡流损耗的特点;最后着重研究不同极槽数、转子磁路结构对永磁体涡流损耗的影响,提出减小涡流损耗的措施,为提高电机性能奠定基础。 针对永磁同步电机自身的特点,通过二维电磁场有限元方法分别求解了空载时和负载时电机永磁体内的涡流。采用了瞬态分析,根据瞬态计算出的数据绘出了涡流损耗波形,并得出永磁体内的涡流损耗分布图。最后通过分析波形得出了影响永磁体内涡流的因素以及应采取的措施。 关键词:永磁同步电机;永磁体;涡流损耗;有限元法 I

软磁材料的损耗(一)

软磁材料的损耗(一) 铁氧体磁性材料处在随时间变化的磁场中,材料所吸收的并以热形式耗散的能量,称为磁性材料的损耗。在低磁通密度下,铁氧体磁性材料的损耗可用损耗角正切 tgò来表示: (1-13) 式中。Rs=仅由磁芯引起的测量线圈的串联电阻(Ω)Ls =带磁芯线圈的串联电感(H) f = 频率(Hz) tgò 损耗角正切的倒数,称为品质因数,用 Q 表示 (1-14) 众所周知,铁氧体磁性材料的总损耗包括涡流损耗tgòe,磁滞损耗 tg òh 以及剩余损耗 tgòr,即: tgò=tgòe+tgòh+tgòr (1-15) 涡流损耗与材料电阻率,磁芯尺寸及使用频率有关,并可由下面近似公式表示: (1-16) 式中,ρ= 材料的电阻率,d = 磁芯尺寸,β=系数。对厚度为 d 的

薄片,β=6;对直径为 d 的园柱体,β=16。在弱磁场条件下,由磁滞现象引起的损耗角正切由下式表示: tgòh=ηBμeB (1-17) 式中,ηB = 材料磁滞常数(T1)B = 测量时磁芯中磁感应强度的峰值(T)μe = 磁芯的有效磁导率。总损耗减去涡流损耗和磁滞损耗的差值,称为剩余损耗。在低频弱磁场条件下,因为频率低,涡流损耗可以忽略,且弱磁场下磁滞损耗很小,所以实际测量磁芯损耗角正切实质上主要是剩余损耗值。当磁芯中有气隙存在时,磁芯损耗因子与有效磁导率μe 有关。在低磁通密度时,只要漏磁通可忽略,比损耗与气隙长度无关,即: (1-18) 因此,常用损耗角正切与相对磁导率之比,来表征磁性材料的优值,有时也用μ·Q 乘积来表示,因为tgò/μ=1/μQ。对于开路状态使用的磁芯(如棒形磁芯、螺纹磁场芯等),磁芯损耗用表观品质因数 Qapp 来表示: (1-19) 式中,Qe = 有磁芯线圈的品质因数;Q0 = 无磁芯线圈的品质因数;损耗的出现导致磁导率的下降。图 1-10 示出高磁导率 MnZn 铁氧体的初始磁导率和损耗与频率的关系。

空调压缩机中永磁同步电机的损耗分析

空调压缩机中永磁同步电机的损耗分析 陈东锁 卢素华 陈 彬 (国家节能环保制冷设备工程技术研究中心 珠海 519070) 摘要:在空调系统中,电能主要用于压缩机运转,因此提高效率对于开发高效压缩机非常关键。为了提高永磁电机的效率,需要减少各种形式的电机损耗。永磁同步电动机其运行频率经常发生变化,致使电机内部的损耗随之改变。本文分析了影响永磁电机损耗的主要因素及其变化规律,得到一些对电机参考设计具有指导意义的结论。 关键词:永磁同步电机;有限元;铁耗;铜耗 Abstract:In the air-condition system, most of the electricity is consumed for operating the compressor. Therefore, developing a high efficiency compressor is necessary to increase the energy efficiency. To increase the efficiency of the PM motor, a reduced multiform loss is needed. The operation frequency of permanent magnet synchronous motor (PMSM) varies frequently, and its losses change correspondingly. In this paper, the main factor which affects losses and its variation were investigated, some conclusions which have guiding significance for the reference design of the motor were obtained. Key words:permanent magnet synchronous motors;finite element;iron loss;copper loss 引言 电机作为空调压缩机的核心部分,其效率的高低直接影响压缩机COP大小,所以提高电机的效率成为提高压缩机能效的主要途径。永磁同步电机具有体积小、效率高、输出转矩大等特点,应全球节能要求,永磁同步电机逐渐取代异步电机广泛应用于空调压缩机中。 为提高电机效率,首先需要分析电机损耗。电机损耗主要包括铜损、铁损、机械损及杂散损耗,如果能在设计电机结构时合理分配各损耗,则能使电机效率达到最优。 1永磁电机中的损耗 电机损耗直接影响电机效率,同时也是电机温升的来源。电机损耗可分为铜耗、铁耗、杂散损耗和机械损耗。其中铜耗即电机绕组上产生的损耗;铁耗指铁心中磁场变化而引起的损耗,包括磁滞损耗、涡流损耗和附加损耗;杂散损耗是指其他损耗的统称,主要来源于电机内的漏磁场和谐波磁场;机械损耗是指轴承摩擦损耗、转子旋转时引起转子表面与冷却气体之间的摩擦损耗等。 1.1 铜耗 根据焦耳定律,电机的铜耗与电机绕组阻值和绕组内的电流有关,其计算公式如下: P I R 3 Cu 2 =(1)式中I为绕组相电流;R 为绕组相电阻,其中: (2)式中:ρ——铜线电阻率;L av——半匝线圈长 N——每相绕组串联匝数; N t——并绕根数 a——并联支路数 d——铜线直径 永磁电机中由T=K t I可知, P W R W d NL Cu av 22222 U U d d U U (3) ——气隙磁通 ——绕组因数 根据上述可知降低铜损的方法有:增加导线截面积、缩短绕组端部长度,工艺上提高绕组因数和槽满率,合理选用和设计磁钢,以保证足够大的气隙磁场。

电动机的计算

一、三相交流电动机 1、一台三相笼型异步电动机的额定数据为:P N =125KW ,N n =1460r/min,U N =380V ,Y 联结,I N =230A ,起动电流倍数k i =5.5,起动转矩倍数k st =1.1,过载能力λT =2.2,设供电变压器限制该电动机的最大起动电 流为900A ,问:(1)该电动机可否直接起动?(2)采用电抗器降压起动,起动电抗x st 值应为多少? (3)串入(2)中的电抗器时能否半载起动? 解:(1)直接起动电流为:I st =k i I N =5.5×230A=1265A>900A 所以不能采用直接起动。 (2)定子串电抗器后,起动电流限制为900A 则:α=I st /I ?st =1265/900=1.4 短路阻抗为:Zs=√r s 2+x s 2 =U N /3×I st =380/3×1265=0.173Ω 所以r s =0.3Z s =0.3×0.173=0.052Ω x s =√Z s 2-r s 2 =√0.1732-0.0522 =0.165Ω 应串接电抗值: x st =√α2x s 2+(α2-1)r s 2- x s =√1.42×0.1652+(1.42-1)×0.0522 -0.165=0.072Ω (3)串入x st =0.072Ω时的起动转矩为 T ?st=1/α2×T st =1/α2×k st T N =1/1.42×1.1×T N =0.56T N 因为,T ?st=0.56T N > T N =0.5 T N 所以可以半载起动 2、一台三相异步电动机接到50H Z 的交流电源上,其额定转速n N =1455r/min ,试求:(1)该电动机的极 对数p ;(2)额定转差S ;(3)额定转速运行时,转子电动势的频率。 解:(1)因异步电动机额定转差率很小,故可根据电动机的额定转速n N =1455 r/min,直接判断出最接 近n N 的气隙旋转磁场的同步转速n 1=1500 r/min,于是 p=60f/n 1=(60×50)/1500=2 或 p=60f/n 1≈60f/n=(60×50)/1455=2.06 取 p=2 (2)s N =(n 1-n)/n 1=(1500-1455)/1500=0.03 (3)f 2=s N f 1=0.03×50H Z =1.5 H Z 3、已知一台三相四极异步电动机的额定数据为:P N =10kW ,U N =380V ,I N =11.6A ,定子为Y 联结,额定运行时,定子铜损耗P Cu1=560W,转子铜损耗P Cu2=310W ,机械损耗P mec =70W ,附加损耗P ad =200W ,试计算该电动机在额定负载时的:(1)额定转速;(2)空载转矩;(3)转轴上的输出转矩;(4)电磁转矩。 解:(1)2210.58em mec ad Cu P P P P P kW =+++= 2/0.0293N Cu em s P P == 1(1)1456/min N N n s n r =-= (2) 0 1.77mec ad P P T N m += =?Ω (3)2265.59N P T N m ==?Ω (4)2067.36em T T T N m =+=? 4、已知一台三相异步电动机,额定频率为150kW ,额定电压为380V ,额定转速为1460r/min ,过载倍数为2.4,试求:(1)转矩的实用表达式;(2)问电动机能否带动额定负载起动。

转子结构对高速无刷电机转子涡流损耗的影响

第42卷第9期2008年9月 浙 江 大 学 学 报(工学版) Journal of Zhejiang University (Engineering Science ) Vol.42No.9 Sep.2008 收稿日期:2007205229.浙江大学学报(工学版)网址:https://www.wendangku.net/doc/4c11043870.html,/eng 基金项目:浙江省自然科学基金资助项目(Y104442),留学人员科技活动项目择优资助项目. 作者简介:周凤争(1981-),男,天津人,博士生,主要从事超高速永磁无刷直流电机的研究.E 2mail :zhoufengzheng @hot https://www.wendangku.net/doc/4c11043870.html, 通讯联系人:沈建新,男,教授,博导.E 2mail :j_x_shen @https://www.wendangku.net/doc/4c11043870.html, DOI :10.3785/j.issn.10082973X.2008.09.022 转子结构对高速无刷电机转子涡流损耗的影响 周凤争1,2,沈建新1,王 凯1 (1.浙江大学电气工程学院,浙江杭州310027;2.天津市电力公司技术中心,天津市300040) 摘 要:针对转子涡流损耗在高速电机中比较严重的问题,通过有限元分析研究了永磁体分块对转子涡流损耗的影响.分析表明:当永磁体周向宽度小于谐波磁场在永磁体中的透入深度时,永磁体分块能有效地减小永磁体中的涡流损耗;反之,永磁体分块会使永磁体中的涡流损耗增加.利用涡流磁场的屏蔽作用,在转子保护环和永磁体之间增加一层电导率高的铜片.尽管铜片中会产生涡流损耗,但该涡流产生的磁场抵消了气隙磁场的谐波分量,使永磁体、转子铁心以及保护环中的损耗显著减小,整体上降低了转子涡流损耗.关键词:永磁无刷直流电机;高速电机;转子涡流损耗;永磁体分块;铜屏蔽层 中图分类号:TM351 文献标识码:A 文章编号:10082973X (2008)0921587204 Influence of rotor structure on rotor eddy 2current loss in high 2speed perm anent m agnet brushless DC motors ZHOU Feng 2zheng 1,2,S H EN Jian 2xin 1,WAN G Kai 1 (1.College of Elect rical Engineering ,Zhej iang Universit y ,H angz hou 310027,China; 2.Technical Center of Tianj in Elect ric Power Corporation ,Tianj in 300040,China ) Abstract :Rotor eddy 2current lo ss appears significant in high 2speed permanent magnet brushless DC (PM BLDC )motors.The effect of segmenting magnet s on rotor lo ss was analyzed wit h finite element analysis.Only when t he circumferential widt h of t he magnet segment is smaller t han t he skin dept h ,t he eddy 2cur 2rent lo ss in t he magnet s can be reduced by segmenting ,ot herwise t he eddy 2current loss will increase.By using t he shielding effect of t he eddy 2current magnetic field ,a copper shield wit h high conductivity was used between t he retaining sleeve and magnet s.Alt ho ugh eddy 2current loss is induced in t he copper shield ,t his eddy 2current magnetic field reduces t he harmonic field in t he air 2gap ,so t hat t he lo ss in t he magnet s ,rotor yoke and retaining sleeve are cut down dramatically ,resulting in a reduction of t he overall rotor eddy 2current lo ss. K ey w ords :permanent magnet brushless DC motor ;high 2speed motor ;rotor eddy 2current loss ;magnet segment ;copper shield 近年来,高速永磁无刷直流电机因其高功率密度、高效以及良好的可控性等优点越来越得到工业界的青睐.目前高速电机的发展仍然受到一些技术问题的限制.例如,转子涡流损耗在中、低速无刷直 流电机中往往是可忽略的,但是在高速无刷电机中 比较严重,会引起转子永磁体过热与不可恢复性退磁.转子涡流损耗主要是由定子电流的时间和空间谐波以及由定子槽开口引起的气隙磁导变化所产生

一种减小无刷直流电机转子涡流损耗以及铜耗的驱动方法

2018年9月电工技术学报Vol.33 No. 18 第33卷第18期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Sep. 2018 DOI: 10.19595/https://www.wendangku.net/doc/4c11043870.html,ki.1000-6753.tces.171509 一种减小无刷直流电机转子涡流损耗以及 铜耗的驱动方法 谭博张海涛华志广刘卫国骆光照 (陕西省微特电机及驱动技术重点实验室(西北工业大学)西安 710072) 摘要基于三相六状态方波驱动方法的无刷直流电机电流谐波较高,转子涡流损耗较大,易造成永磁体过热不可逆退磁。同时,较大的铜耗易导致电机绕组温升过高,降低电机可靠性。提出一种基于电流规划的无刷直流电机驱动方法,该方法以三相反电动势作为状态变量,以电机转矩作为限定条件,以三相电流有效值最小作为优化目标,得出两相电流的理论给定解析值,并与两相反馈电流组成电流闭环。分析和仿真表明,与方波驱动方法相比,该驱动方法能使转子涡流损耗以及绕组铜耗明显减小。最后,以一个82W的无刷直流电机为对象搭建测试电路和转子涡流损耗模型,对所提出的方法进行验证。 关键词:无刷直流电机电流规划铜耗涡流损耗 中图分类号:TM351 A Drive Method of Brushless DC Motor to Decrease Rotor Eddy Current Loss and Copper Loss Tan Bo Zhang Haitao Hua Zhiguang Liu Weiguo Luo Guangzhao (Shaanxi Key Laboratory of Small & Special Electrical Machine and Drive Technology Northwestern Polytechnical University Xi’an 710072 China) Abstract The stator currant harmonics of brushless DC motor (BLDCM) are high in the square-wave drive method, which will increase rotor eddy-current loss and further raise the risk of rotor permanent magnet overheated demagnetization. The reliability of motor is also reduced. A novel method based on current planning for the BLDCM is proposed. In the method, the back-electromotive force (EMF) is considered as the state variable, the reference torque as a constraint condition, and the minimum phase currents as the optimization objectives. Then, the reference currents can be calculated. The current loop consists of the reference currents and two phase feedback currents. Analysis and simulations show that the rotor eddy-current loss and copper loss are lower than those of the square-wave drive method. Finally, taking an 82W BLDCM as the object, the model of rotor eddy-current loss and the test circuit are built to verify the proposed method. Keywords:Brushless DC motor (BLDCM), current planning, copper loss, eddy-current loss 陕西省国际科技合作与交流重点研发计划项目(2017KW-ZD-05)和陕西省重点研发计划(2017GY-048)资助。 收稿日期 2017-11-06 改稿日期 2018-01-27

相关文档