文档库 最新最全的文档下载
当前位置:文档库 › 拉伸弯曲矫直机

拉伸弯曲矫直机

拉伸弯曲矫直机
拉伸弯曲矫直机

第1章前言

拉伸弯曲矫直机应用于精整机组中,对薄带材进行矫直.目前,国外已经开发生产出多种机型,并已广泛应用.我国尚在研制开发阶段,需加速发展独立成套.

1.1 拉弯矫直机及其发展

由于冷轧带钢中存在较大的残余应力,使得板面产生波浪和翘曲,不能满足用户的使用要求,需要对其进行矫直.板带材的矫直设备主要有以下三种形式:辊式矫直机,拉伸矫直机和拉弯矫直机.辊式矫直机对中厚板矫直效果良好,而对于薄带材则效果较差;拉伸矫直机依靠夹紧装置或张力辊组产生拉伸变形,使带材产生一定的塑性变形而达到矫直的目的,但由于张力较大,会降低带材的机械性能.基于以上原因便产生了拉弯矫直机,他综合了拉伸矫直机和辊式矫直机的优点,用较小的张力使带材产生较大的塑性变形,达到矫直带材的目的.这种设备对于薄带材矫直效果非常好,便于成卷作业,在薄带材矫直中逐渐取代了其他两种形式的矫直机.

早期的拉弯矫直机只是拉伸矫直机和辊式矫直机的简单组合,见图 1.1a,矫直效果并不显著.后来出现了如图1.1b所示类型的拉弯矫直机,这种矫直机既减少了矫直辊的数量,又达到了较好的矫直精度.经过不断的开发研究,近年来又出现了多重拉弯矫直机,如图1.1c,使用了两组以上的矫直辊组,并增加了支撑辊的数目,提高了矫直辊的抗弯刚度和强度,这样就可以矫直高强度的薄带材.

拉弯矫直机的设计制造方法,在国外已较为成熟,而国内只作过小型样机及理论探讨,还未达到在生产中应用的程度.设计拉弯矫直机的难点是矫直理论相当复杂,张力辊组的速度和张力控制也较复杂.

图1.1

1.2 翁格勒拉弯矫直机的结构与特点

下面通过武钢冷轧厂从德国(Ungerer) 机器制造有限公司引进的拉伸弯曲矫直纵横剪机组来认识一下这一类矫直机的结构特点。

1.2.1 拉弯矫直机的特点

拉伸弯曲矫直机主要由三部分组成。一部分是带有弯辊调节装置的23 辊式矫直机本体;另一部分是张力辊组(也称S 辊组) 和传动部分。

1.2.1.1 弯曲矫直机

弯曲矫直机为23 辊式,辊径为25mm。在每个工作辊的宽度上有相应的中间辊,辊径30mm。每列中间辊上又有9 组支撑辊,支撑辊径33mm。

如图1.2 所示。矫直机上部设有矫直辊倾斜和压下机构,即辊缝调节装置。它由电机通过一套传动装置带动横梁使上辊组作升降调节,而通过蜗轮蜗杆带动偏心辊实现上辊组

的倾斜调节。整个上机架可由液压缸推向前翻转90°打开,以便于清理辊面和更换上下

辊组。矫直机下部则采用每组支撑辊均由一个液压带动锲铁进行升降调节,使工作辊实现“ + 、- ”弯辊达到弯曲矫直目的。这种多辊组式的矫直机具有辊式矫直机的优点,同时又有弯曲辊的特点,两种功能组合,在张力的作用下,使带钢产生弹塑性延伸,消除

了难以矫直的带钢缺陷,从而达到最佳的平直度。由于矫直辊是被动的,所以能很好地与带钢保持同步,避免了带钢表面擦伤。

图 1.2

1.支撑辊

2.中间辊

3.工作辊

4.上机架

5.下机架

1.2.2 张力辊组

张力辊组为四辊式。由于带钢以“S”形经过这些辊子传导出来,所以又称四辊式“S”辊组。这样布置的辊,传导通过的带钢与辊子之间接触摩擦的总包角是最大的。可以使带钢产生最大的制动、拉力。为了使带钢与辊面之间摩擦力增加,同时又不伤害带钢表面,所以辊面必须衬一层既耐磨又耐油的聚氨脂橡胶。四辊式张力辊安装在钢结构制成的“U”形支架上。辊径为500mm。安装的位置是:第一辊中左,上第二辊外左,下第三辊外右,下第四辊中右,上具体布置见图1.3 所示。为了便于带钢顺利地通过“S”辊组,在每个辊子与带钢接触部分均有弧形导板,在辊组的带钢入口处和出口处各安装

一个导板台,在辊组的两个内辊之间安装一个摆动式压紧辊,穿带过程是压紧带头引导

穿带。压紧辊的左右摆动均由一液压缸驱动。通常情况下压紧辊停在中间位置。四辊式张力辊组,由于合理地配置了导板台、弧形导板、压紧辊和穿带皮带运输机,使得带钢在穿带过程中通过实现自动化。

图1.3

1.弧形导板

2.入口张力辊

3.中间摆动辊

4.弯辊矫直机

5.张力测量辊

6.出口张力辊

7.导板台

8.穿带皮带

9.U形框架

1.2.3 张力辊组传动系统

来自开卷机的带钢被位于弯曲矫直机之前后的张力辊组导入。由于各个辊子上传送的带钢有较大的接触包角,可以在带钢中产生一个越来越大的拉应力。此拉应力与弯曲矫直机的弯曲应力重叠。这种叠加的应力可以达到比较理想的矫直效果。张力辊组的传动特点有多种。如图1.4 所示的张力辊组为机械传动方式。它的前后张力辊组的各个张力辊是通过齿轮箱、行星差动齿轮等由一个电动机而传动的。这种机械式传动的特点是通过机械联锁方式使延伸率恒定,机械方面较复杂。而张力辊组的传动采用了每个张力辊由功率各异的直流电机传动,如图1.5 所示。这种传动的特点是,前后张力辊组的速差均由电气系统控制与调节。每个辊子所作用的力矩大小可调。由于前后张力辊组中的电机处于不同的工作状态,前张力辊各辊的直流电机是在带钢的拖动下旋转的,此时的前张力辊组是制动辊,所以在各张力辊上传动的功率是逐渐加大的。反之后张力辊组则是在直流电机的传动下旋转的,各张力辊上传动功率是逐渐减小的。这样可不致于因为加速度太大而出现打滑。由于目前在电控方面已趋成熟,采用该传动方式的比较多。

图 1.4 张力辊组机械传动系统图

图 1.5 张力辊组直流电机传动系统图

1.3 式拉弯矫直机的工作原理

拉伸弯曲矫直是在辊式矫直法和拉伸矫直法基础上发展起来的矫直方法,是上述两种方法的综合。翁格勒拉伸弯曲矫直机是在两组张力辊之

间,用一种最新形式的21 辊矫直机。它之所以具有使矫直带材得到最佳矫直效果,是由其结构特性所决定。该设备具有:

(1) 非传动的特殊结构的上下辊组。

(2) 上辊组的中心高度调节装置。

(3) 上辊组的倾斜调节装置。

(4) 下辊组的弯辊装置(锲铁调节) 。

通过这些装置可以使矫直机的上下矫直辊之间的缝隙任意可调。根据被矫带材的材质、板厚、板形等不同,可选用不同的辊缝。被矫带材通常

在弯曲矫直机的入口处产生较大的弯曲,这种弯曲程度是沿着出口方向逐渐减弱。经过很多辊子反复矫正,带材的曲率逐步减小而逐渐变得平直,这是其一。

其二,带材在张力的作用下,通过弯曲矫直机时产生了纵向拉应力与横向弯曲应力。由于弯曲应力的作用面与纵向拉应力不同,实际矫直过程是发生在两个作用面叠加范围中。如图1.6 所示的叠加应力分布,两种叠应力作用的结果,使被矫带材内的各种应力,通过拉伸和弯曲应力而产生变化,即带材中产生形状不同的长短纤维组织同时被延伸拉长。在它们弹性收缩之后,延伸变长的纤维仍然保留。由于拉应力所产生的永久性塑性变形表现为延伸形式,使带材不均匀的纤维组织均匀,内应力值相同且方向一样,达到了矫直的目的。

图 1.6 拉伸弯曲应力叠加应力分布图

1. 带钢厚度

2. 压应力

3. 拉应力

4. 拉应力截面

5.7. 塑性区

6. 弹性区8. 压应力截面9. 曲率半径

1.4 拉弯矫直理论

拉弯矫直是拉伸与弯曲联合作用的矫直方法.下面以矩形断面的理想材料为例进行研究.由于其中的拉伸作用,弯曲变形的同时中性层必须发生移动,

如图1.7所示,当断面中拉伸区和压缩区都存在塑性层时(2

s h

e z <-),移动量e 由水平方向外力与内力的平衡条件求得:

1[()()]22s h h

e e b hb σσ+--= 122

s h h e k σσ==

1

k s

σσ=

式中 1σ-----平均单位外拉力, 1T

bh σ=;

T ------总的外拉力; b ------被矫直金属的宽度。 中性层的拉应力为:

1s s e

z k

σσσ=

= 中性层的相对变形为:1

0kE

σε=

中性层的残余相对变形为:'101

(1)E k

σε=-

拉伸区的相对变形为:0s s

z

z εεε=

+ 压缩区的相对变形为:'0s s

z

z εεε=

- 弯曲矫直时,弯矩按式22

1[(3)]26S h n bh M k k σ-=-+的推导方法,弯矩按下式计算: 2

2

0(3)12

s bh M k σ=- 拉弯矫直时,采用类似22

1[(3)]26

S h n bh M k k σ-=-+的推导方法,弯矩按下式计算: 22

22102[3(1)]12

s S s bh M k M k M σσσ=--=- 显然,M 〈Mo ,可有:

011M M r EI EI r

=<= 上式表明,拉力影响的结果,使拉弯矫直时的弯矩及其弹复曲率比单纯弯曲矫直的小,有利于提高矫直精度,或适于矫直弯曲矫直困难的薄带材。

当压缩区内不存在塑性层时,如图1.8所示,拉伸与弹性弯曲联合作用。根据水平方向外力与内力平衡条件,中性层移动量e 为:

22s s h h e E ερερ=

+=+ 式中ρ-------轧件的弯曲半径,2m

hE

ρσ= 中性层的拉应力为:

201m s σσσσ=+-=+ 或

201σσ=+ 中性层的相对变形为:

201εε=+ 或

201εε=+ 中性层的残余相对变形为:

'2001εεε=-= 或

'20ε=

上式表明:轧件的长度变化决定于材质(s ε ),拉伸变形(1ε )和弯曲变形(m ε)。

a b c

图 1.7 拉弯矫直应力图

a-弯曲;b-拉伸;c-拉弯联合作用

a b c

图1.8 拉伸与弹性弯曲应力图

a-弹性弯曲;b-拉伸;c-拉伸与弯曲

1.5 设计任务和设计思路

1.5.1 设计任务与初步工艺参数

设计任务:拉弯矫直机:

σ:260~650MPa、工艺参数:宽度:750~1550mm、厚度:0.3~3.0mm、屈服强度

s

σ

矫直速度0~180m/min,前后张力:(1/5~1/15)

s

设计要求:计算并确定辊径、辊距及辊数,矫直辊的分布形式、辊数。

计算最大矫直力、最大矫直力矩,确定电机功率

1.5.2设计思路

根据拉弯矫直机原理,知道此种矫直形式是拉伸矫直与弯曲矫直组合,翁格勒拉弯矫直机中间的弯曲矫直辊部分是辊式矫直机,其矫直辊负责对板带的弯曲和矫直,入、出口则采用拉伸矫直机,其张力辊负责对板带的拉伸矫直。中间辊式矫直机与两侧的拉伸矫直机采用单独电机驱动,因此在结构和力能参数计算上可以简化为单独考虑。

由初步工艺参数中未给出轧件材料特性,根据[3]中选取普碳钢弹性模量

α=。

210

=,根据[6]初定包角225

E GPa

完善后的工艺参数:宽度:750~1550mm

厚度:0.3~3.0mm

σ:260~650Mpa

屈服强度

s

矫直速度:0~180m/min

σ

前后张力:(1/5~1/15)

s

弹性模量:210

=

E GPa

α=

张力辊包角:225

第2章 翁格勒拉弯矫直机的结构参数计算

拉弯矫直机结构参数包括张力辊组的结构参数:张力辊辊径、辊身长度、辊数;还包括弯曲矫直辊组的结构参数:弯曲矫直辊的辊径、辊距、辊身长度。

2.1 中间辊式矫直机弯曲矫直辊的结构参数计算

2.1.1 弯曲矫直辊的辊径确定

弯曲辊矫直辊径应在满足强度条件下尽量采用较小辊径,以期达 到或接近大弯曲的拉弯矫宣要求。例如在某一拉弯矫直机上调整 拉力,可以达到120.4F F ?=≈并与其中件层偏移系数0.4e h ∈=≈

基本接近时.按图2.1中曲线VI 可知,其相应的或最大的0.6ζ=。

图2.1 各种拉弯状态下的?-∈曲线

因此所采用的弯曲辊直径就应保证带材能达到不超过0.6ζ=的弯曲。于是中性层的变形放大系数为'11/0.6?ζ===1.67,它要比纯拉伸变形增大67%。现在就按这种变形匹配关系

将其模型绘于图2.2。图中

1

1.67

e

εε

=,10.6

h

h

ζ

==。中性层

偏移后拉伸侧弹性区厚度由

t

h变为

11

t

h h e

=-,两边除以h后变为

1

ζζ

=-∈

正反拉弯后两侧的弹性区都缩小到

1t

h,因此拉弯矫直后新弹

区比

1

ζ要小于

ζ由前面已知0.4

?

∈==来计算

1

0.60.40.2

ζ=-=式

1

ζζ

=-∈的关系由图中两个三角形Oab与'''

O a b相等条件

也可求出。

图2.2 带材拉伸与弯曲变形的匹配模型

可见拉弯后的等效弹区比确有明显减小,既有利于矫

直又不利于断面畸变。再以图2.2中c点为例,其0.5

?

∈==,用

插值法可求出0.5

ζ=此时用式

1

ζζ

=-∈可算出

1

ζ→,这表示已有

半个厚度达到塑性拉伸,正反弯曲之后则全断面为塑性拉伸。因

此用0.5

ζ=来确定弯曲辊直径是可行的。

即0.5

w

S

E

D

δ

σ

≤(2-1)

式中δ值为最小带厚,

S

σ为其相应的屈服极限。

工艺参数中给出δ=0.3mm, E =210GPa,S σ=(260~650)MPa 因此,由式(2-1)可计算出弯曲矫直辊的辊径:

6

3

0.50.3210100.548.565010

w S E D δσ???≤==?mm 选取w D =50mm

矫直辊直径与弯曲辊直径基本相同,只是在矫直辊的压弯量要比弯曲辊的小些。它们在结构上相同,故统称为弯曲矫直辊。

2.1.2 弯曲矫直辊的辊距确定

一定用途的矫直机的辊距值可在一定的适用范围内选取,但不能过大或过小。辊距过大,轧件塑性变形不足,保证不了矫直质量,同时轧件有可能打滑,满足不了咬入条件;辊距过小,由于矫直力过大,可能造成轧件与辊面的快速磨损或辊子和接轴等零件的破坏。所以认为,最大允许辊距值m ax t 决定于矫直质量和咬入条件;最小辊距值min t 决定于接触应力或扭转强度条件。最终在二者之间选取合适的辊距值。

(1)m ax t 值的确定。为保证矫直质量条件,对于理想材料,若采用小变形方案,其最大允许辊距为: S

MAX

hE

D t ?σ?

32max =

=

其中?-比例系数,中薄板?=0.9~0.95,在此取0.9 所以,得出

max t =55mm (2)min t 值的确定。

轧件对矫直辊的压力随着辊距的减小而增大。若压力值过大会加速辊面的磨损,降低板面质量,所以辊距不能太小。因此,接触应立成为辊距最小值min t 的限制条件。

矫直辊辊身的弯曲强度一般不能成为最小辊距的限制条件,因此弯曲强度不够时,可增设支撑辊。辊颈的扭转强度和连接周轴的强度往往时最小辊距的限制条件。

一般情况下,薄板矫直机的辊距可大致选取下面数值:

max min min (25~40)(80~130)h t h <<

所以,min 40t mm =

综合考虑,弯曲矫直辊辊距取值 50t mm = 2.1.3 弯曲矫直辊辊数、辊身长度的确定 (1)辊数选择

增加辊数,可提高矫直精度,但同时会增大结构尺寸和重量,也会增加能量消耗。所以,在达到矫直质量要求的前提下,力求辊数减少。此外,辊子过多时,不仅明显加重前面提到的缺点,而且矫直精度提高的并不显著,经济效果很低,故辊子不宜过多。

对于薄板矫直机,由于钢板

b

h

比值很大,原始弯曲曲率较大以及瓢曲和浪形缺陷严重又往往是冷矫材料,强化系数也较大,则矫直困难,但是又往往受强度条件限制,辊距不得不加大。因此,就需要增多辊数,以便保证矫直质量,故薄板矫直机的辊子较多。对于厚板矫直机,则相反,辊子较少。一般选取辊数可参见表2.1。

表2.1 辊数与钢板的关系

根据给定的工艺参数,选取辊数 17n =。

(2)辊身长度的确定

矫直辊辊身长度要比钢板的最大宽度大一定的数值,并按下式计算 max (1.1~1.16)L B = 由工艺参数选取系数1.12,得出

max (1.1~1.16) 1.1215501736L B mm mm ==?=

结合表2.2选取1730L mm = ∴ 1730L mm =

表2.2 中国现用拉弯矫直机概况

表2.2(续)

注: 1.SMS----施罗曼西马克;DEMAG----德马克;Wenan----维恩;

2.实际w D 值小于计算值者为正常

3.实际L D 值大于计算值者为正常

4.实际L 值在B 值与计算L 值之间均为可用.稍大于计算之者也可以.

2.2 张力辊结构参数的计算

2.2.1 张力辊直径的确定

拉弯矫直机的张力辊所承受的拉力比拉伸矫直机拉力辊的拉 力小1倍以上,故其直径可以适当减小。从弯曲矫直辊的拉弯变 形分析中可以看到,若按最厚带材不产生塑性弯曲:而且拉力更要 减小,如减到屈服拉力的三分之一。则最小辊径为

3L s

E D δ

σ≥

式中δ为带材最大厚度,s σ为其最小屈服极限。

根据工艺参数得出张力辊辊径: 32101000

969260

L D mm ??==

取为1000L D mm =

2.2.2 张力辊辊数,辊身长度的确定 (1)张力辊辊数的确定

张力辊的数量取决于拉力放大的倍数,拉力由展卷出口拉力增大到矫直所需之拉力

逐步由张力辊通过带材对辊子包角所产生的摩擦力而增加的,包角越大,拉力增加得越多。’而每一辊子的包角的θ角只能增大到一定限度,一般220θ≤。因此拉力放大系数

()e μα中的α角给定时,辊数n 便可求出:

n α

θ

=

在多辊系的张力辊组中,α角代表个辊包角的总和。根据工艺参数由[3]中定包角

2αθ=。所以得出张力辊辊数:

2n α

θ

=

= 张力辊辊数为2,选用2辊张力辊辊组形式。 (2)张力辊辊身长度的确定

张力辊辊身长度与弯曲矫直辊辊身长度一致:

1730L mm =。

张力辊与矫直辊之间距离是矫直机结构而定,在此不做具体确定。

第3章 翁格勒拉弯矫直机的力能参数计算

由于此矫直机采用中间辊式矫直机部分进行弯曲矫直,出、入口设置拉伸矫直机部分进行拉伸矫直,两者采用单独电机驱动,拉伸矫直机不受中间辊式矫直机的影响,而辊式矫直机矫直速度由拉伸矫直机决定,因此可以对拉伸矫直机进行单独计算,对辊式矫直机的矫直速度确定后单独计算。

3.1 拉伸矫直机部分的力能参数计算

第2章中求得张力辊辊数为2,因此采用2辊辊系形式如图3.1所示

图3.1 翁格勒拉弯矫直机的二辊系拉伸矫直机结构图

1. 展卷机

2.卷取机 b.后张力辊组 c.前张力辊组

从左向右将卷由展卷机1拉出后呈S 型绕过后张力辊组b ,在绕过前张力辊组a 进入卷取机2。卷取机2提供初始拉力0F ,经辊组a 将张力放大为2F ,同时展卷机1提供初始制动力4F ,经混组b 将制动力放大到2F ,则在拉力与制动力之间形成拉伸力2F 使带材产生塑性拉伸.并在机器的连续转动中完成连续性矫直工作。

下面按给定的工艺参数对此拉伸矫直机进行力能参数的计算,

工艺参数:屈服极限(260~650)s MPa σ=,210E GPa =,带宽(750~1550)B mm =,厚度(0.3~3)h mm =,矫直速度(0~3)/a v m s =,辊径1000L D mm =,辊颈直径

0.5500L d D mm ==,包角225 3.92rad θ==,采用聚酯辊面(由[6]中选取的辊面材料),

其摩擦系数0.25μ=,设计张力1

604.55

L s i F A KN σ==(其中i A 为钢板的最大断面面积,

2155034650i A mm =?=)滚动轴承摩擦系数'0.05μ=。按以上条件计算张力辊辊组的张力和此拉伸矫直机的驱动功率。

计算:(0~3)/a v m s = 取最大值 3/a v m s =

21

604.55

L s i F F A kN σ===

0.253.9212604.5226.84F F e e kN μθ--?==?=

0.253.9201226.8785.15F F e e kN μθ--?==?=

轴承受力总和为:

22(3221)cos(

)2a F F e e e μθμθμθθπ

----=+++

604.5(0.140.751)cos(

)2

θπ

-=?++

1142.5kN =

出口辊组的转速为: 3

0.96/57.3/min 1

a c L v n r s r D ππ=

===? 轴承摩擦功率为: 10.050.50.961142.585.760

c

m a d n N F kW μππ=

=????=

第2辊的辊面与带材间滑动速度为: 212604.5226.8

3.01000 1.16/4650210

a

F F v v mm s AE --?==??=? 其滑动摩擦功率为: 2221 1.16

()

0.25(604.5226.8)0.12210002

h v N F F kW μ?=+=?+?=? 第2辊带材出口速度即第1辊带材入口速度为:

'2231000 1.162998.84a v v v mm s =-?=?-=

第1辊面上滑动速度为:

矫直机

第1章前言 拉伸弯曲矫直机应用于精整机组中,对薄带材进行矫直.目前,国外已经开发生产出多种机型,并已广泛应用.我国尚在研制开发阶段,需加速发展独立成套. 1.1 拉弯矫直机及其发展 由于冷轧带钢中存在较大的残余应力,使得板面产生波浪和翘曲,不能满足用户的使用要求,需要对其进行矫直.板带材的矫直设备主要有以下三种形式:辊式矫直机,拉伸矫直机和拉弯矫直机.辊式矫直机对中厚板矫直效果良好,而对于薄带材则效果较差;拉伸矫直机依靠夹紧装置或张力辊组产生拉伸变形,使带材产生一定的塑性变形而达到矫直的目的,但由于张力较大,会降低带材的机械性能.基于以上原因便产生了拉弯矫直机,他综合了拉伸矫直机和辊式矫直机的优点,用较小的张力使带材产生较大的塑性变形,达到矫直带材的目的.这种设备对于薄带材矫直效果非常好,便于成卷作业,在薄带材矫直中逐渐取代了其他两种形式的矫直机. 早期的拉弯矫直机只是拉伸矫直机和辊式矫直机的简单组合,见图 1.1a,矫直效果并不显著.后来出现了如图1.1b所示类型的拉弯矫直机,这种矫直机既减少了矫直辊的数量,又达到了较好的矫直精度.经过不断的开发研究,近年来又出现了多重拉弯矫直机,如图1.1c,使用了两组以上的矫直辊组,并增加了支撑辊的数目,提高了矫直辊的抗弯刚度和强度,这样就可以矫直高强度的薄带材. 拉弯矫直机的设计制造方法,在国外已较为成熟,而国内只作过小型样机及理论探讨,还未达到在生产中应用的程度.设计拉弯矫直机的难点是矫直理论相当复杂,张力辊组的速度和张力控制也较复杂.

图1.1 1.2 翁格勒拉弯矫直机的结构与特点 下面通过武钢冷轧厂从德国(Ungerer) 机器制造有限公司引进的拉伸弯曲矫直纵横剪机组来认识一下这一类矫直机的结构特点。 1.2.1 拉弯矫直机的特点 拉伸弯曲矫直机主要由三部分组成。一部分是带有弯辊调节装置的23 辊式矫直机本体;另一部分是张力辊组(也称S 辊组) 和传动部分。 1.2.1.1 弯曲矫直机 弯曲矫直机为23 辊式,辊径为25mm。在每个工作辊的宽度上有相应的中间辊,辊径30mm。每列中间辊上又有9 组支撑辊,支撑辊径33mm。 如图1.2 所示。矫直机上部设有矫直辊倾斜和压下机构,即辊缝调节装置。它由电机通过一套传动装置带动横梁使上辊组作升降调节,而通过蜗轮蜗杆带动偏心辊实现上辊组 的倾斜调节。整个上机架可由液压缸推向前翻转90°打开,以便于清理辊面和更换上下

拉弯和压弯构件

第六章 拉弯和压弯构件 1. 一压弯构件的受力支承及截面如图所示(平面内为两端铰支支承)。设材料为Q235(2235/y f N mm =),计算其截面强度和弯矩作用平面内的稳定性。 x x y y 6000 6000 N M =80kN.m N=800kN M =120kN.m B -300x12 -300x12 -376x10 图 压弯构件受力示意图 解:截面面积2109.6A cm =,431536.34x I cm =,45403.13y I cm =; 31576.81x W cm =,3360.2y W cm =; 回转半径:16.96x x I i cm A ==,7.02y y I i cm A ==。 (1) 强度验算(右端截面最不利): 6800000120100.635 1.0109602351576810235 B y x y M N Af W f ?+=+=

拉伸弯曲矫直机参数分析(精整)

拉弯矫直机参数分析 一.中性层偏移量A的确定 钢带在张力的作用下经过弯曲辊时,断面外侧会产生很大的拉伸,内侧产生相对小一些的压缩,为了保证内外力的平衡,中性层必然会向下偏移:如下图: 通过计算得A=δt×h/(2δs) 如取δt =1/3δs时A=1/6 h 式中:δt—钢带的张应力h—钢带的厚度δs—钢带的屈服极限 实际拉矫过程中,一次应变量不超过10倍屈服时的应变量,如取δs=300MPa 时,屈服应变量为δs/E=300×10^6/(2×10^11)=0.15%,那么一次应变量不超过1.5%,对于一般的钢带,其δb时的延伸在20%以上,所以一次应变在相对很窄的延伸范围内完成,强化可以忽略,即认为屈服极限是定值(根据反变特性,如由拉升到压缩,屈服极限会略有下降,多次弯曲后,由于屈服平台没了,屈服极限是有所下降的)。本文全部计算不包括硬态板。 二.弯曲曲率半径(R0)与应变的关系 中性层的应变:A/R0 最外层的应变:(h/2+A)/ R0 最内层的应变:(h/2-A)/ R0 钢带经过一个弯曲辊产生两次变化,首先钢带由平直逐渐弯曲到曲率半径R0,此时处于钢带与工作辊的接触处,然后由曲率半径R0逐渐展开至平直。钢带上表面与下表面既经过最大拉伸,又经过最大压缩。 则经过一个弯曲辊中性层的总应变为:2×A/ R0 如果有n个弯曲辊,则总应变为:2×n×A/ R0 钢带经过拉矫机后无张力状态下会弹性回复,其应变为:δt/E 实际延伸率可得:ε=n×δt×h/ (R0×δs)-δt/E

如取n=4 δs=300MPa δt=100MPa h=0.2mm E=200GPa(碳钢) 当R0=13时,延伸率为2% 最外层最大应变1% 当R0=15时,延伸率为1.73% 三.张力损失 张力损失绝大部分消耗在弯曲时塑性变形上,这部分的损失为 ((1+λ^2)×h /(4××R0)-δs/E)×2×n ×100% λ=δt/δs 用以上的数据,当R0=13时,张力损失为9.1% 辊系部分的张力损失很小,不超过1% 则总张力损失为(((1+λ^2)×h /(4××R0)-δs/E)×2×n+0.01)×100% 四.一定张力下,包角与带钢曲率半径的关系 以钢带与辊的接触点为支点,那么一侧的钢带受到以下三个力矩的作用: M1为拉伸应力产生的正力矩M2为压缩应力产生的负力矩M3为张应力产生的平衡力矩 有M1-M2=M3 利用积分可得出包角α=2×ACCOS((R0+h (1+2×λ)/6/λ)/(R0+h(1+2×λ-λ^2)/4/λ)) 注:此公式对于较大辊距,较大张力精度高

压弯构件稳定计算

压弯构件稳定计算 (1)概述 压弯构件实际上就是轴力与弯矩共同作用的构件,也就是轴心受力构件与受弯构件的组合,典型的两种压弯构件如图所示。 同其他构件一样,压弯构件也需同时满足正常使用及承载能力两种极限状态的要求,即 正常使用极限状态:刚度条件; 承载能力极限状态:强度、整体稳定、局部稳定. (2) 类型与截面形式

?单向压弯构件: 只绕截面一个形心主轴受弯; ?双向压弯构件: 绕两个形心主轴均有弯矩作用。 ?弯矩由偏心轴力引起的压弯构件也称作偏压构件。 ?截面形式: 同轴心受力构件一样,分实腹式截面与格构式截面。 ?实腹式:型钢截面与组合截面 ?格构式:缀条式与缀板式 ?按截面组成方式分为型钢(a、b),钢板焊接组合截面型钢(c、g),组合截面(d、e、f、h、i) ?按截面几何特征分为开口截面,闭口截面(g、h、i、j)

?按截面对称性分为单轴对称截面(d、e、f、n、p),双轴对称截面(其余各图) ?按截面分布连续性分为实腹式截面(a~j)格构式截面(k~p) (3)破坏形式 强度破坏、整体失稳破坏和局部失稳破坏。

强度破坏:截面的一部分或全部应力都达到甚至超过钢材屈服点的状况。 整体失稳破坏: ?单向压弯构件: 弯矩平面失稳:极值失稳,应考虑 效应(二阶效应)。 弯矩平面外失稳:弯扭变形,分岔失稳。 ?双向压弯构件:一定伴随扭转变形,为分岔失稳。 7.2.1 强度计算 ?两个工作阶段,两个特征点。 ?弹性工作阶段:以边缘屈服为特征点(弹性承载力); ?弹塑性工作阶段:以塑性铰弯矩为特征点(极限承载力)。

7.2.2 极限承载力与相关条件 联立以上两式,消去η,则有如下相关方程

拉弯矫直机延伸率达不到要求的原因

拉弯矫直机延伸率达不到要求的原因 谢凤华  (中国有色金属工业设备公司 北京市 100814) 【摘要】 连续拉伸弯曲矫直机是近年来发展和应用的一种先进矫直设备。分析了某厂连续式拉伸弯曲矫直机延伸率达不到设计要求(310%)的原因。增加最大设计张力和无级变速箱传递的扭矩可解决这一问题。 关键词 拉伸弯曲矫直机 无级变速器 张应力 Increasing the E longation of continuous tension leveling line Xie Fenghua (China National Nonferrous Metals Industry Equipment Corp,Peking,100814,China) Abstract Continuous tension leveling line is one of the advanced equipment for abtainning extreme flatness in aluminium sheets.The causes that the elongation of the leveler in a factory can’t increase to meet the need for leveling efficiency are analyzed.Research provided the solution:increasing maximum design tension and torgue passed by the unit continuously varying speed. K eyw ords continuous tension leveler;unit continuously varying speed;tension 用1700mm拉伸弯曲矫直机在对淬火板2A12-T3(112mm×1200mm)进行矫直过程中,由于板带冷却变形大,需不断加大设定延伸率,在0~210%范围内,设定值与实际反馈值相符,但板形达不到要求。延伸率设定值加大到212%时,出现异常失控现象,实际反馈值逐渐下降,从210%一直下降到0,至使全线停机。重复试验情况均如此。后来进行淬火板2A12-T3(210mm×1200 mm)试制延伸率只达到015%~016%时,亦出现失控现象,并且入口工作辊存在摆动现象。经过仔细观察发现,无级变速器皮带短时间磨损严重,且有打滑现象。本文对这一问题进行探讨。 1 包角和张应力分析 1700mm拉弯矫直机的工作原理见图1。111 包角α及其调整范围 带材在弯曲单元工作辊上的包角α与延伸率ε关系很大。当辊径和张力一定时,包角α与延伸率ε关系如图2所示。 收稿日期:1998-05-09 谢风华,男,33岁,工程师

拉矫机设计原理

【关键词】拉拉伸弯曲矫直机张力延伸率 1前言 拉伸弯曲矫直机组(简称“拉矫机”)是为适应带材高要求的平直度需要发展起来的一种新型矫直设备,它综合了辊式矫直机和拉伸矫直机的优点,它的工作特点是在张力辊拉伸和弯曲辊连续交替反复弯曲的联合作用下使带材产生塑性延伸而获得板带矫直,它能消除带材的瓢曲、边缘浪形和镰刀弯等三元形状缺陷,明显提高了板形质量。 2拉矫机原理 2.1辊式矫直的原理 板材在辊式矫直机上矫直时,板材是在矫直辊的压力作用下发生纯弯曲弹塑性变形,其中性层即零应力轴线仍然是矩形截面的几何轴线。 2.2张力矫直的原理 带材在连续张力机上矫直时,在张力辊的张力作用下,横截面产生均匀的拉伸应力,而获得均匀的塑性伸长。 2.3拉伸弯曲矫直的原理 连续拉伸弯曲矫直机综合了连续张力矫直机与辊式矫直机的特点,其是在张力辊的拉伸和弯曲辊连续交替反复弯曲的联合作用下使带材产生塑性延伸而获得矫直的工艺过程。矫直过程是使处于张力作用下的带材,经过弯曲辊剧烈弯曲时,带材由于弯曲应力和拉伸应力的联合作用产生弹塑性延伸变形,从而使三元形状缺陷得以消除,随后再经矫直辊将残余曲率矫平。 弯曲辊的作用使得带钢单面受到塑性延伸变形,并且造成整个横截面上的应力不均,根据这种变形原理,带张力的带钢至少要通过两个弯曲辊,进行整个板面均匀的延伸,再经过一个矫直辊,对残余应力进行重新分布均衡。为了适应不同厚度带钢的矫直需要,要设置两组弯曲-矫直辊。 3拉矫机的结构 拉矫机由张力辊组与拉伸弯曲机座组成,据不同的工艺要求和现场条件,这两组有多种形式。 3.1拉伸弯曲机座 拉弯矫直机座使带材产生拉伸弯曲变形,由弯曲辊单元与矫直辊单元组成,弯曲辊由两个或多个小直径的弯曲辊,它使带材在张力作用下,经过剧烈的反复弯曲变形,导致带材产生塑性延伸,以达到工艺要求的延伸率。 弯曲辊机座的结构,要据工艺要求进行合理确定结构形式,工艺设备结构满足工艺要求使用性能,应用方便合理,设备制造工艺能达到设备要求性能。 3.1.1弯曲辊单元 弯曲辊的作用:弯曲辊用做产生弯曲应力并在拉伸应力的联合作用下产生弹塑性延伸,实现钢带的塑性延伸,因为弯曲辊的弯曲应力在带钢的横截面上呈方向性,在单侧实现的塑性延伸,为达到两侧的变形均匀,必须采用方向相反的两个弯曲辊,弯曲辊用以实现带钢的塑性延伸,消除带材的三元缺陷。 弯曲辊的型式很多,根据需要选择各种弯曲辊结构组成形式,以达到校正不同种类带钢的目的。 3.1.1.1弯曲辊结构 弯曲辊组成类型:多支撑辊系型、V型浮动辊型、Y型浮动辊型等结构形式组成,一般的根据带钢的厚度进行结构形式的选择,矫直一般薄带钢时选用多支撑辊系型,并根据校平

拉弯和压弯构件的强度与稳定计算.

拉弯和压弯构件的强度与稳定计算 1.拉弯和压弯构件的强度计算 考虑部分截面发展塑性,《规范》规定的拉弯和压弯构件的强度计算式 f W M A N nx x x n ≤+γ (6-1) 承受双向弯矩的拉弯或压弯构件,《规范》采用了与式(6-1)相衔接的线性公式 f W M W M A N ny y y nx x x n ≤++γγ (6-2) 式中:n A ——净截面面积; nx W 、ny W ——对x 轴和y 轴的净截面模量; x γ、y γ——截面塑性发展系数。 当压弯构件受压翼缘的外伸宽度与其厚度之比t b />y f /23513,但不超过y f /23515时,应取x γ=1.0。 对需要计算疲劳的拉弯和压弯构件,宜取x γ=y γ=1.0,即不考虑截面塑性发展,按弹性应力状态计算。 2.实腹式压弯构件在弯矩作用平面内的稳定计算 目前确定压弯构件弯矩作用平面内极限承载力的方法很多,可分为两大类,一类是边缘屈服准则的计算方法,一类是精度较高的数值计算方法。 按边缘屈服准则推导的相关公式 y Ex x x x x f N N W M A N =???? ? ?-+??11 (6-4) 式中:x ?——在弯矩作用平面内的轴心受压构件整体稳定系数。 边缘纤维屈服准则认为当构件截面最大受压纤维刚刚屈服时构件即失去承载能力而发生破坏,更适用于格构式构件。实腹式压弯构件当受压最大边缘刚开始屈服时尚有较大的强度储备,即容许截面塑性深入。因此若要反映构件的实际受力情况,宜采用最大强度准则,即以具有各种初始缺陷的构件为计算模型,求解其极限承载力。

弯矩沿杆长均匀分布的两端铰支压弯构件,《规范》采用数值计算方法,考虑构件存在l/1000的初弯曲和实测的残余应力分布,算出了近200条压弯构件极限承载力曲线。然后《规范》借用了弹性压弯构件边缘纤维屈服时计算公式的形式,经过数值运算,得出比较符合实际又能满足工程精度要求的实用相关公式 y Ex px x x f N N W M A N =???? ? ?-+8.01? (6-5) 式中:px W ——截面塑性模量。 弯矩沿杆长为非均匀分布的两端铰支压弯构件,构件的实际承载能力将比由上式算得的值高。为了应用于其他荷载作用时的压弯构件,可用等效弯矩x mx M β (x M 为最大弯矩)代替公式中的x M 来考虑这种有利因素。另外,考虑部分塑性深入截面,采用x x px W W 1γ=,并引入抗力分项系数,即得到《规范》所采用的实腹式压弯构件弯矩作用平面内的稳定计算式 f N N W M A N Ex x x x mx x ≤? ?? ? ? -+'18.01γβ? (6-6) 式中:N ——所计算构件段范围内的轴向压力设计值; x M ——所计算构件段范围内的最大弯矩设计值; x ?——弯矩作用平面内的轴心受压构件的稳定系数; x W 1——弯矩作用平面内的对受压最大纤维的毛截面模量; 'Ex N ——参数,' EX N =) 1.1/(22 x EA λπ; mx β——等效弯矩系数,《规范》按下列情况取值: (1)框架柱和两端支承的构件: ①无横向荷载作用时:mx β=0.65+0.351M /2M ,1M 和2M 为端弯矩,使构件产生同向曲率(无反弯点)时取同号,使构件产生反向曲率(有反弯点时)取异号,1M >2M ; ②有端弯矩和横向荷载同时作用时:使构件产生同向曲率时,mx β=1.0;使构件产生反向曲率时,mx β=0.85; ③无端弯矩但有横向荷载作用时:mx β=1.0。

拉伸弯曲矫直机研究论文

拉伸弯曲矫直机研究论文 1拉矫机原理 2.1辊式矫直的原理 板材在辊式矫直机上矫直时,板材是在矫直辊的压力作用下发生纯弯曲弹塑性变形,其中性层即零应力轴线仍然是矩形截面的几何轴线。 2.2张力矫直的原理 带材在连续张力机上矫直时,在张力辊的张力作用下,横截面产生均匀的拉伸应力,而获得均匀的塑性伸长。 2.3拉伸弯曲矫直的原理 连续拉伸弯曲矫直机综合了连续张力矫直机与辊式矫直机的特点,其是在张力辊的拉伸和弯曲辊连续交替反复弯曲的联合作用下使带材产生塑性延伸而获得矫直的工艺过程。矫直过程是使处于张力作用下的带材,经过弯曲辊剧烈弯曲时,带材由于弯曲应力和拉伸应力的联合作用产生弹塑性延伸变形,从而使三元形状缺陷得以消除,随后再经矫直辊将残余曲率矫平。 弯曲辊的作用使得带钢单面受到塑性延伸变形,并且造成整个横截面上的应力不均,根据这种变形原理,带张力的带钢至少要通过两个弯曲辊,进行整个板面均匀的延伸,再经过一个矫直辊,对残余应力进行重新分布均衡。为了适应不同厚度带钢的矫直需要,要设置两组弯曲-矫直辊。 3拉矫机的结构 拉矫机由张力辊组与拉伸弯曲机座组成,据不同的工艺要求和现场条件,这两组有多种形式。 3.1拉伸弯曲机座 拉弯矫直机座使带材产生拉伸弯曲变形,由弯曲辊单元与矫直辊单元组成,弯曲辊由两个或多个小直径的弯曲辊,它使带材在张力作用下,经过剧烈的反复弯曲变形,导致带材产生塑性延伸,以达到工艺要求的延伸率。 弯曲辊机座的结构,要据工艺要求进行合理确定结构形式,工艺设备结构满足工艺要求使用性能,应用方便合理,设备制造工艺能达到设备要求性能。 3.1.1弯曲辊单元

弯曲辊的作用:弯曲辊用做产生弯曲应力并在拉伸应力的联合作用下产生弹塑性延伸,实现钢带的塑性延伸,因为弯曲辊的弯曲应力在带钢的横截面上呈方向性,在单侧实现的塑性延伸,为达到两侧的变形均匀,必须采用方向相反的两个弯曲辊,弯曲辊用以实现带钢的塑性延伸,消除带材的三元缺陷。 弯曲辊的型式很多,根据需要选择各种弯曲辊结构组成形式,以达到校正不同种类带钢的目的。 3.1.1.1弯曲辊结构 弯曲辊组成类型:多支撑辊系型、V型浮动辊型、Y型浮动辊型等结构形式组成,一般的根据带钢的厚度进行结构形式的选择,矫直一般薄带钢时选用多支撑辊系型,并根据校平带钢厚度范围要求,选择单弯或双弯结构。矫平高强度带材或极薄带材时,选用V型浮动辊型或Y型浮动辊型的结构形式,对于AKC钢经过二次冷轧后在冷硬状态下进行矫直,σb≥560MPa,σs≥530MPa,对于因瓦合金则屈服极限更高,选用浮动辊型。 弯曲辊的布置形式:多排弯曲辊形式, 多排弯曲辊形式弯曲辊直径较大,通常用于矫直屈服极限较低的带材,如σs =300~350MPa。根据带材要求厚度范围,选用单弯或双弯成对布置形式,弯曲辊的调整结构:弯曲辊调整压下深度,以调整弯曲辊上的包角,实现延伸率的控制。 弯曲辊的调整结构的结构形式、工作原理、功能实现、性能特点要适应于工艺要求,能便利实现工艺性能,达到功能实现保证质量需要。 弯曲辊机座的自动倾斜控制,整个机座可倾斜±10°。以此改变带钢的出口角度,实现拉伸量调节并消除横向弯曲。 出口顺导辊 顺导辊直径大约为Φ200mm 3.1.1.2弯曲辊工艺技术参数 弯曲辊直径:弯曲辊直径,与带材厚度及带材的屈伏限有关,采用小直径弯曲辊时,不仅矫正效果好,而且还能相应的减小带材单位张力。但辊子直径过小,将使辊子转速增加,辊子磨损加大而降低使用寿命;相应的刚性减小,降低矫正质量,应有提高刚性的措施。

钢结构之拉弯和压弯构件

拉弯和压弯构件 对于压弯构件,当承受的弯矩较小时其截面形式与一般的轴心受压构件相同。当弯矩较大时,宜采用弯矩平面内截面高度较大的双轴或单轴对称截面(图1)。 图1 弯矩较大的实腹式压弯构件截面 设计拉弯构件时,需计算强度和刚度(限制长细比);设计压弯构件时,需计算强度、整体稳定(弯矩作用平面内稳定和弯矩作用平面外稳定)、局部稳定和刚度(限制长细比)。 拉弯和压弯构件的容许长细比分别与轴心受拉构件和轴心受压构件相同。 一、拉弯和压弯构件的强度计算 拉弯和压弯构件的强度计算式 f W M A N nx x x n ≤+γ (1) 承受双向弯矩的拉弯或压弯构件,采用的计算公式 f W M W M A N ny y y nx x x n ≤++γγ (2) 式中 n A ——净截面面积; nx W 、ny W ——对x 轴和y 轴的净截面模量; x γ、y γ——截面塑性发展系数。 当压弯构件受压翼缘的外伸宽度与其厚度之比t b />y f /23513,但不超过 y f /23515时,应取x γ=1.0。 对需要计算疲劳的拉弯和压弯构件,宜取x γ=y γ=1.0,即按弹性应力状态计算。 二、实腹式压弯构件在弯矩作用平面内的稳定计算

确定压弯构件弯矩作用平面内极限承载力的方法很多,可分为两大类,一类是边缘屈服准则的计算方法,一类是精度较高的数值计算方法。 1. 边缘屈服准则 边缘纤维屈服准认为当构件截面最大纤维刚刚屈服时构件即失去承载能力而发生破坏,较适用于格构式构件。按边缘屈服准则导出的相关公式 y Ex x x x x f N N W M A N =??? ? ??-+??11 (3) 式中 x ?——在弯矩作用平面内的轴心受压构件整体稳定系数。 2.最大强度准则 实腹式压弯构件当受压最大边缘刚开始屈服时尚有较大的强度储备,即容许截面塑性深入。因此若要反映构件的实际受力情况,宜采用最大强度准则,即以具有各种初始缺陷的构件为计算模型,求解其极限承载力。 规范修订时,采用数值计算方法,考虑构件存在l/1000的初弯曲和实测的残余应力分布,借用了弹性压弯构件边缘纤维屈服时计算公式的形式,经过数值运算,得出比较符合实际又能满足工程精度要求的实用相关公式 y Ex px x x f N N W M A N =???? ? ?-+8.01? (4) 式中 px W ——截面塑性模量。 3. 实腹式压弯构件整体稳定计算 式(4)仅适用于弯矩沿杆长均匀分布的两端铰支压弯构件,为了把式(4)推广应用于其他荷载作用时的压弯构件,可用等效弯矩x mx M β (x M 为最大弯矩)代替公式中的x M 。另外,考虑部分塑性深入截面,采用x x px W W 1γ=,并引入抗力分项系数,即得到规范所采用的实腹式压弯构件弯矩作用平面内的稳定计算式 f N N W M A N Ex x x x mx x ≤?? ? ? ?-+'18 .01γβ? (5) 式中 N ——轴向压力设计值;

矫直机

太原科技大学 课程设计任务书 专业班级机自112212H班 设计人刘强同组人翟震 设计题目:小型矫直机的设计 设计参数:1、矫直机主电机参数:功率P=3KW, 转速n= 0.267r/s ; 2、主减速机传动比:2.6 ; 3、工作辊数目:19个; 4、工作辊辊距:10mm ; 5、工作辊直径:9.5mm ; 6、工作辊辊长:170 mm ; 7、板坯宽度厚度:115mm 、0.1~1.6mm ; 设计要求:[1] 辊式矫正机基本参数的确定 [2] 矫直功率的计算和电机功率的选择 [3] 主要零部件校核计算 [4] 压下机构的设计计算 [5] 撰写设计说明书。 设计时间:2014年12月17日至2014年12月28 日

摘要 轧钢生产已经成为冶金生产行业中把钢坯轧制成钢材的重要生产环节,具有产量大、品种齐全,生产过程机械化自动化程度高等许多优点,是满足国民生产需要的重要技术。并且随着科学的发展,轧钢生产行业与传统机械业进一步紧密的结合在一起。利用轧钢生产技术,提高轧制产品的质量,减少轧制生产时间,提高成材率,降低生产成本和材料的利用率已经成为轧钢机械设计的主要目标。而矫直技术是提高板带钢产品表面质量和平坦度的重要环节。 本文是依据板带矫直机的生产过程和工作原理,经过现场实习,首先从二十一辊板带矫直机的总体方案评述开始,依次进行了主电机的选择计算,主传动系统的设计,工作辊与支承辊设计,矫直机压下与压上装置的设计与校核;并对矫直机的某些零件和基本结构进行了设计;并且研究了矫直机的发展方向。 关键词:轧钢生产、表面质量、矫直机、平坦度

Abstract The product of steelrolling has become an importanct tache of rolling billet to be steels in the metallurgy produce industry. The stongpoint of this industry is have great output of the production is the variety production.and the produce process is very mechanization and automatization.The steelrolling is a importanct technonlogy to fulfill the country need.Also with the development of steelrolling industry the industry integrate very well with the tration mechanism industry. How to make use of the steelrolling manufacture technology, enhance the rolling quality of the production, decrease the product of rolling time,enhance the rate of product useful rolled steel .The straighting techology is a important tache to enhance the surface quality and flatness of the production . This article design basis on the boardstrip straighting machine produce process and the working principle in the steel metallurgy. With practice in scene. The design is begin with the designing of the main transmission and the machine roller in the straighting machine .This article first begine with the scheme review of the collectively. Then go along with choice of the main electromotor, the design of work roller and the support roller , press down equipment and press up equipment .Following designed the local assessory and the over all structure. Besides researched the development direction of the straighting machine . Keywords: Product of steelrolling、Straighting machine、Surface quality、Mechanization .

张力矫直机组矫直原理

张力矫直机组矫直原理 彭俊新 摘要:介绍影响拉矫机组带钢板形的因素,矫直原理和一些参数的确定方法。 关键词:拉矫机组;张力;矫直辊;延伸率 The Straightening Principle of Tension Leveller Line Peng Junxin Abstract:This thesis introduce the facters affecting stainless steel strip’s level and the srtainhtening principle of tension leveller line.It also canvass how to ascertain some parameters. Key words:tension leveler line;tension ;straightening roll;stretch ratio 1 前言 不锈钢市场竞争日趋激烈,用户对不锈钢板、卷的质量要求越来越高,板形是其中一个重要指标之一。常用的改善板形的方法有拉伸矫直,弯曲矫直和拉伸弯曲矫直三种。比较而言拉伸弯曲矫直的效果比较好,尤其是对于高强度钢和薄料,矫直效果好,效率高。 2 拉伸弯曲矫直的原理 带钢的板形缺陷主要有边浪,中浪,瓢曲,翘曲,镰刀弯,这些缺陷从根本上说都是在带钢轧制过程中不同方向上延伸差异形成的。 拉伸弯曲矫直是对带材进行拉伸和弯曲变形,通过弯曲应力和拉伸应力的叠加,使应力达到屈服极限,将带材平直部分的纤维长度拉长,同时将波浪部分的纤维也拉长,弹性恢复后,带钢的纤维长度保持相同,因而带材就变平直了。决定矫直效果的主要因素是延伸率,

拉伸弯曲矫直机原理、结构及制造工艺

拉伸弯曲矫直机原理、结构及制造工艺 冶金环保事业部技术工艺部章炳泉 1前言 拉伸弯曲矫直机组(简称“拉矫机”)是为适应带材高要求的平直度需要发展起来的一种新型矫直设备,它综合了辊式矫直机和拉伸矫直机的优点,它的工作特点是在张力辊拉伸和弯曲辊连续交替反复弯曲的联合作用下使带材产生塑性延伸而获得板带矫直,它能消除带材的瓢曲、边缘浪形和镰刀弯等三元形状缺陷,明显提高了板形质量。 2拉矫机原理 2.1辊式矫直的原理 板材在辊式矫直机上矫直时,板材是在矫直辊的压力作用下发生纯弯曲弹塑性变形,其中性层即零应力轴线仍然是矩形截面的几何轴线。 2.2张力矫直的原理 带材在连续张力机上矫直时,在张力辊的张力作用下,横截面产生均匀的拉伸应力,而获得均匀的塑性伸长。 2.3拉伸弯曲矫直的原理 连续拉伸弯曲矫直机综合了连续张力矫直机与辊式矫直机的特点,其是在张力辊的拉伸和弯曲辊连续交替反复弯曲的联合作用下使带材产生塑性延伸而获得矫直的工艺过程。矫直过程是使处于张力作用下的带材,经过弯曲辊剧烈弯曲时,带材由于弯曲应力和拉伸应力的联合作用产生弹塑性延伸变形,从而使三元形状缺陷得以消除,随后再经矫直辊将残余曲率矫平。 弯曲辊的作用使得带钢单面受到塑性延伸变形,并且造成整个横截面上的应力不均,根据这种变形原理,带张力的带钢至少要通过两个弯曲辊,进行整个板面均匀的延伸,再经过一个矫直辊,对残余应力进行重新分布均衡。为了适应不同厚度带钢的矫直需要,要设置两组弯曲-矫直辊。 3拉矫机的结构(具体详细结构介绍见图,将详细口述)。 拉矫机由张力辊组与拉伸弯曲机座组成,据不同的工艺要求和现场条件,这两组有多种形式。 3.1拉伸弯曲机座 拉弯矫直机座使带材产生拉伸弯曲变形,由弯曲辊单元与矫直辊单元组成,弯曲辊由两个或多个小直径的弯曲辊,它使带材在张力作用下,经过剧烈的反复弯曲变形,导致带材产生塑性延伸,以达到工艺要求的延伸率。 弯曲辊机座的结构,要据工艺要求进行合理确定结构形式,工艺设备结构满足工艺要求使用性能,应用方便合理,设备制造工艺能达到设备要求性能。 3.1.1弯曲辊单元

拉弯和压弯构件(精)

第 5 章 拉弯和压弯构件 一、选择题 1 计算格构式压弯构件的缀件时,剪力应取——。 (A)构件实际剪力设计值 (B)由公式 235 85 y f Af V = 计算的剪力 (C)构件实际剪力设计值或由公式 235 85 y f Af V = 计算的剪力两者中之较大值 (D)由 dx dM V = 计算值 2 两根几何尺寸完全相同的压弯构件, 一根端弯矩使之产生反向曲率,一根产生同向曲率, 则前者的稳定性比后者的——· (A)好 (B)差 (C)无法确定 (D)相同 3 单轴对称截面的压弯构件,当弯矩作用在对称轴平面内,且使较大翼缘受压时, 构件达到临界状态的应力分布——。 (A)可能在拉、压侧都出现塑性 (B)只在受压侧出现塑性 (C)只在受拉侧出现塑性 (D)拉、压侧都不会出现塑性 4 单轴对称截面的压弯构件,一般宜使弯矩——。 (A)绕非对称轴作用 (B)绕对称轴作用 (C)绕任意轴作用 (D)视情况绕对称轴或非对称轴作用 5 在压弯构件弯矩作用平面外稳定计算式中,轴力项分母里的 y j 是——。 (A)弯矩作用平面内轴心压杆的稳定系数 (B)弯矩作用平面外轴心压杆的稳定系数 (C)轴心压杆两方面稳定系数的较小者 (D)压弯构件的稳定系数 6 图中构件“A”是——。 (A)受弯构件 (B)压弯构件 (C)拉弯构件 (D)可能是受弯构件,也可能是压弯构件

7 实腹式偏心受压柱平面内整体稳定计算公式 ) 8 . 0 1 ( 1 Ex x x x mx x N N W M A N - + g b j ≤ f 中 mx b 为——. (A)等效弯矩系数 (B)等稳定系数 (C)等强度系数 (D)等刚度系数 8 实腹式偏心受压构件在弯矩作用平面内整体稳定验算公式中的γ主要是考虑—— 。 (A)截面塑性发展对承载力的影响 (B)残余应力的影响 (C)初偏心的影响 (D)初弯矩的影响 9 钢结构实腹式压弯构件的设计一般应进行的计算内容为—— 。 (A)强度、弯矩作用平面内的整体稳定性、局部稳定、变形 (B)弯矩作用平面内的整体稳定性、局部稳定、变形、长细比 (C)强度、弯矩作用平面内及平面外的整体稳定性、局部稳定、变形 (D)强度、弯矩作用平面内及平面外的整体稳定性、局部稳定、长细比 10 弯矩作用在实轴平面内的双肢格构式压弯柱应进行———和缀材的计算。 (A)强度、刚度、弯矩作用平面内稳定性、弯矩作用平面外的稳定性、单肢稳定性 (B)弯矩作用平面内稳定性、单肢稳定性 (C)弯矩作用平面内稳定性、弯矩作用平面外稳定性 (D)强度、刚度、弯矩作用平面内稳定性、单肢稳定性 11 承受静力荷载或间接承受动力荷载的工字形截面,绕强轴弯曲的压弯构件, 其强度计算公式中,塑性发展系数 x g 取———。 (A)1.2 (B)1.15 (C)1.05 (D)1.0 12 工字形截面压弯构件中腹板局部稳定验算公式为——。 (A) w t h 0 ≤(25+0.1l ) y f 235 (B) w t h 0 ≤80 y f 235 (C) w t h 0 ≤170 y f 235 (D)当 0≤ 0 a ≤1.6 时, w t h 0 ≤(16 0 a +0.5l +25) y f 235 ; 当 1.6< 0 a ≤2.0 时, w t h 0 ≤(48 0 a +0.5l -26.2) y f 235 ; 其中, max min max 0 s s s - = a

UNGERER矫直机的结构与特点(宝钢)

UN GERER矫直机的结构与特点 李怀广 (上海宝山钢铁集团公司冷轧部,201900) 【摘要】 介绍宝钢冷轧机组中UNGERER矫直机主要参数的选择,详述该矫直机的结构及其特点,并在工艺方面的重要改进。 【关键词】 辊式矫直机 参数设定 结构特点 辊盒设计 THE STRUCTURE OF UNGERER LEVE LER AN D ITS CHARACTERISTIC Li Huaiguang (Shanghai Baosteel G roup C orp.) 【Abstract】 The selecting of main technical parameters for UNGERER leveler in cold rolling mills in Baosteel was introduced,especially,the structure of UNGERER leveler and its characteristic.The im provement in the technical process was described. 【K ey Words】 R oll T ype Leveler,Parameter Setting,S tructural Feature,Design of R oll C ontainer 1 概 述 轧件在轧制、冷却和运输过程中,由于各种原因往往产生形状缺陷,例如波浪弯和瓢曲等,因此我们必须用矫直机来矫直带钢,以获得平直光滑的带钢。本文意图介绍一种由宝钢引进的新型辊式矫直机—UNGERER矫直机。 该矫直机自动化程度高,在宝钢运行了近4年,运行状况良好,而且极大地改善了钢板的板形和表面质量,并且减少了设备的维护和换辊时间,为宝钢生产高质量的“05”板提供了可靠的设备条件。 根据矫直理论,带材是在辊式矫直机中经过交错排列矫直辊的多次反向弯曲,使原始曲率的不均匀度逐渐减少,进而矫平。引进的UNGERER矫直机采用大变形矫平方法,带材在矫直机内经过几次剧烈的反弯,消除原始曲率的不平度,形成单值曲率,然后,按照单值曲率进行矫平。 过去矫直机都放在飞剪后面,虽可减少电气方面的速度匹配问题,但给矫直机和矫直质量都带来不少问题。UNGERER矫直机则放在飞剪前面,形成连续矫直,这样减少了钢板对矫直机的冲击,且可避免钢板头部表面的缺陷。当然,这样的布置对矫直机与机组其他部分的速度匹配要求更为严格。 2 UNGERER矫直机参数 辊式矫直机的主要参数包括矫直辊辊距t、 辊径D、辊数n、辊身长度L和矫直速度V 0。在选定辊距时,既要满足矫正最小板厚的质量要求,又要满足矫正最大板厚时矫直辊具有足够的强度。 假定D=0195t,接触应力不大于2σ s ,按接 触强度导出的许用最小辊距t min的公式为: t min=0143h max E σ s 根据轧制钢种可知最大板厚h max =315mm,E =210×109N/m2,σs=280×109N/m2,因此t min= 4113mm 该辊距保证了矫直辊能承受的最大接触应力。 保证最小板厚的板材得到矫正的辊距公式 t= 12K t3Eh min K f3σs K t3—第3矫直辊的压下系数 K f3—第3矫直辊下的弹塑性弯曲桡度系数 h min—最小板厚 第23卷 第2期上 海 金 属V ol123,N o12 29 2001年3月SH ANGH AI MET A LS M arch,2001

拉伸弯曲矫直机原理、结构及应用

拉伸弯曲矫直机原理、结构及应用 【摘要】拉伸弯曲矫直机是近代发展起来的一种新型矫直设备,它综合了辊式矫直机和拉伸矫直机的优点。拉伸弯曲矫直机由矫直机工作机座、弯曲辊组、矫直辊组、张力辊组等结构组成。它能消除带材的瓢曲、边缘浪形和镰刀弯等三元形状缺陷。现场安装使用拉矫机之后,带材的平直度由原来的15I提高到4I,板形质量得到了明显改善。 【关键词】拉拉伸弯曲矫直机张力延伸率 1前言 拉伸弯曲矫直机组(简称“拉矫机”)是为适应带材高要求的平直度需要发展起来的一种新型矫直设备,它综合了辊式矫直机和拉伸矫直机的优点,它的工作特点是在张力辊拉伸和弯曲辊连续交替反复弯曲的联合作用下使带材产生塑性延伸而获得板带矫直,它能消除带材的瓢曲、边缘浪形和镰刀弯等三元形状缺陷,明显提高了板形质量。 2拉矫机原理 2.1辊式矫直的原理 板材在辊式矫直机上矫直时,板材是在矫直辊的压力作用下发生纯弯曲弹塑性变形,其中性层即零应力轴线仍然是矩形截面的几何轴线。 2.2张力矫直的原理 带材在连续张力机上矫直时,在张力辊的张力作用下,横截面产生均匀的拉伸应力,而获得均匀的塑性伸长。 2.3拉伸弯曲矫直的原理 连续拉伸弯曲矫直机综合了连续张力矫直机与辊式矫直机的特点,其是在张力辊的拉伸和弯曲辊连续交替反复弯曲的联合作用下使带材产生塑性延伸而获得矫直的工艺过程。矫直过程是使处于张力作用下的带材,经过弯曲辊剧烈弯曲时,带材由于弯曲应力和拉伸应力的联合作用产生弹塑性延伸变形,从而使三元形状缺陷得以消除,随后再经矫直辊将残余曲率矫平。 弯曲辊的作用使得带钢单面受到塑性延伸变形,并且造成整个横截面上的应力不均,根据这种变形原理,带张力的带钢至少要通过两个弯曲辊,进行整个板面均匀的延伸,再经过一个矫直辊,对残余应力进行重新分布均衡。为了适应不同厚度带钢的矫直需要,要设置两组弯曲-矫直辊。 3拉矫机的结构 拉矫机由张力辊组与拉伸弯曲机座组成,据不同的工艺要求和现场条件,这两组有多种形式。 3.1拉伸弯曲机座 拉弯矫直机座使带材产生拉伸弯曲变形,由弯曲辊单元与矫直辊单元组成,弯曲辊由两个或多个小直径的弯曲辊,它使带材在张力作用下,经过剧烈的反复弯曲变形,导致带材产生塑性延伸,以达到工艺要求的延伸率。 弯曲辊机座的结构,要据工艺要求进行合理确定结构形式,工艺设备结构满足工艺要求使用性能,应用方便合理,设备制造工艺能达到设备要求性能。 3.1.1弯曲辊单元 弯曲辊的作用:弯曲辊用做产生弯曲应力并在拉伸应力的联合作用下产生弹塑性延伸,实现钢带的塑性延伸,因为弯曲辊的弯曲应力在带钢的横截面上呈方向性,在单侧实现的塑性延伸,为达到两侧的变形均匀,必须采用方向相反的两个弯曲辊,弯曲辊用以实现带钢的塑性延伸,消除带材的三元缺陷。 弯曲辊的型式很多,根据需要选择各种弯曲辊结构组成形式,以达到校正不同种类带钢的目的。 3.1.1.1弯曲辊结构 弯曲辊组成类型:多支撑辊系型、V型浮动辊型、Y型浮动辊型等结构形式组成,一般的根据带钢的厚度进行结构形式的选择,矫直一般薄带钢时选用多支撑辊系型,并根据校平带钢厚度范围要求,选择单弯

相关文档