文档库 最新最全的文档下载
当前位置:文档库 › 用向量法求空间距离

用向量法求空间距离

用向量法求空间距离
用向量法求空间距离

用向量法求空间距离

湖南省冷水江市七中(417500) 李继龙

在高中立体几何中引入空间向量,为解决立体几何问题提供了一种新的解题方法,有时也能降低解题难度.下面通过例题介绍用向量法求空间距离的方法. 一、 求两点之间的距离

用向量求两点间的距离,可以先求出以这两点为始点和终点的向量,然后求出该向量的模,则模就是两点之间的距离.

例1 已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 是AD 1的中点,Q 是BD 上一点,

DQ=4

1

DB ,求P 、Q 两点间的距离.

解 如图1,以1DD DC DA 、、所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系D-xyz ,则

0)4

141(Q )21021(,,、,,P , 所以)21

-4141(-,,=.

46=

,即P 、Q 两点的距离为4

6. 二、 求点到直线之间的距离

已知如图2,P 为直线a 外一点,Q 为a 上任意一点,PO ⊥a 于点O ,所以点P 到直线a 的距离为|PO|=d .

则有>

所以cos >=

<

故>

=

?==

x

a

图2

例2 在长方体OABC-O 1A 1B 1C 1中,OA=2,AB=3,AA 1=2.求点O 1到直线AC 的距离. 解 建立如图3所示的空间直角坐标系,连结AO 1,则A(2,0,0),C(0,3,0),O 1(0,0,2).

所以0)32-(AC 2)02-(AO 1,,,,,==. 故

d =

13

286

213168=-

= 所以点O 1到直线AC 的距离为13

286

2. 三、 求点到平面的距离

如图4设A 是平面α外一点,AB 是平面α的一条斜线,交平面α于点B ,而是平面α的法向量,那么向量

在方向上的射影长就是点A 到平面α的距离d

,所以

d ==>

例3 如图5,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB=2,AF=1,M 是线段EF 的中点,N 为AC 与BD 的交点,求点B 到平面CMN 的距离. 解 如图5,以CE CB CD 、、所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系C-xyz.

因为AB=2,AF=1,所以

)12222(CM ,,=,)02

222(CN ,,=

)02(0CB ,,=

设平面CMN 的法向量为)(x z y ,,=,则有

4

y

x

x

????

?=?=?0

n CM 即???

????=+=++02

222022

22y x z y x 令x=1,得y=-1,z=0,所以)01(1,,-=.

所以点B 到平面CMN

的距离1==d .

四、 求异面直线间的距离

如图6,假设a 、b 是异面直线,平移直线a 至a ′且交b 于点A ,那么直线a ′和b 确定平面α,且直线a ∥α,设n ⊥a ,n ⊥b ,即n 为异面直线a 、b 的公垂线的方向向量.所以异面直线a 的b 的距离等于直线a 上任意一点至平面α的距离.若F ∈a ,E ∈b ,则异面直线a 、b

之间的距离

d =?

=>

例4 在棱长为1的正方体ABCD-A 1B 1C 1D 1中,求异面直线A 1C 1与B 1C 的距离. 解 如图7所示,以1DD DC DA 、、所在直线分别为x 轴、y 轴和z 轴建立空间直角坐标系D-xyz ,则有1)01-(C B 0)11-(C A 111-,,,,,==.

设B C A 111与的公垂线的方向向量为

)(x z y ,,=,则

?????=?=?0

B 0

111C n C A n 即??

?=--=+-00z x y x 令x=1,得y=1,z=-1,所以)11(1-=,,

又)010(11,,=B A ,

x

所以A 1C 1与B 1C

的距离3

33

1=

=

=

d . 五、 求直线与它平行平面及求两个平行平面之间的距离

求直线与它平行平面及两个平行平面之间的距离可以转化为求点到平面

的距离,即运用d =

求它们之间的距离.

例5 如图8,设正方体ABCD-A 1B 1C 1D 1的棱长为1,M 、N 、E 、F 分别是A 1B 1、A 1D 1、B 1C 1 C 1D 1的中点.求平行平面AMN 与平面EFDB 的距离. 解 以1CC 、、所在直线分别为x 轴、y 轴和z 轴建立空间直角坐标系C-xyz ,则

0)0(1)12

1(0)1021(,,,,,,,,=-=-=.

设平面EFDB 的法向量为)(x n z y ,,=,则有

?????=?=?0

即?????=+-=+-021021z y z x 取1=z ,则2==y x ,所以)12(2,,=,

所以平行平面AMN 与平面EFDB

的距离3

2

=

=

d .

x

向量法求空间距离教案

A B C D O S x y z 图2 A B C D α n a b 龙文学校——您值得信赖的专业化个性化辅导学校 龙文学校个性化辅导教案提纲 教师:_______ 学生:_______ 年级:______ 授课时间:_____年___月___日_____——_____段 一、授课目的与考点分析:向量法求空间距离 能用向量方法解决空间距离问题,了解向量方法在研究集合问题中的应用. 二、授课内容及过程: 1、点到平面的距离 方法:已知AB 为平面α的一条斜线段,n 为平面α的法向量, 则A 到平面α的距离d =AB n n ? . 2、两条异面直线距离: 方法:a 、b 为异面直线,a 、b 间的距离为:AB n d n ?= . 其中n 与a 、b 均垂直,A 、B 分别为两异面直线上的任意两点 题型1:异面直线间的距离 例1、如图2,正四棱锥S ABCD -的高2SO =,底边长2AB =。求异面直线BD 和SC 之间的距离? 题型2:点面距离 如图,在长方体1111ABCD A BC D -,中,11,2AD AA AB ===,点E 在棱AD 上移动.(1)证明:11D E A D ⊥; (2)当E 为AB 的中点时,求点E 到面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4 π. 解:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴, 建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C (1).,0)1,,1(),1,0,1 (,1111E D DA x E D DA ⊥=-=所以因为

向量法求空间点到平面的距离教案

学习必备 欢迎下载 向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

学习必备欢迎下载

学习必备 欢迎下载 若AB 是平面α的任一条斜线段,则在BOA Rt ? ABO COS ∠? ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z = 则n AB n AC ⊥⊥,.∵(3,4,0)AB =-,(3,0,2)AC =- ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z ?-=???-=?即340320x y x z -+=??-+=? ∴3432y x z x ?=????=?? 取4x =,则(4,3,6)n = ∴(4,3,6)n =是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E =-=--=设平面EFG 的一个法向量 为(,,)n x y z = 2202420 11(,,1)33 n EF n EG x y x y n ⊥⊥-=?∴?--+=?∴=,

用向量法求空间距离

用向量法求空间距离 湖南省冷水江市七中(417500) 李继龙 在高中立体几何中引入空间向量,为解决立体几何问题提供了一种新的解题方法,有时也能降低解题难度.下面通过例题介绍用向量法求空间距离的方法. 一、 求两点之间的距离 用向量求两点间的距离,可以先求出以这两点为始点和终点的向量,然后求出该向量的模,则模就是两点之间的距离. 例1 已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 是AD 1的中点,Q 是BD 上一点, DQ=4 1 DB ,求P 、Q 两点间的距离. 解 如图1,以1DD DC DA 、、所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系D-xyz ,则 0)4 141(Q )21021(,,、,,P , 所以)21 -4141(-,,=. 46= ,即P 、Q 两点的距离为4 6. 二、 求点到直线之间的距离 已知如图2,P 为直线a 外一点,Q 为a 上任意一点,PO ⊥a 于点O ,所以点P 到直线a 的距离为|PO|=d . 则有>= < 故>

例2 在长方体OABC-O 1A 1B 1C 1中,OA=2,AB=3,AA 1=2.求点O 1到直线AC 的距离. 解 建立如图3所示的空间直角坐标系,连结AO 1,则A(2,0,0),C(0,3,0),O 1(0,0,2). 所以0)32-(AC 2)02-(AO 1,,,,,==. 故 d = 13 286 213168=- = 所以点O 1到直线AC 的距离为13 286 2. 三、 求点到平面的距离 如图4设A 是平面α外一点,AB 是平面α的一条斜线,交平面α于点B ,而是平面α的法向量,那么向量 在方向上的射影长就是点A 到平面α的距离d ,所以 d ==>

向量法求空间点到平面的距离教案

向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 剖析:如图, BO 平面 ,垂足为O ,则点B 到平面 的距离是线段BO 的长度。 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

若AB 是平面 的任一条斜线段,则在BOA Rt ABO COS ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z r 则n AB n AC r u u u r r u u u r ,.∵(3,4,0)AB u u u r ,(3,0,2)AC u u u r ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z 即340320x y x z ∴3432y x z x 取4x ,则(4,3,6)n r ∴(4,3,6)n r 是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E u u u r u u u r u u u r 设平面EFG 的一个法向量 为(,,)n x y z r 2202420 11(,,1)33 n EF n EG x y x y n r u u u r r u u u r r ,

用向量法求空间距离

A B C D m n 1 图向量法求空间距离 向量融形、数于一体,具有几何形式和代数形式的“双重身份”,向量成为中学数学知识的一个交汇点,空间向量将空间元素的位置关系转化为数量关系,将过去的形式逻辑证明转化为数值计算,化繁难为简易,化复杂为简单,成为解决立体几何问题的重要工具。 1.异面直线n m 、的距离 分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的向量,分别在 n m 、上各取一个定点B A 、,则异面直线n m 、的距离 d 等于在上的射影长,即| |n d = 证明:如图1,设CD 为公垂线段,取b a ==, | |||)(?=?∴?++=?∴++= | |||||n n AB d ?= =∴ 2平面外一点P 到平面α的距离 如图2,先求出平面α的法向量,在平面内任取一定 点A ,则点p 到平面α的距离d 等于在上的射影长,即| |n d = 因为空间中任何向量均可由不共面的三个基向量来线性表示,所以在解题时往往根据问题条件首先选择适当的基向量,把相关线段根据向量的加法、数乘运算法则与基向量联系起来。再通过向量的代数运算,达到计算或证明的目的。一般情况下,选择共点且不共面的三个已知向量作为基向量。 [例 1] 如图3,已知正三棱柱111C B A ABC -的侧棱长为2, 底面边长为1,M 是BC 的中点,当1AB MN ⊥时,求点1A 到平面AMN 的距离。 图2 A B C M N 1 A 1 B 1 C 图3

几何体中容易找到共点不共面且互相垂直的三个向量,于是有如下解法: 解:当1AB MN ⊥时,如图4 , 、)0,0,0(A )81 ,1,0()0,43,43()2,21,23(1N M B 、、、)2,0,0(1A ,则 )2,0,0(),0,4 3,43( ),8 1 ,41,43(1==- =AA AM MN , 设向量),,(z y x n =与平面AMN 垂直,则有 )0()1,1,3(8 ),81,83( 8183 0434********>-=-=∴?????? ?-==?=???????=+=++-??????⊥⊥z z z z z n z y z x y x z y x AM n MN n 取)1,1,3(0-=n 向量1AA 在0n 上的射影长即为1A 到平面AMN 的距离,设为d ,于是 5 5 21)1()3(|)1,1,3()2,0,0(||||,cos |||2 2201011011= +-+-?= =>

利用空间向量求空间角和距离

利用空间向量求空间角和距离 A 级——夯基保分练 1.如图所示,在正方体ABCD -A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( ) A.30 30 B .3015 C. 3010 D. 1515 解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→ =(-1,-1,-2),D 1N ―→ =(1,0,-2), ∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→ | |B 1M ―→|·|D 1N ―→|= |-1+4|1+1+4×1+4=30 10 . 2.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =1 3AB ,则DC 1与平面D 1EC 所成角的 正弦值为( ) A.33535 B .277 C.33 D.24 解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), ∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→ =(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ), 则????? n ·D 1E ―→=0,n · D 1C ―→=0,即????? x +y -z =0,3y -z =0,取y =1,得n =(2,1,3). ∴cos DC 1―→,n =DC 1―→·n |DC 1―→|·|n| =33535, ∴DC 1与平面D 1EC 所成的角的正弦值为335 35 .

向量法求空间点到平面的距离教案

向量法求空间点到面距离(教案) 教材分析 重点:点面距离的距离公式应用及解决问题的步骤 难点:找到所需的点坐标跟面的法向量 教学目的 1.能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2.能将求线面距离、面面距离问题转化为求点到面的距离问题。 3.加强坐标运算能力的培养,提高坐标运算的速度和准确性。 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、空间中如何求点到面距离 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a ? b = a b cos 0(0为a与b的夹角) 二、向量法求点到平面的距离

如果令平面的法向量为 n ,考虑到法向量的方向,可以得到点 B 到平面的距离为 _r BA?n BO=—:— n 因此要求一个点到平面的距离, 可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量 (2)求出该平面的一个法向量 (3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量 ? 例1、在空间直角坐标系中,已知A(3,0,0), B(0,4,0) , C(0,0,2),试求平面 ABC 的一个 法向量. 解:设平面ABC 的一个法向量为 r n (x, y, z) r uuu r uuur uuu unr 则 n AB , n AC . v AB (3,4,0), AC (3,0, 2) ? (x, y, z)( 3,4,0) 0即 3x 4y 0 3 y x (x, y, z)( 3,0,2) 0 3x 2z 0 . 4 取x 4,则n (4, 3,6) 3 z x 2 ??? n (4, 3,6)是平面 ABC 的一个法向量 例2、如图,已知正方形 ABCD 的边长为4, E 、F 分别是AB 、AD 的 中点,GC 丄平面 ABCD ,且GC = 2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系 C-xyz. 由题设 C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). uuir uuur EF (2, 2,0), EG ( 2, 4,2), uuu BE (2,0,0) 设平面EFG 的一个法向量 若AB 是平面 的任一条斜线段,则在 Rt BOA 中,BO = BA?COS ABO BA?BO B A B O BO 剖析:如图,BO 平面 ,垂足为0,则点B 到平面 的距离是线段 BO 的长度。 =网? BA? BO

向量法求空间距离n

向量法求空间距离 广州市第78中学数学科 黄涛 教学重点难点 重点:掌握由向量数量积推导距离公式 难点:空间向量的投影的理解,灵活运用数形结合的思想,空间直角坐标系的 建立,求法向量,向量的选取。 教学方法、教学手段 采用启发诱导式教学,并结合实践探索,互动教学。 因为要充分体现数形结合思想,有大量的图形对比引导,以多媒体展示作为黑板板书补充。 教学目标: (1) 知识目标:理解向量数量积与射影的关系,基本掌握用数量积公式的变形求空间距离的方法和步骤 (2) 能力训练目标:培养动手能力,计算表达能力,空间想象能力 (3) 创新素质目标:通过立体几何向量方法解题体会知识之间的内在联系,事物内在的本质联系,懂得通过思维的拓展从事物的广泛联系中寻找解决问题的方法 (4) 情感目标:化繁为简,化难为易,在师生共同探索中建立学生学习数学的信心和热情 教学过程: 一.复习引入 1.如右图中正方体ABCD-A 1B 1C 1D 1的棱长为1,则点D 1到平面BB 1C 1C 的距离是_______,直线B 1C 1与B 1C 的距离是_________. 2.点C 1到平面AB 1C 的距离又是______,体对角线BD 1与面对角线B 1C 的距离是__________. 分析:以第一题找具体线段方法求距离很困难,提出能否避开“作图”这一难点,不通过找具体的线段求解,而用“数”来求解? 3.我们已经学习了向量的数量积为0可证垂直,| |||,cos b a b a b a ??>=<可求夹角, 221221221)()()(||z z y y x x a a a -+-+-==? 可以求两点间的距离,射影公式>

向量法求空间距离和角

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法 向量, 则斜线l 与平 面 α所成的角 α=arcsin | ||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角 l αβ--的平面角α=arccos |||| a b a b 法二、设12,,n n 是二面角l αβ--的两

个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角 l αβ--的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 法一、找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别为异面直线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ==(此方法移植于点面距离的求法).

利用空间向量解立体几何(完整版)

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系 线线垂直(共面与异面)?两线的方向向量垂直

线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为PQ =u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影PQ n n ?u u u r =即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: ① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若

利用空间向量求角和距离典型例题精讲

9.8用空间向量求角和距离 一、明确复习目标 1.了解空间向量的概念;会建立坐标系,并用坐标来表示向量; 2.理解空间向量的坐标运算;会用向量工具求空间的角和距离. 二.建构知识网络 1.求角: (1)直线和直线所成的角:求二直线上的向量的夹角或补角; (2)直线和平面所成的角: ①找出射影,求线线角; ②求出平面的法向量n ,直线的方向向量a ,设线面角为 θ,则|cos ,||||||| n a sin n a n a θ?=<>=? . (3)二面角: ①求平面角,或求分别在两个面内与棱垂直的两个向量的夹角(或补角); ②求两个法向量的夹角(或补角). 2.求距离 (1)点M 到面的距离||cos d M N θ= (如图)就是斜线段MN 在法向量n 方向上的正投影. 由||||cos ||n N M n N M n d θ?=??=? 得距离公式:|| || n N M d n ?= (2)线面距离、面面距离都是求一点到平面的距离; (3)异面直线的距离:求出与二直线都垂直的法向量n 和连接两异面直线上两点的向量N M ,再代上面距离公式. 三、双基题目练练手

1.在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ( ) ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.3 B.2 C.1 D.0 2. 直三棱柱A 1B 1C 1—ABC ,∠BCA =90°,D 1、F 1分别是A 1B 1、A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是 ( ) A . 10 30 B . 2 1 C . 15 30 D . 10 15 3.已知向量a =(1,1,0),b =(-1,0,2),且ka +b 与2a -b 互相垂直,则k = ___ 4. 已知A (3,2,1)、B (1,0,4),则线段AB 的中点坐标和长度分别是 , . ◆答案提示: 1. C ; 2. A ; 3. 5 7; 4.(2,1, 2 5),d AB 四、以典例题做一做 【例1】 (2005江西)如图,在长方体ABCD —A 1B 1C 1D 1,中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.(1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为4 π . 解:以D 为坐标原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系,设AE =x ,则A 1(1,0,1),D 1(0,0,1),E (1,x ,0),A (1,0,0)C (0,2,0) (1)11(1,0,1)(1,,1)DA D E x ?=?- 因为110,.DA D E =⊥ 所以 (2)因为E 为AB 的中点,则E (1,1,0), 从而)0,2,1(),1,1,1(1-=-=AC E D ,)1,0,1(1-=AD , 设平面ACD 1的法向量为,n n 则不与y 轴垂直,可设 (,1,)n a c = ,则???? ?=?=?, 0,01AD n AC n

向量法求空间角、距离和二面角

向量法求空间角、距离和二面角 1.1.向量的数量积和坐标运算 a,b是两个非零向量,它们的夹角为,则数|a| |b|cos叫做a与b的数量积(或内积),记作a b,即a b | a | | b | cos .其几何意义是a的长度与b在a的方向上的投影的乘积.其坐标运算是: —¥■—* 若a (x1,y1,^),b (X2,y2,Z2),贝U ① a b X1X2 y〃2 Z1Z2; ②|a| X12y12z/,|b| X22目; Z22; ③ a b X1X2 y1 y2 z1z2 X1X2 y“2 Z1Z2 ④C0S a , b 丨 2 2 2 厂 2 2 2 X1 y1 Z, . X2 y2 Z2 1.2.异面直线m,n所成的角 分别在直线m,n上取定向量a,b,则异面直线m,n所 成的角等于向量a,b所成的角或其补角(如图1所 示),则cos |a b 1 .(例如2004年高考数学广东 D图1 b B |a| |b| 卷第18题第(2)问) 1.3.异面直线m、n的距离 分别在直线m、n上取定向量a,b,求与向量a、b都垂直的 向量n,分别在m、n上各取一个定点A、B,则异面直线m、n的距离d等于AB在

| AB n | n上的射影长,即d |n| 证明:设CD为公垂线段,取CA a, DB b (如图1所示),则

CD CA AB BD CD n (CA AB BD) |CD n| |AB n| d |CD| 皿 1 |n| 设直线m, n所成的角为,显然cos la b| |a| |b| 14直线L与平面所成的角 在L上取定AB ,求平面的法向量n (如图2所 示), 再求cos ,则 |AB| | n| 2为所求的角. 1.5 . 二面角 方法一:构造二面 角 量n1、门2 (都取向上的方向,如图3所示), 则 的两个半平面、的法向 ① 若二面角l 是“钝角型”的如图3甲所示, 那么其大小等于两法向量n1、n2的夹角的补角,即cos ri t n2 g | “2 | .(例如2004年高考数学广东卷第18题第(1)问). ②若二面角l 是“锐角型”的如图3乙所示, 那么其大小等于两法向量n1、门2的夹角,即 n t n2 cos .(例如2004年高考数学广东卷第 |n 1 | |n2 | 图3 乙 18题第(1)问). 方法二:在二面角的棱I上确定两个点A、 求出与I垂直的向量n1、门2 (如图4所示),则

向量法求空间中的角和距离

向量法求空间中的角和距离 广东省惠州市惠阳区崇雅中学高中部 彭海廷 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1、 空间角问题 (1)求两异面直线的夹角 设异面直线a 、b 的夹角为θ() 090θ<≤,a 、b 分别为a 、b 的一个方向向量,则 cos cos ,a b a b a b θ?== ,可求得θ的大小。 例1 已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC= 2 1 AB=1,M 是PB 的中点。 (Ⅰ)证明:面 PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角; 解:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB , 以A 为坐标原点AD 长为单位长度, 如图建立空间直角坐标系,则各点坐标为 A (0,0,0)B (0,2,0),C (1,1,0), D (1,0,0),P (0,0,1),M (0,1,)2 1. (Ⅰ)证明:因(0,0,1),(0,1,0),0,.AP DC AP DC AP DC ==?=⊥故所以 由题设知AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD. (Ⅱ)解:因),1,2,0(),0,1,1(-== . 510 | |||,cos ,2,5||,2||=?>=<=?==PB AC PB AC PB AC 所以故 (2)求二面角 设m 、n 分别是平面α与β的法向量,则二面角所成的平面角θ=π-φ或θ=φ,其中当m 与n 同向时取θ=π-φ;异向时取θ=φ,φ是m 与n 的夹角,用 cos ,m n m n m n ?= 求出。 例2 如右下图,在长方体1111ABCD A B C D -中,已知14,3,2AB AD AA ===,,E F 分别是线段,AB BC 上的点,且1EB FB ==

空间向量的应用----求空间角与距离

空间向量的应用----求空间角与距离 一、考点梳理 1.自新教材实施以来,近几年高考的立体几何大题,在考查常规解题方法的同时,更多地关注向量法(基向量法、坐标法)在解题中的应用。坐标法(法向量的应用),以其问题(数量关系:空间角、空间距离)处理的简单化,而成为高考热点问题。可以预测到,今后的高考中,还会继续体现法向量的应用价值。 2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下: 1)求直线和直线所成的角 若直线AB、CD所成的角是,cos=| , cos |>

3).利用法向量求二面角 设1n、2n分别为平面α、β的法向量,二面角l αβ --的大小为θ,向量1n、2n的夹角为?,则有θ?π +=或θ?=。 计算公式为: 12 12 cos cos |||| n n n n θ? =-=12 12 cos cos |||| n n n n θ? == 4).利用法向量求点面距离 如图点P为平面外一点,点A为平面的任一点,平面的法向量为n,过点P作平面的垂线PO,记∠OPA=,则点P到平面的距离 θ cos | | | | PA PO d = = || || |||| || || n PA PA n PA n PA n ? =? ? = 5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等。其一,这三类距离都可以转化为点面间的距离;其二,异面直线间的距离可用如下方法操作:在异面直线上各取一点A、B,AB在n上的射影长 n α A P O θ

空间向量与空间距离-课时作业

学习资料[文档副标题] [日期] 世纪金榜 [公司地址]

空间向量与空间距离 (45分钟 100分) 一、选择题(每小题6分,共30分) 1.已知△ABC的三个顶点的坐标为A(-1,0,1),B(1,3,5),C(-1,-1,1),则BC边上的中线AD的长为( ) A. B.6 C. D.3 2.在棱长为a的正方体ABCD-A1B1C1D1中,M是AA1的中点,则点A1到平面MBD的距离是( ) A. a B. a C. a D. a 3.(2013·开封高二检测)四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E,F分别为PB,PD的中点,则P到直线EF的距离为( ) A.1 B. C. D. 4.已知正方体ABCD-A1B1C1D1的棱长为3,E为CD的中点,则点D1到平面AEC1的距离为( ) A. B. C. D.1 5.(2013·石家庄高二检测)正方体ABCD-A1B1C1D1的棱长为1,则直线A1C1到平面ACD1的距离为( ) A.1 B. C. D. 二、填空题(每小题8分,共24分) 6.(2013·东莞高二检测)平行六面体ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3, ∠BAD=90°,∠BAA1=∠DAA1=60°,则AC1的长为. 7.在直四棱柱ABCD-A1B1C1D1中,底面为直角梯形,AB∥CD

且∠ADC=90°,AD=1,CD=,BC=2,AA1=2,E是CC1的中点,则A1B1到平面ABE的距离是. 8.在长方体ABCD-A1B1C1D1中,AB=4,BC=3,CC1=2,则平面A1BC1与平面ACD1的距离是. 三、解答题(9题,10题14分,11题18分) 9.正方形ABCD的边长为2,E,F分别是AB和CD的中点, 将正方形沿EF折成直二面角(如图所示),M是矩形 AEFD内一点,如果∠MB'E=∠MB'C',MB'和平面B'C'FE 所成的角的正切值为,求点M到直线EF的距离. 10.(2013·济南高二检测)如图所示的多面体是由底面 为ABCD的长方体被截面AEC1F所截而得到的,其中 AB=4,BC=2,CC1=3,BE=1. (1)求||. (2)求点C到平面AEC1F的距离. 11.(能力挑战题)如图所示,在直三棱柱ABC-A1B1C1中, ∠ABC=90°,BC=2,CC1=4,EB1=1,D,F,G分别为CC1,B1C1, A1C1的中点,EF与B1D相交于点H. (1)求证:B1D⊥平面ABD. (2)求证:平面EGF∥平面ABD. (3)求平面EGF与平面ABD的距离.

相关文档
相关文档 最新文档