文档库 最新最全的文档下载
当前位置:文档库 › 太阳能级多晶硅

太阳能级多晶硅

太阳能级多晶硅
太阳能级多晶硅

太阳能级多晶硅

能耗高、污染重,让多晶硅生产企业深受诟病。在低碳经济成为世界潮流的时候,我国多晶硅生产企业面临更大压力。

近年来,针对太阳能级多晶硅的质量要求发展起来一种新工艺——冶金法。冶金法制备多晶硅以廉价的工业硅为原料,采用冶金技术提纯而成,工艺路线短,能耗仅为改良西门子法的20%左右,因此被认为是最有可能生产价格低廉的制造太阳能级多晶硅新技术。

为推广和不断完善冶金法生产多晶硅工艺,冶金法太阳能多晶硅产业技术创新战略联盟于2009年9月底在宁夏银川成立。

新规定催生新技术

为了落实国务院关于抑制包括多晶硅在内的部分行业产能过剩和低水平重复建设精神,国家发改委针对国内普遍采用的改良西门子法制备太阳能级多晶硅技术明确了技术门槛:多晶硅项目规模必须大于3000吨/年,占地面积小于6公顷/千吨多晶硅,还原尾气中四氯化硅、氯化氢、氢气回收利用率不低于98.5%、99%、99%;引导、支持多晶硅企业以多种方式实现多晶硅—电厂—化工厂联营,支持节能环保太阳能级多晶硅技术开发,降低生产成本。到2011年前,淘汰综合电耗大于200千瓦时/千克的多晶硅产能。

冶金法太阳能多晶硅产业技术创新战略联盟秘书长、中国产学研合作促进会新材料专业委员会副理事长李义春介绍,当前,我国大多数多晶硅生产企业采用的是西门子法。虽然国外的改良西门子法已经发展成熟,但一直为几家大公司所垄断,对我国进行技术封锁。我国一些小企业采用拼凑的设备和技术生产,能耗和污染得不到有效控制,产品质量和成本均不具备优势。

赛迪公司顾问开发区咨询中心咨询师江华明确表示,我们应集中科技资源,共同研发制定中国多晶硅产业的总体布局、技术路线、工艺方法、环保和综合利用方案等,除获得成熟西门子法生产多晶硅的工艺外,加大力度对流化床法、冶金法等多晶硅生产工艺进行开发研究,并针对不同市场,形成多种工艺技术既相互竞争又各自针对合适目标协调发展的技术格局。

李义春介绍,国内外现有的多晶硅厂绝大部分采用改良西门子法生产多晶硅。用该工艺生产的多晶硅纯度较高,通常能达到9N以上,甚至10N、11N,这样才能保证电子材料的功能。但是该技术存在成本高、能耗高、投资大以及流程复杂的问题。

目前发展迅猛的光伏产业,对多晶硅材料的要求没有那么高,一般纯度达到6N-7N就可以了。“但是没有这样的硅片,企业就把高端的电子用多晶硅材料掺杂,降低品质后,才能用于光伏发电。因此,应该有专门用于光伏发电的硅片生产技术。”李义春说。

基于此,业内开始积极研究适合太阳能级多晶硅的低成本制造技术和方法。

新技术的优势

“改良西门子法满足的是信息电子对多晶硅的高纯度能级要求,但太阳能光伏电池并不需要如此高的纯度,这的确给成本更低的冶金法制备多晶硅技术带来了新的机遇。”中国工程院院士闻立时说。

2008年6月,阿特斯光伏科技有限公司在全球率先宣布,他们用冶金法生产的多晶硅成功开发出太阳能电池模组组件,并被国际太阳能光伏领域的主流厂商所接受。

李义春介绍,几年前,人们对冶金法还处在摸索阶段,近几年由于市场驱动,很多企业和机构都投入大量精力研究。目前我国几家主流的单位都取得了突破,而且技术越来越好,关键技术指标达到了要求,制成了光伏电池。

宁夏发电集团在冶金法太阳能级多晶硅的研发、生产和应用方面进行了开拓性的工作。2008年9月,该集团在全国第一个采用冶金法多晶硅建设的330KWp光伏电站在银川并网发电;2009年9月,该集团太阳山10MWp光伏电站中的2.5MWp成功并网发电,其电池组件所用多晶硅、单晶硅全部采用冶金法生产。

阿特斯公司目前已经同时在一些国家和地区的工厂利用改良西门子法和冶金法制备多晶硅,并对两种制备方法进行实时跟踪比较。该公司提供的两种制备方法数据显示,冶金法尽管目前在纯度方面有待改进,但其成本更低、更环保以及投产回报周期更短等优势已经逐渐显露。“我们已经通过实践证明,冶金法是可行的,根据我们实际生产的数据来看,改良西门子法目前制备多晶硅的成本是30-60美元/千克,而冶金法只需要10-25美元/千克。而且冶金法的转化效率已经达到了14%-15.5%,通过未来持续的一些技术改进,冶金法将可以逐步替代西门子法。” 阿特斯太阳能光电(苏州)有限公司研发总监陈根茂说。

“尽管冶金法有着成本更低、能耗更低的优点,但纯度不高问题一直没有得到解决。”中国科学院研究员王文静直言,冶金法短板仍存。

技术有待改进

“冶金法现在仍然面临着很多问题,很多技术难点没有解决,未来能不能成为光伏发电材料的主流技术工艺,还是一个未知数。现在最紧迫的是,先通过研究弄清楚如何解决冶金法的一些除杂的技术难题,然后才是大规模推广的问题。”闻立时直言不讳。

在20世纪30年代,曾有过外国学者研究证明,冶金法生产的多晶硅理论上可以达到

7N,但其无法满足半导体的纯度要求,研究一度停滞。后来的研究并不深入,目前,能够稳定生产的冶金法多晶硅纯度也仅在5N-6N之间。

李义春也坦诚,冶金法存在生产方式比较粗糙,工艺有待优化和提升,设备有待完善等问题。

“冶金法是民间自发研究推动,政府并无过多的引导和投入,产业还处于起步阶段,争论多是正常的,但我们仍然需要强调诚信。”厦门市三晶阳光电力有限公司董事长郑智雄表示,冶金法的确仍存在问题,但更重要的是,整个产业的人需要诚信以对,以此奠定产业发

展基础。三晶阳光正试图打造一个从硅原料到多晶硅制备以及电池组装系统集成的垂直产业链。“我们准备在应用方面进行全面的调整,即通过改进后端的工艺,来弥补前端多晶硅纯度不够的问题,我相信这可以做到。”

“以前是改良西门子法一法独大,但现在的产业发展情况是,硅烷法和冶金法以及改良西门子法已经是三足鼎立,各自占据一部分市场。”闻立时说,这的确是成本低、投资回报时间短的冶金法制备太阳能多晶硅的机会。“如果冶金法能发展起来,整个材料领域的竞争会更加充分,最终是用户受益,成本降低。”

据介绍,改良西门子法生产的晶体硅纯度在9N~12N,是电子级的,而太阳能级晶体硅的纯度只要求6N,即使采用了9N以上的多晶硅,在拉制太阳能单晶棒或多晶硅铸锭时,还是要添加进受主杂质,将纯度降低到6N左右来使用。显然,目前用电子级晶体硅制备太阳电池大大增加了电池的成本。这就给冶金法制备多晶硅提供了新的机遇。宁夏发电集团公司副总经理关宁介绍,冶金法多晶硅制备技术的优势在于:投资少、能耗低、低成本、环境友好、生产规模可大可小、建厂容易、成本下降空间大、易推广。“冶金法的发展现状是,目前只有少数企业真正实现了技术突破并实现了产业化,而大部分企业还没有实现技术突破。”关宁说。

冶金法同其他生产技术相比,无论从投入、能耗、环境还是成本,都是一个先进的方法。作为一个新工艺,技术的进步需要过程,取得行业的认同也需要一个过程。他表示,目前太阳能光伏产业大力发展冶金法技术需要重点解决两方面的问题:一是解决认识上的问题,如何让更多的人认识到冶金法技术投资省、能耗低、成本小、环境友好的优越性,认可冶金法多晶硅产品;二是解决技术推广的问题,如何让更多的人掌握冶金法多晶硅生产技术。解决这些问题,需要政府的引导和市场环境的培育,更需要媒体的关注与宣传。

根据低成本太阳能级多晶硅及其电池的要求和冶金法的原理及国内外研发单位的经验,冶金法生产多晶硅技术路线可以分为三个节点:首先从源头,也就是从原料开始就控制杂质含量,特别是控制危害最大的硼和磷的含量,而不是等将硼和磷融入工业硅后才千方百计从中脱除。其次是采用各种冶金方法进行净化提纯,得到太阳能级的多晶硅;最后是多晶硅的铸锭或单晶拉制以及切片过程,在此过程中应当考虑如何控制施主和受主杂质,得到合适的电阻率和少子寿命。

结合工业硅的生产工艺,在矿热炉内,用精选、处理过的硅石、石墨电极和石油焦等还原剂为原料,通过高温还原制得2N~3N左右的冶金硅。精选过程可以根据各家公司的情况进行(例如采用原料预处理工艺来控制对太阳能多晶硅危害最大的硼和磷在原料中的含量等)。将制得的冶金硅利用冶炼炉的余温,在液态下进行炉外精炼(主要是造渣、吹气,进一步除硼、磷、碳和金属杂质)后,得到3N~4N的高纯冶金硅。紧接着将3N~4N的高纯冶金硅通过各种提纯方法(例如:湿法酸洗除金属、真空电子束熔炼除磷、除金属杂质和真空等离子束氧化除硼,电磁真空熔炼除磷,湿氢法除硼等技术手段)进行进一步提纯,除去难以提纯的非金属和轻金属杂质,然后进行定向凝固除金属杂质。将定向凝固后获得的柱状太阳能级多晶硅进行切锭检测,合格产品直接送去拉单晶或铸锭切片,不合格的硅片回收再次提纯。

冶金法多晶硅由于工艺路线的原因,是将金属硅的杂质逐步提纯到太阳能所需的6N级,而

不像西门子法那样,先提纯到9N以上,再掺杂到6N级。加上历史只有短短几年,不像西门子法已经经历近50年的大规模生产,因此,电池的效率虽然迅速提高,但到2009年为止,还是比西门子法要低一些。所以,在每次行业的各类研讨会上,专家们总是集中在冶金法多晶硅的纯度、电阻率、少子寿命、转换效率、光致衰减等技术指标上。但从2009年开始,这种情况发生了改变。尽管对于上述问题的讨论依然存在,但话题已经更多地转向了诸如产能、装机容量、寿命、投资、成本等产业化的经济指标方面。

冶金法是近年来针对太阳能级多晶硅(SoG-Si)的质量要求发展起来的新工艺。由于是以廉价的冶金硅为原料,工艺路线短,能耗仅为改良西门子法的20%左右,因此被认为最有可能生产价格低廉的SoG-Si的新技术。冶金法制备多晶硅具有成本低、耗能低、投资少、环境友好等优点。相对成熟的改良西门子法而言,冶金法是新技术新工艺,大规模稳定生产的技术还不成熟。

冶金法太阳能多晶硅工艺,是目前国际上公认的能够替代西门子法的最有前景的工艺路线。在美国2009年的晶体硅技术研讨会上,多家光伏巨头都将冶金法太阳能多晶硅作为今后光伏电池降低成本的主要工艺路线。近年来我国的冶金法研发工作取得了重大技术进展,技术达到了国际先进水平并拥有核心知识产权,目前正处于大规模工业化生产的初级阶段。

我国的冶金法多晶硅行业也存在着一定的问题,主要表现在:规模普遍较小,技术交流与协作少,技术水平参差不齐;生产装备和工艺还比较落后,大规模稳定生产的技术还不成熟;光伏发电成本主要取决于多晶硅材料的生产成本,而目前光伏发电电价目前仍高于火力发电,需要国家的政策支持和政府补贴。

宁夏发电集团独辟蹊径,用冶金物理法生产出合格的6N~7N太阳能级多晶硅,形成了从硅矿石到太阳能光伏电站的完整太阳能光伏产业链。宁夏发电集团的冶金法多晶硅生产技术具有完全的自主知识产权,在技术上已经实现完全突破,总体工艺技术与国际同类技术保持同等水平,不存在任何技术问题和技术瓶颈。目前我们需要做的主要工作就是继续进行工艺改进和优化,进一步降低成本,扩大市场,推广应用。目前我公司生产并应用于太阳能光伏电站的太阳能级多晶硅产品品质为:产品化学纯度:磷<0.5ppm、硼<0.3ppmw、总金属<0.1ppmw、碳<1ppm、氧<2.5ppm(中红外方法测定);电阻率0.5Ωcm-3.0Ωcm(p型);光电转换率:多晶硅电池≥15%、单晶硅电池≥17%;衰减率:多晶硅电池≤1%、单晶硅电池≤4.5%。我们的发展战略是低成本化,就太阳能级多晶硅来说,冶金法的成本优势将在各种生产方法中保持相当长的时间,甚至会长久保持下去。宁夏发电集团的冶金法太阳能多晶硅生产技术由于工艺路线的固有特性,成本下降空间较大,目前我公司多晶硅完全成本为30万元/吨,电耗6万千瓦时/吨。近期正在进行工艺改进,将完全成本控制在25万元/吨左右,我公司多晶硅产品的阶段性成本目标将达到20万元/吨左右。

太阳能作为一种可再生绿色能源近些年引起各国高度重视,得到了快速发展。光伏产业的迅速发展给世界太阳能电池制造商带来了无限的商机与利润,硅材料作为太阳能电池的主要载体也得到了迅猛发展。多晶硅太阳能电池转换效率与单晶硅太阳能电池接近,而成本却低很多,因此多晶硅太阳能电池是目前太阳能电池的主流。多晶硅主要采用化学提纯、物理提纯两种方法进行生产,其中,物理法具有成本低、技术成熟度高、环境污染小、工艺相对简单等特点,近几年备受关注。

一、物理法与西门子法的比较

目前世界各国生产多晶硅普遍采用的是改良西门子法。这种方法生产的多晶硅占世界多晶硅总产量的70%~80%。所谓西门子法,就是用氢气(H2)还原三氯氢硅(SiHCl3)生产多晶硅的方法,该方法是在20

世纪50 年代发明的,60 年代实现了工业化生产。经过几十年的应用和发展,先后出现了第一代、第二代和第三代技术。第三代就是目前所说的“改良西门子法”,是在第二代技术将SiCl4 与工业硅反应,实现了SiCl4 的回收利用之后,又增加了还原尾气干法回收系统和SiCl4 氢化工艺,实现了全密闭生产。这是西门子法生产高纯多晶硅的最新技术,是目前多晶硅生产中占绝对优势的主流工艺方法。国外用这种方法可以生产出纯度为9N~11N的高纯多晶硅。该方法的优点是生产工艺成熟、产品纯度高、无爆炸危险。存在的问题是项目建设投资大、建设周期较长、生产过程电耗大、成本高、产出效率较低。

西门子法有很突出的优点,但也有令人难以接受的致命弱点。如果说用这种方法生产电子级多晶硅,是人们必须采用的,那么用这种方法生产太阳能级多晶硅则是人们不能心甘情愿的。太阳能级多晶硅纯度通常是4N~6N,实际上达到6N 或6N 以上就完全可以满足要求,比电子级多晶硅的纯度要求(6N~8N 或9N~11N)要低得多。所以人们一直在寻求西门子法之外制取太阳能级多晶硅的各种方法,冶金法(也称物理法)就是人们期望重要寻求的方法之一。所谓冶金法是类似于金属冶炼提纯的一套方法,这种方法实质上是提纯硅元素,在提纯过程中硅不参与任何化学反应。工业硅生产中的炉外精炼就属于这种方法。太阳能级多晶硅制取提纯的冶金法更全面地说包括吹气精炼、熔剂精炼、定向凝固、真空精炼、熔盐电解等多种方法。

西门子法提纯多晶硅需要维持1100℃的高温,因此耗费大量电能,造成成本居高不下。一般来说,发达国家新建多晶硅厂需投资$100/kg。一个1000 吨的工厂投资需要人民币10 亿元左右,每吨的成本在40~60 万人民币左右。而冶金法的投资比化学法要小,大约每千吨产能投资只需要4 亿元左右,而每吨的成本为15~25 万元人民币左右。因此,如果成功的话,将对化学法形成很大的威胁。但是,冶金法对硅的提纯极限为6~7N,因此,无法用于半导体行业,而只能用于太阳能产业。所以,冶金法多晶硅(UMG)对于光伏产业来说,在技术和成本上都是占有了绝对优势的,在未来几年里,它很可能逐渐的垄断光伏产业的原料市场。

二、冶金法多晶硅的规模化应用

目前冶金法多晶硅在制造水平上已经能够达到6N,而6N 的硅材料用来做太阳能电池,是没有任何问题的。可以说,冶金法多晶硅完全可以应用在太阳能电池上,但如果要进行大面积的使用就必须规模化。

当前,已经有用冶金法生产的多晶硅制作成电池的公司,虽然生产的电池效率比化学法的高纯硅要低,衰减也较大,但已经进入了中试级的小规模化生产。中国目前所生产的冶金法多晶硅的典型数据是:采用纯度5N 的多晶硅,经过单晶拉制后,可以达到15% 的平均光电转换率,随后的一两天内,会衰减到11~12%,然后基本保持稳定。因此,如果能够将衰减后的转换率控制在10% 左右的话,那么就算用5N 的材料,稳定生产出10% 以上效率的电池,其成本也将比薄膜太阳能电池要低得多。

在成本方面,冶金法多晶硅可以做得比薄膜太阳能电池便宜得多。薄膜多晶硅虽然用硅量少,但生产成本很高,而冶金法多晶硅可以通过生产工艺的简化和改进,在满足太阳能电池的需求的基础上,低廉而大量地生产电池片。可以说,在后续的生产成本的降低方面,冶金法多晶硅的潜力将比薄膜多晶硅要大得多。

如果纯度达到6N,也就是说,所有的杂质含量不超过1 个ppm,其中硼的含量小于0.3ppm,那么就不存在衰减的问题,且光电转换效率可以确保在15% 以上。国内在除硼和除磷方面的技术突破已经不远。所以说,从技术上看,冶金法多晶硅达到批量生产的障碍已经不大,一旦衰减问题得到解决,将很快能得到大面积推广与应用。

三、冶金法多晶硅的应用前景

过去三年,当太阳能和微处理器行业激烈地争夺多晶硅的时候,冶金法多晶硅的热潮逐渐兴起。不过,众多的冶金法多晶硅制造商依然停留在很小的规模,所有的公司都还在致力于解决那些阻碍冶金法被广泛接受的技术障碍,低成本和高利润本身就意味着其难度之大。

世界冶金法多晶硅作为太阳能电池组件主要原料的一种更便宜的替代品,已经在光伏产业销售了很长时间。只不过,过去大多数是与一些西门子法多晶硅或者回收料进行掺料拉晶的。2008 年 2 月,美国道康宁公司宣布能够采用冶金法生产出多晶硅并以10% 的比例与西门子法多晶硅进行掺料拉晶。2008 年 6 月,Timminco 公司宣布能够生产出多晶硅给CSI用来生产100%的UMG的电池。2008年11月,常州天

合宣布做出了UMG 的电池,而且转换效率比CSI 的要高出近一个百分点。接着,美国的两家公司也宣布用UMG 生产出了太阳能电池,效率在15% 以上。

所有这些情况表明,冶金法多晶硅技术在2008 年已经发生了本质的飞跃,已经走出了实验室,进入商业化。大规模的生产和销售,目前处于一触即发的态势,其实,现在有不少公司,已经用冶金法开发出了6N 或者接近6N的材料。但他们目前所需要解决的有两个问题是:一个是大规模生产的问题,另一个是在大规模生产的同时,解决自己的产品的稳定性的问题。前者需要资金,后者则需要产业化经验。随着产能的扩大和质量的稳定,冶金法多晶硅的材料的纯度也将越来越高。经过分析,冶金法多晶硅的理论极限可以达到7N, 而太阳能电池所需要的多晶硅能够达到 5.7N 即可使用,只不过效率较低,并有光致衰减;如果纯度能够稳定在6N 则可以大规模地使用;如达到 6.5N 则可以没有任何问题和担心地使用。相应地,在UMG 的纯度将不断提高、质量的稳定性也会越来越好的同时,从金属硅到多晶硅的提纯工艺,将会越来越成熟,越来越简化。

四、冶金法多晶硅企业

1. 美国DOW CORNING 道- 康宁

康宁公司在2006 年九月宣布,该公司的下属公司HEMLOCK 采用了全新的铸锭法生产多晶硅,是从冶金级的硅(国内叫工业硅或金属硅),采用一种新的大规模的冶金方法,可以为目前的太阳能市场提供大量的低成本的多晶硅。但是,该公司同时说,目前,这种“新方法”所生产的硅,只能和传统方法生产的硅进行混合使用,混合的比例大约是10 份传统的多晶硅掺入 1 份新法多晶硅。

2. 德国WACKER 公司

在多晶硅行业,WACKER 公司的名气是如日中天。因为它是全球最大的多晶硅的生产商之一,而且已经具有五十年的多晶硅的生产经验,向太阳能电池制造商供货的历史几乎也一样长。早在1975 年,WACKER 公司就率先采用了冶金法(又称物理法或铸造法)来制造太阳能级电池硅,之后,技术不断改进,质量不断提高,其太阳能电池的效率达到了21%,接近单晶硅太阳能电池。在最近的多晶硅热中,WACKER 公司重拾冶金法的工艺。

3. 上海普罗新能源有限公司

上海普罗新能源有限公司是一个为太阳能行业的产业链提供太阳能级多晶硅材料的生产商。公司通过提供6N 太阳能级多晶硅材料,为太阳能电池的生产厂商、多晶硅铸锭厂商、单晶硅厂商提供质优价廉的多晶硅材料。普罗公司采用自主知识产权的全新工艺,以CP 法的自有专利技术生产太阳能级多晶硅材料,该材料专门为太阳能的用途而设计,可以为用户提供高光电转换效率的硅材料。由于具有全球领先的成本优势,普罗可以大大提高太阳能领域的制造商在太阳能这个充满活力、发展迅速而又竞争激烈的新能源市场中的竞争力。

4. 宁夏银星多晶硅有限责任公司

公司成立于2007 年6 月18 日,通过不断创新与实验,成功地攻克了“冶金物理法”制备太阳能级多晶硅的技术难题,形成了具有自主知识产权的稳定工艺。2008 年11 月份,公司已顺利建成一条年产1000 吨4N 级高纯硅和一条年产200 吨太阳能级多晶硅生产线并顺利投产。

是质量问题。目前物理法多晶硅做出来的产品纯度仅为5N左右,生产出来的电池组件会有比较严重的功率衰减问题(7N以上的硅没有此问题,所以西门子法等化学法质量高)。

虽然定向凝固和等离子技术有助于提高物理法硅的纯度,但是引入这些技术后成本就会大幅提升,物理法相对于化学法的低成本优势也就不存在了。

单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。多晶硅与单晶硅的差异主要表现在物理性质方面。例如在力学性质、电学性质等方面,多晶硅均不如单晶硅。多晶硅可作为拉制单晶硅的原料。单晶硅可算得上是世界上最纯净的物质了,一般的半导体器件要求硅的纯度六个9以上。大规模集成电路的要求更高,硅的纯度必须达到九个9。目前,人们已经能制造出纯度为十二个9 的单晶硅。单晶硅是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。

硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上。用于制造半导体器件、太阳能电池等。用高纯度的多晶硅在单晶炉内拉制而成。

熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。超纯的单晶硅是本征半导体。在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。单晶硅主要用于制作半导体元件。

用途:是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等

多晶硅是单质硅的一种形态。熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。在化学活性方面,两者的差异极小。多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。

多晶硅太阳能电池

摘要 在全球气候变暖、人类生态环境恶化、常规能源短缺并造成环境污染的形势下,可持续发展战略普遍被世界各国接受。光伏能源以其具有充分的清洁性、绝对的安全性、资源的相对广泛性和充足性、长寿命以及免维护性等其它常规能源所不具备的优点,被认为是二十一世纪最重要的新能源。 由于不可再生能源的减少和环境污染的双重压力,使得光伏产业迅猛发展;太阳电池的发展也日新月异。太阳能电池的发展历程,详细介绍了多晶硅太阳能电池的各种工艺,多晶硅太阳能电池的结构、特点,以及多晶硅的制备方法,并展望了多晶硅太阳能电池的研究趋势。 关键词:多晶硅太阳能电池发展趋势

目录 绪言 (3) 一.太阳能电池概述 (4) 1.1太阳能电池简介 (4) 1.2太阳能电池原理 (4) 1.3太阳能电池材料 (5) 二.多晶硅太阳电池的制造 (6) 三.多晶硅生产工艺分析 (7) 3.1不同硅原子种类太阳能电池商业化的比较 (7) 3.2多晶硅太阳能电池生产工艺分析 (8) 3.3多晶硅太阳能电池影响因素分析 (8) 四.多晶硅电池应用前景分析 (9) 参考文献 (10)

绪言 鉴于常规能源供给的有限性和环保压力的增加, 世界上许多国家掀起了开发和利用新能源的热潮。在新能源中, 特别引人瞩目的是不断地倾注于地球的永久性能源——太阳能。太阳能是一种干净、清洁、无污染、取之不尽用之不竭的自然能源,将太阳能转换为电能是大规模利用太阳能的重要技术基础, 世界各国都很重视。 利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。多晶硅,这种原本主要用作电子芯片领域的原材料,在中国成为各地争上的产业,虽然在2008年曾因金融危机的影响,但是作为一种新型的产业其具有极强的生命力。中国电子材料行业协会给国家发改委的一份行业报告显示,到2009年6月底,我国已有19家企业多晶硅项目投产,产能规模达到3万吨/年,另有10多家企业在建,扩建多晶硅项目,总规划产能预计到2010年将超过10万吨。而2008年我国多晶硅的总需求量才17000吨。这些产能若全能兑现,将超过全球需求量的2倍以上。

单晶硅太阳能电池板详细参数

单晶硅太阳能电池板,铝合金边框,钢化玻璃面板详细参数:单晶硅太阳能板100W 尺寸:963x805x35MM 净重:11KGS 工作电压:33.5V 工作电流:2.99A 开路电压:41.5V 短路电流:3.57A 蓄电池:24v 二、产品特点:采用平均转换效率在15%以上的优质单晶硅太阳电池单片,具有优良的弱光响应性能,符合IEC61215 和电气保护II 级标准。太阳能电池转换效率高。而且太阳能电池板阵列一次性性能佳。太阳能电池板阵列的表面采用高透光绒面钢化玻璃封装,气密性、耐候性好,抗腐蚀。阳极氧化铝边框:机械强 度高,具有良好的抗风性和防雹性,可在各种复杂恶劣的气候条件下使用,便于安装。 太阳能电池板在制造时,先进行化学处理,表面做成了一个象金字塔一样的绒面,能减少反射,更好地吸收光能。采用双栅线,使组件的封装的可靠性更高。太阳能电池板阵列抗冲击性能佳,符合IEC 国际标准。太阳能电池板阵列层之间采用双层EVA 材料以及TPT 复合材料,组件气密性好,抗潮,抗紫外线好,不容易老化。直流接线盒:采用密封防水、高可靠性多功能ABS 塑料接线盒,耐老化防水防潮性能好;连接端采用易操作的专用公母插头,使用安全、方便、可靠。带有旁路二极管能减少局部阴影而引起的损害。工作温度:-40℃~+90℃使用寿命可达20 年以上,衰减小于20%。三、问题集锦:1、什么是太阳能电池答:太阳能电池是基于半导体的光伏效应将太阳辐射直接转换为电能的半导体器件。现在商品化的太阳能电池主要有以下几种类型:单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池,目前还有碲华镉电池、铜铟硒电池、纳米氧化钛敏化电池、多晶硅薄膜太阳能电池及有机太阳能电池等。晶体硅(单晶、多晶)太阳能电池需要高纯度的硅原料,一般要求纯度至少是99. 99998%,也就是一千万个硅原子中最多允许2 个杂质原子存在。硅材料是用二氧化硅(SiO2,也就是我们所熟悉的沙子)作为原料,将其熔化并除去杂质就可制取粗级硅。从二氧化硅到太阳能电池片,涉及多个生产工艺和过程,一般大致分为:二氧化硅—> 冶金级硅—>高纯三氯氢硅—>高纯度多晶硅—>单晶硅棒或多晶硅锭—>硅片—>太阳能电池片。2、什么是单晶硅太阳能电池板答:单晶硅太阳能电池片主要是使用单晶硅来制造,与其他种类的太阳能电池片相比,单晶硅电池片的转换效率最高。在初期,单晶硅太阳能电池片占领绝大部份市场份额,在1998 年后才退居多晶硅之后,市场份额占据第二。由于近几年多晶硅原料紧缺,在2004 年之后,单晶硅的市场份额又略有上升,现在市面上看到的电池有单晶硅居多。单晶硅太阳能电池片的硅结晶体非常完美,其光学、电性能及力学性能都非常的均匀一致,电池的颜色多为黑色或深色,特别适合切割成小片制作成小型的消费产品。单晶硅电池片在实验室实现的转换效率为24.7%.普通商品化的转换效率为10%-1 8%。单晶硅太阳能电池片因为制作工艺问题,一般其半成硅锭为圆柱进,然后经过切片->清洗->扩散制结->去除背极->制作电极->腐蚀周边->蒸镀减反射膜等工蕊制成成品。一般单晶硅太阳能电池四个角为圆角。单晶硅太阳能电池片的厚度一般为200uM- 350uM 厚,现在的生产趋势是向超薄及高效方向发展,德国太阳能电池片厂家已经证实40uM 厚的单晶硅可达到20%的转换效率。3、什么是多晶硅太阳能电池板答:在制作多晶硅太阳能电池时,作为原料的高纯硅不是再提纯成单晶,而是熔化浇铸成正方形的硅锭,然后再加工单晶硅一样切成薄片和进行类似的加工。多晶硅从其表面很容易进行辨认,硅片是由大量不同大小的结晶区域组成(表面有晶体结晶状),其发电机制与单晶相同,但由于硅片由多个不同大小、不同取向的晶粒组在,其晶粒界面处光电转换易受到干扰,因而多晶硅的转换效率相对较低,同时,多晶硅的光学、电性能及力学性能一致性没有单晶硅太阳能电池好。多晶硅太阳能电池实验室最高效率达到20.3%,商品化的一般为10%-16%,多晶硅太阳能电池是正方形片,在制作太阳能组件时有最高的填充率,产品相对也比较美观。多晶硅太阳能电池片的厚度一般为220uM-300uM 厚,有些厂家已有生产180uM 厚的太阳能电池片,并且向薄发展,更以节约昂贵的硅材料。4、怎么区分单晶硅和多晶硅答:多晶片是直角的正方形或长方形,单晶的四个角有接近圆形的

单晶硅与多晶硅的区别

单晶硅与多晶硅的区别 单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。多晶硅与单晶硅的差异主要表现在物理性质方面。例如在力学性质、电学性质等方面,多晶硅均不如单晶硅。多晶硅可作为拉制单晶硅的原料。单晶硅可算得上是世界上最纯净的物质了,一般的半导体器件要求硅的纯度六个9以上。大规模集成电路的要求更高,硅的纯度必须达到九个9。目前,人们已经能制造出纯度为十二个9 的单晶硅。单晶硅是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。 高纯度硅在石英中提取,以单晶硅为例,提炼要经过以下过程:石英砂一冶金级硅一提纯和精炼一沉积多晶硅锭一单晶硅一硅片切割。 冶金级硅的提炼并不难。它的制备主要是在电弧炉中用碳还原石英砂而成。这样被还原出来的硅的纯度约98-99%,但半导体工业用硅还必须进行高度提纯(电子级多晶硅纯度要求11个9,太阳能电池级只要求6个9)。而在提纯过程中,有一项“三氯氢硅还原法(西门子法)”的关键技术我国还没有掌握,由于没有这项技术,我国在提炼过程中70%以上的多晶硅都通过氯气排放了,不仅提炼成本高,而且环境污染非常严重。我国每年都从石英石中提取大量的工业硅,以1美元/公斤的价格出口到德国、美国和日本等国,而这些国家把工业硅加工成高纯度的晶体硅材料,以46-80美元/公斤的价格卖给我国的太阳能企业。 得到高纯度的多晶硅后,还要在单晶炉中熔炼成单晶硅,以后切片后供集成电路制造等用。 什么是单晶硅 可以用于二极管级、整流器件级、电路级以及太阳能电池级单晶产品的生产和深加工制造,其后续产品集成电路和半导体分离器件已广泛应用于各个领域,在军事电子设备中也占有重要地位。 在光伏技术和微小型半导体逆变器技术飞速发展的今天,利用硅单晶所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。北京2008年奥运会将把“绿色奥运”做为重要展示面向全世界展现,单晶硅的利用在其中将是非常重要的一环。现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能硅单晶的利用将是普及到全世界范围,市场需求量不言而喻。河北宁晋单晶硅工业园区正是响应这种国际趋势,为全世界提供性能优良、

多晶硅太阳能电池片的合成绪论

多晶硅太阳能电池片的合成绪论 1.1概述 目前,传统的燃料能源正在不断衰减,同时传统能源对环境也带来一定的危害且日益加剧,并且全世界的能源供应还没有完全普及。所以全世界都在关注可再生能源方面,希望可再生能源能够广泛应用于生产和生活中。这之中太阳能以其自身的优势得到人们广泛的关注。太阳能是一种重要的可再生能源,是取之不尽、用之不竭的新能源,并且它无污染、价格低,是人类能够重复利用的能源。在各国政府和政策的扶持下,光伏产业得到快速有利的发展。 1.2太阳能电池的分类及优缺点 太阳能电池有很多种,往大的方面可分为无机太阳能电池、有机太阳能电池、光化学太阳能电池;无机太阳能电池又可分为多晶硅太阳能电池、单晶硅太阳能电池、薄膜太阳能电池。而有机聚合物太阳能电池作为一种新型太阳能电池,其以有机聚合物半导体作为实现光电转换的一种活性材料。[i]与无机太阳能电池相比较,它的优点有以下几点: (1)生产过程简单,制作时消耗能量少 (2)环保性好,其构成成分均为容易处理的材料 (3)适应性强,高温和弱光条件下的优异 (4)可制成半透明器件,柔性器件等等形式灵活多样的器件 (5)有机物来源广泛,效率提升潜力大 (6)具有很好的发展和应用前景,是目前新能源的主要研究方向之一。 同样,有机太阳能电池存在以下缺点: (1)载流子迁移率低; (2)能量转换效率有待提高; (3)使用寿命短,易损坏; (4)目前为主无法实现大规模商业化; (5)转化效率较低,难于大规模并网发电。[ii] 最大效率染料敏化纳米晶电池也仅能达到10%左右。无机太阳能电池生产技术也较为成熟,目前为止,太阳能电池片的生产还是以无机多晶硅电池片为主。本文也主要研究无机多晶硅电池的生产工艺。 图和表应该各自编号,取名

光伏组件(太阳能电池板)规格表

光伏组件(太阳能电池板)规格表如本页不能正常显示,请点击刷新 型号材料 峰值 功率 Pm (watt) 峰值 电压 Vmp (V) 峰值 电流 Imp (A) 开路 电压 Voc (V) 短路 电流 Isc (A) 尺寸 (mm) APM18M5W27x27单晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36M5W27x27单晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM18P5W27x27多晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36P5W27x27多晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM36M8W36x30单晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36P8W36x30多晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36M10W36x30单晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36P10W36x30多晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36M15W49x29单晶硅15 17.5 0.86 21.5 0.97 287*487*25 APM36P15W43x36多晶硅15 17.5 0.86 21.5 0.97 356*426*28 APM36M20W63x28单晶硅20 17.5 1.14 21.5 1.29 281*627*25 APM36P20W58x36多晶硅20 17.5 1.14 21.5 1.29 356*576*28 APM36M25W48x54单晶硅25 17.5 1.43 21.5 1.61 536*477*28 APM36P25W68x36多晶硅25 17.5 1.43 21.5 1.61 356*676*28 APM36M30W48x54单晶硅30 17.5 1.71 21.5 1.94 536*477*28 APM36P30W82x36多晶硅30 17.5 1.71 21.5 1.94 356*816*28 APM36M35W62x54单晶硅35 17.5 2.00 21.5 2.26 537*617*40

单晶硅与多晶硅的应用和区别

1单晶硅与多晶硅的应用和区别 多晶硅是生产单晶硅的直接原料,是当代人工智能、自动控制、信息处理、光电转换等半导体器件的电子信息基础材料。被称为“微电子大厦的基石”。 在太阳能利用上,单晶硅和多晶硅也发挥着巨大的作用。虽然从目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,就必须提高太阳电池的光电转换效率,降低生产成本。从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。 从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为;[1]可供应太阳电池的头尾料愈来愈少;[2] 对太阳电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料;[3]多晶硅的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级;[4]由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝网印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅的生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的多晶硅片上作出的电池转换效率超过14%。据报道,目前在50~60微米多晶硅衬底上制作的电池效率超过16%。利用机械刻槽、丝网印刷技术在100平方厘米多晶上效率超过17%,无机械刻槽在同样面积上效率达到16%,采用埋栅结构,机械刻槽在130平方厘米的多晶上电池效率达到15.8%。 多晶硅与单晶硅的差别 请问多晶硅与单晶硅的差别是什么?国内有那些厂家在生产这两种产品? 多晶硅是单质硅的一种形态。熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。在化学活性方面,两者的差异极小。多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。 一、国际多晶硅产业概况 当前,晶体硅材料是最主要的光伏材料,其市场占有率在90%以上,而且在今后相当长的一段时期也依然是太阳能电池的主流材料。

单晶硅、多晶硅、非晶硅、薄膜太阳能电池地工作原理及区别1

单晶硅、多晶硅、非晶硅、薄膜太阳能电池 的工作原理及区别 硅太阳能电池的外形及基本结构如图1。其中基本材料为P型单晶硅,厚度为0.3—0.5mm左右。上表面为N+型区,构成一个PN+结。顶区表面有栅状金属电极,硅片背面为金属底电极。上下电极分别与N+区和P区形成欧姆接触,整个上表面还均匀覆盖着减反射膜。 当入发射光照在电池表面时,光子穿过减反射膜进入硅中,能量大于硅禁带宽度的光子在N+区,PN+结空间电荷区和P区中激发出光生电子——空穴对。各区中的光生载流子如果在复合前能越过耗尽区,就对发光电压作出贡献。光生电子留于N+区,光生空穴留于P区,在PN+结的两侧形成正负电荷的积累,产生光生电压,此为光生伏打效应。当光伏电池两端接一负载后,光电池就从P区经负载流至N+区,负载中就有功率输出。 太阳能电池各区对不同波长光的敏感型是不同的。靠近顶区湿产生阳光电流对短波长的紫光(或紫外光)敏感,约占总光源电流的5-10%(随N+区厚度而变),PN+结空间电荷的光生电流对可见光敏感,约占5 %左右。电池基体域

产生的光电流对红外光敏感,占80-90%,是光生电流的主要组成部分。 2.单晶硅太阳能电池 单晶硅太阳能电池是当前开发得最快的一种太阳能电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。这种太阳能电池以高纯的单晶硅棒为原料,纯度要求99.999%。为了降低生产成本,现在地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。将单晶硅棒切成片,一般片厚约0.3毫米。硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。扩散是在石英管制成的高温扩散炉中进行。这样就在硅片上形成PN结。然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉,至此,单晶硅太阳能电池的单体片就制成了。单体片经过抽查检验,即可按所需要的规格组装成太阳能电池组件(太阳能电池板),用串联和并联的方法构成一定的输出电压和电流,最后用框架和封装材料进行封装。用户根据系统设计,可

多晶硅太阳能电池生产工艺.docx

太阳能电池光电转换原理主要是利用太阳光射入太阳能电池后产生电子电洞对,利用P-N 接面的电场将电子电洞对分离,利用上下电极将这些电子电洞引出,从而产生电流。整个生产流程以多晶硅切片为原料,制成多晶硅太阳能电池芯片。处理工艺主要有多晶硅切片清洗、磷扩散、氧化层去除、抗反射膜沉积、电极网印、烧结、镭射切割、测试分类包装等。 生产工艺主要分为以下过程: ⑴ 表面处理(多晶硅片清洗、制绒) 与单晶硅绒面制备采用碱液和异丙醇腐蚀工艺不同,多晶硅绒面制备采用氢氟酸和硝酸配成的腐蚀液对多晶硅体表面进行腐蚀。一定浓度的强酸液对硅表面进行晶体的各相异性腐蚀,使得硅表面成为无数个小“金字塔”组成的凹凸表面,也就是所谓的“绒面”,以增加了光的反射吸收,提高电池的短路电流和转换效率。从电镜的检测结果看,小“金字塔”的底边平均约为10um 。主要反应式为: 32234HNO 4NO +3SiO +2H O Si +???→↑氢氟酸 2262SiO 62H O HF H SiF +→+ 这个过程在硅片表面形成一层均匀的反射层(制绒),作为制备P-N 结衬底。处理后对硅片进行碱洗、酸洗、纯水洗,此过程在封闭的酸蚀刻机中进行。碱洗是为了清洗掉硅片未完全反应的表面腐蚀层,因为混酸中HF 比例不能太高,否则腐蚀速度会比较慢,其反应式为:2232SiO +2KOH K SiO +H O →。之后再经过酸洗中和表面的碱液,使表面的杂质清理干净,形成纯净的绒面多晶硅片。 酸蚀刻机内设置了一定数量的清洗槽,各股废液及废水均能单独收集。此过程中的废酸液(L 1,主要成分为废硝酸、氢氟酸和H 2SiF 6)、废碱液(L 2,主要成分为废KOH 、K 2SiO 3)、废酸液(L 3,主要成分为废氢氟酸以及盐酸)均能单独收集,酸碱洗后均由少量纯水洗涤,纯水预洗废液(S 1、S 2、S 3)和两级纯水漂洗废水(W 1),收集后排入厂区污水预处理设施,处理达标后通过专管接入清流县市政污水管网。 此过程中使用的硝酸、氢氟酸均有一定的挥发性,产生的酸性废气(G 1-1、G 1-2),经设备出气口进管道收集系统,经厂房顶的碱水喷淋系统处理达标后排放。G 1-2与后序PECVD 工序产生的G 5(硅烃、氨气)合并收集后经过两级水吸收处理后经排气筒排放。

直观辨别单晶硅与多晶硅

直观辨别单晶硅与多晶硅

请问专家:怎样用直观的方法鉴别单晶硅电池板的好与坏,用直观的方法区别单晶硅、多晶硅、非晶硅。谢谢! 电简单的方法就是看面积,同样功率面积最小的是单晶硅,面积最大的是非晶硅,非晶硅的硅片看上去很薄,因为单晶硅的转换效率是最高的,成本也是最高的。 单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。多晶硅与单晶硅的差异主要表现在物理性质方面。例如在力学性质、电学性质等方面,多晶硅均不如单晶硅。多晶硅可作为拉制单晶硅的原料。单晶硅可算得上是世界上最纯净的物质了,一般的半导体器件要求硅的纯度六个9以上。大规模集成电路的要求更高,硅的纯度必须达到九个9。目前,人们已经能制造出纯度为十二个9 的单晶硅。单晶硅是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料 我告诉你讲肉眼分辨的方法,多晶硅片比单晶硅片外表粗糙一点,没有单晶硅的光滑,单晶的相对来讲比

多晶的硅片容易碎, 单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。多晶硅与单晶硅的差异主要表现在物理性质方面。例如在力学性质、电学性质等方面,多晶硅均不如单晶硅。多晶硅可作为拉制单晶硅的原料。单晶硅可算得上是世界上最纯净的物质了,一般的半导体器件要求硅的纯度六个9以上。大规模集成电路的要求更高,硅的纯度必须达到九个9。目前,人们已经能制造出纯度为十二个9 的单晶硅。单晶硅是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。 多晶硅是制造单晶硅的原料。 单晶硅太阳能电池转化的效率更高些! 单晶硅与多晶硅的区别在于它们的原子结构排列单晶是有序排列多晶是无序排列主要是有它们的加工工艺决定的多晶多采用浇注法生产,就是直接把硅料倒入埚中融化定型而单晶是采取西门子法改良直拉,直拉过程就是一个原子结构重组的过程. 说点简单的: 1.单晶太阳能板里面的电池片四边都有缺角的;多晶的四角是完整的。从外观上,单晶板上可以看到规则的空白,多晶板上没有。 2.颜色:单晶板一般偏黑色,多晶一般是蓝色。 单晶硅电池与多晶硅电池的不同处在于多晶硅的表面有大面积的冰花状花纹,而

太阳能级硅材料

太阳能级硅材料 什么是太阳能级硅材料 太阳能级硅材料是纯度为6个9以上的高纯硅材料,即纯度为99.9999%以上的硅材料。 太阳能级硅如何制造 在半导体工业上主要有Siemens和流化床FBR(FludizedBedRactor)来制备高纯多晶硅材料,Siemens采用高纯SiHCl3作为原料,而FBR是采用SiH4为原料。对于太阳能级多晶硅,在过去的80年代里,包括BayerAG,Siemens和Wacker等公司在内花费了相当大的努力开发太阳能级多晶硅,但是由于产量和纯度不能满足高效太阳电池的需要,与传统的电池生产技术相比并没有降低电池组件的成本,从而未能实现工业化。 目前,有以下太阳能级多晶硅的制备工艺将

会在未来的几年有所突破。WackerChemie 公司采用高纯SiHCl3和流化床过程来制备粒状高纯多晶硅。2003试验的产量为200吨/年,到2006年可达到年产600吨,其目标是每公斤多晶硅价格低于25美元/公斤,这种太阳能级多晶硅只用来供给光伏产业,由于纯度的原因,不能够应用与半导体工业。Tokuyama也采用SiHCl3为原料,并采用高温、高速沉积过程将多晶硅沉积到衬底上,预计将在2006年计划生产;德国的SolarWorldandDegussa联合宣布采用SiH4热分解方法,在加热的硅圆柱体上得到太阳能级多晶硅;挪威的REC和美国的ASiMi将SiH4和Siemens方法制备高纯多晶硅的工艺改进,来制备太阳级多晶硅,产量预计2000吨/年;此外,日本的KawasakiSteel公司通过将冶金级硅提纯来制备太阳级硅,目前还处在试验工厂阶段,进行大规模生产的主要因素是多晶硅的纯度和材料的生产成本价格;美国的CrystalSystems采用热交换炉法提纯冶金级硅,将冶金级硅的难以提纯的B、P杂质

单多晶硅电池板的区别

多单晶硅太阳能电池板的区别 多晶硅是生产单晶硅的直接原料,是当代人工智能、自动控制、信息处理、光电转换等半导体器件的电子信息基础材料。被称为“微电子大厦的基石”。 在太阳能利用上,单晶硅和多晶硅也发挥着巨大的作用。虽然从目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,就必须提高太阳电池的光电转换效率,降低生产成本。从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。 从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为;[1]可供应太阳电池的头尾料愈来愈少;[2] 对太阳电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料;[3]多晶硅的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级;[4]由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝网印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅的生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的多晶硅片上作出的电池转换效率超过14%。据报道,目前在50~60微米多晶硅衬底上制作的电池效率超过16%。利用机械刻槽、丝网印刷技术在100平方厘米多晶上效率超过17%,无机械刻槽在同样面积上效率达到16%,采用埋栅结构,机械刻槽在130平方厘米的多晶上电池效率达到15.8%。(太阳能人才太阳能招聘人才招聘太阳能商情网) 相关新闻

2019年多晶硅太阳能电池片企业发展战略和经营计划

2019年多晶硅太阳能电池片企业发展战略和经营计划 2019年4月

目录 一、行业发展趋势 (3) 1、宏观经济层面 (3) 2、行业环境层面 (3) 二、公司发展战略 (4) 三、公司经营计划 (5) 1、强化内控管理 (5) 2、加快技改进程 (5) 3、稳定现有客户资源,拓展优质新客户 (5) 4、推进品牌战略,提升企业形象 (6) 四、风险因素 (6) 1、客户集中风险 (6) 2、委外加工模式的风险 (6) 3、产品价格波动的风险 (7) 4、产业政策变动风险 (7) 5、竞争加剧的风险 (8) 6、资金压力及融资风险 (9)

一、行业发展趋势 1、宏观经济层面 根据《国家应对气候变化规划(2014-2020年)》,我国规划到2020年非化石能源占一次能源消费的比重达到15%左右;根据《中美气候变化联合声明》,中国计划2030年左右二氧化碳排放达到峰值且将努力早日达峰,并计划到2030年非化石能源占一次能源消费比重提高到20%左右。国家对于未来中长期的能源规划非常清晰。 现阶段,各项非化石能源对应的2020年和2030年发电量目标总和低于《中美气候变化联合声明》中的要求,考虑到风电和光伏的建设周期相对较短,因此用于填补发电量缺口的可能性较大。与风电相比,光伏发电更清洁,更有优势。以2020年为例,非化石能源发电量测算缺口659亿千瓦时,如果全部用光伏填补缺口相当于光伏并网从 100GW增加到155GW。由此可见,光伏发电的发展空间仍相当可观,电站运营的未来发展十分有前景。 2、行业环境层面 国内光伏电站运营商的竞争处于“一超多强”的格局,央企国电投独占鳌头,其后国企、民企群雄并起。由于电站运营属于资本密集型行业,进入壁垒较高,企业不但需要有雄厚的资金实力,还需要有持续的项目开发能力,因此大型国企的竞争优势较强。但民营企业依靠自身灵活多变的机制,强大的执行力,以及通过资本市场融资平台,

太阳能级多晶硅

太阳能级多晶硅 能耗高、污染重,让多晶硅生产企业深受诟病。在低碳经济成为世界潮流的时候,我国多晶硅生产企业面临更大压力。 近年来,针对太阳能级多晶硅的质量要求发展起来一种新工艺——冶金法。冶金法制备多晶硅以廉价的工业硅为原料,采用冶金技术提纯而成,工艺路线短,能耗仅为改良西门子法的20%左右,因此被认为是最有可能生产价格低廉的制造太阳能级多晶硅新技术。 为推广和不断完善冶金法生产多晶硅工艺,冶金法太阳能多晶硅产业技术创新战略联盟于2009年9月底在宁夏银川成立。 新规定催生新技术 为了落实国务院关于抑制包括多晶硅在内的部分行业产能过剩和低水平重复建设精神,国家发改委针对国内普遍采用的改良西门子法制备太阳能级多晶硅技术明确了技术门槛:多晶硅项目规模必须大于3000吨/年,占地面积小于6公顷/千吨多晶硅,还原尾气中四氯化硅、氯化氢、氢气回收利用率不低于98.5%、99%、99%;引导、支持多晶硅企业以多种方式实现多晶硅—电厂—化工厂联营,支持节能环保太阳能级多晶硅技术开发,降低生产成本。到2011年前,淘汰综合电耗大于200千瓦时/千克的多晶硅产能。 冶金法太阳能多晶硅产业技术创新战略联盟秘书长、中国产学研合作促进会新材料专业委员会副理事长李义春介绍,当前,我国大多数多晶硅生产企业采用的是西门子法。虽然国外的改良西门子法已经发展成熟,但一直为几家大公司所垄断,对我国进行技术封锁。我国一些小企业采用拼凑的设备和技术生产,能耗和污染得不到有效控制,产品质量和成本均不具备优势。 赛迪公司顾问开发区咨询中心咨询师江华明确表示,我们应集中科技资源,共同研发制定中国多晶硅产业的总体布局、技术路线、工艺方法、环保和综合利用方案等,除获得成熟西门子法生产多晶硅的工艺外,加大力度对流化床法、冶金法等多晶硅生产工艺进行开发研究,并针对不同市场,形成多种工艺技术既相互竞争又各自针对合适目标协调发展的技术格局。 李义春介绍,国内外现有的多晶硅厂绝大部分采用改良西门子法生产多晶硅。用该工艺生产的多晶硅纯度较高,通常能达到9N以上,甚至10N、11N,这样才能保证电子材料的功能。但是该技术存在成本高、能耗高、投资大以及流程复杂的问题。 目前发展迅猛的光伏产业,对多晶硅材料的要求没有那么高,一般纯度达到6N-7N就可以了。“但是没有这样的硅片,企业就把高端的电子用多晶硅材料掺杂,降低品质后,才能用于光伏发电。因此,应该有专门用于光伏发电的硅片生产技术。”李义春说。 基于此,业内开始积极研究适合太阳能级多晶硅的低成本制造技术和方法。 新技术的优势

(整理)太阳能电池板规格表.

光伏组件(太阳能电池板)规格表 型号材料 峰值 功率 Pm (watt) 峰值 电压 Vmp (V) 峰值 电流 Imp (A) 开路 电压 Voc (V) 短路 电流 Isc (A) 尺寸 (mm) APM18M5W27x27单晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36M5W27x27单晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM18P5W27x27多晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36P5W27x27多晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM36M8W36x30单晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36P8W36x30多晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36M10W36x30单晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36P10W36x30多晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36M15W49x29单晶硅15 17.5 0.86 21.5 0.97 287*487*25 APM36P15W43x36多晶硅15 17.5 0.86 21.5 0.97 356*426*28 APM36M20W63x28单晶硅20 17.5 1.14 21.5 1.29 281*627*25 APM36P20W58x36多晶硅20 17.5 1.14 21.5 1.29 356*576*28 APM36M25W48x54单晶硅25 17.5 1.43 21.5 1.61 536*477*28 APM36P25W68x36多晶硅25 17.5 1.43 21.5 1.61 356*676*28 APM36M30W48x54单晶硅30 17.5 1.71 21.5 1.94 536*477*28

单晶和多晶区别

一,什么是多晶硅?来源:作者:时间:07-07-14 08:29:20 多晶硅是单质硅的一种形态。熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。在化学活性方面,两者的差异极小。多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。 一、国际多晶硅产业概况

当前,晶体硅材料(包括多晶硅和单晶硅)是最主要的光伏材料,其市场占有率在90%以上,而且在今后相当长的一段时期也依然是太阳能电池的主流材料。多晶硅材料的生产技术长期以来掌握在美、日、德等3个国家7个公司的10家工厂手中,形成技术封锁、市场垄断的状况。 多晶硅的需求主要来自于半导体和太阳能电池。按纯度要求不同,分为电子级和太阳能级。其中,用于电子级多晶硅占55%左右,太阳能级多晶硅占45%,随着光伏产业的迅猛发展,太阳能电池对多晶硅需求量的增长速度高于半导体多晶硅的发展,预计到2008年太阳能多晶硅的需求量将超过电子级多晶硅。 1994年全世界太阳能电池的总产量只有69MW,而2004年就接近1200MW,在短短的10年里就增长了17倍。专家预测太阳能光伏产业在二十一世纪前半期将超过核电成为最重要的基础能源之一,世界各国太阳能电池产量和构成比例见表1。 据悉,美国能源部计划到2010年累计安装容量4600MW,日本计划2010年达到5000MW,欧盟计划达到6900MW,预计2010年世界累计安装量至少18000MW。 从上述的推测分析,至2010年太阳能电池用多晶硅至少在30000吨以上,表2给出了世界太阳能多晶硅工序的预测。据国外资料分析报道,世界多晶硅的产量2005年为28750吨,其中半导体级为20250吨,太阳能级为8500吨,半导体级需求量约为19000吨,略有过剩;太阳能级的需求量为 15000吨,供不应求,从2006年开始太阳能级和半导体级多晶硅需求的均有缺口,其中太阳能级产能缺口更大。 据日本稀有金属杂质2005年11月24日报道,世界半导体与太阳能多晶硅需求紧张,主要是由于以欧洲为中心的太阳能市场迅速扩大,预计2006年, 2007

太阳能电池板参数

太阳能电池板的一组参数 最大标称功率Wp max (W), 峰值电压Vmp(V):峰值电压是在强光时的最高电压 峰值电流Imp(A) 开路电压V oc(V):开路电压是电池板空载电压 工作电压:是电池板带上负荷时测得的电压 短路电流Isc(A) 尺寸Size(mm) 重量Weight(KGS) (峰值电压最高、开路电压次之、工作电压最低) 直流接线盒: 采用密封防水、高可靠性多功能ABS 塑料接线盒,耐老化防水防潮性能好;连接端采用易操作的专用公母插头,使用安全、方便、可靠。 工作温度:-40℃~+90℃ 使用寿命可达20 年以上,衰减小于20%。 问题集锦: 1、什么是太阳能电池? 答:太阳能电池是基于半导体的光伏效应将太阳辐射直接转换为电能的半导体器件。 现在商品化的太阳能电池主要有以下几种类型:单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池,目前还有碲华镉电池、铜铟硒电池、纳米氧化钛敏化电池、多晶硅薄膜太阳能电池及有机太阳能电池等。 晶体硅(单晶、多晶)太阳能电池需要高纯度的硅原料,一般要求纯度至少是99. 99998%,也就是一千万个硅原子中最多允许2 个杂质原子存在。硅材料是用二氧化硅(SiO2,也就是我们所熟悉的沙子)作为原料,将其熔化并除去杂质就可制取粗级硅。从二氧化硅到太阳能电池片,涉及多个生产工艺和过程,一般大致分为:二氧化硅—> 冶金级硅—>高纯三氯氢硅—>高纯度多晶硅—>单晶硅棒或多晶硅锭—>硅片—>太阳能电池片。 2、什么是单晶硅太阳能电池板? 答:单晶硅太阳能电池片主要是使用单晶硅来制造,与其他种类的太阳能电池片相比,单晶硅电池片的转换效率最高。在初期,单晶硅太阳能电池片占领绝大部份市场份额,在1998 年后才退居多晶硅之后,市场份额占据第二。由于近几年多晶硅原料紧缺,在2004 年之后,单晶硅的市场份额又略有上升,现在市面上看到的电池有单晶硅居多。单晶硅太阳能电池片的硅结晶体非常完美,其光学、电性能及力学性能都非常的均匀一致,电池的颜色多为黑色或深色,特别适合切割成小片制作成小型的消费产品。单晶硅电池片在实验室实现的转换效率为24.7%.普通商品化的转换效率为10%-1 8%。单晶硅太阳能电池片因为制作工艺问题,一般其半成硅锭为圆柱进,然后经过切片->清洗->扩散制结->去除背极->制作电极->腐蚀周边->蒸镀减反射膜等工蕊制成成品。一般单晶硅太阳能电池四个角为圆角。单晶硅太阳能电池片的厚度一般为200uM- 350uM 厚,现在的生产趋势是向超薄及高效方向发展,德国太阳能电池片厂家已经证实40uM 厚的单晶硅可达到20%的转换效率。 3、什么是多晶硅太阳能电池板? 答:在制作多晶硅太阳能电池时,作为原料的高纯硅不是再提纯成单晶,而是熔化浇铸成正方形的硅锭,然后再加工单晶硅一样切成薄片和进行类似的加工。多晶硅从其表面很容易进行辨认,硅片是由大量不同大小的结晶区域组成(表面有晶体结晶状),其发电机制与单晶相同,但由于硅片由多个不同大小、不同取向的晶粒组在,其晶粒界面处光电转换易受到干扰,因而多晶硅的转换效率相对较低,同时,多晶硅的光

单晶硅与多晶硅的区别、功能及优缺点

单晶硅与多晶硅的区别、功能及优缺点 单晶硅 硅有晶态和无定形两种同素异形体。晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质。 单晶硅在日常生活中是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。电视、电脑、冰箱、电话、手表、汽车,处处都离不开单晶硅材料,单晶硅作为科技应用普及材料之一,已经渗透到人们生活中的各个角落。 单晶硅在火星上是火星探测器中太阳能转换器的制成材料。火星探测器在火星上的能量全部来自太阳光,探测器白天休息---利用太阳能电池板把光能转化为电能存储起来,晚上则进行科学研究活动。也就是说,只要有了单晶硅,在太阳光照到的地方,就有了能量来源单晶硅在太空中是航天飞机、宇宙飞船、人造卫星必不可少的原材料。人类在征服宇宙的征途上,所取得的每一步进步,都有着单晶硅的身影。航天器材大部分的零部件都要以单晶硅为基础。离开单晶硅,卫星会没有能源,没有单晶硅,航天飞机和宇航员不会和地球取得联系,单晶硅作为人类科技进步的基石,为人类征服太空作出了不可磨灭的贡献。 单晶硅在太阳能电池中得到广泛的应用。高纯的单晶硅是重要的半导体材料,在光伏技术和微小型半导体逆变器技术飞速发展的今天,利用硅单晶所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。单晶硅太阳能电池的特点:1.光电转换效率高,可靠性高; 2.先进的扩散技术,保证片内各处转换效率的均匀性; 3.运用先进的PECVD成膜技术,在电池表面镀上深蓝色的氮化硅减反射膜,颜色均匀美观;4.应用高品质的金属浆料制作背场和电极,确保良好的导电性。 单晶硅广阔的应用领域和良好的发展前景北京2008年奥运会将把"绿色奥运"做为重要展示面向全世界展现,单晶硅的利用在其中将是非常重要的一环。现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能硅单晶的利用将是普及到全世界范围,市场需求量不言而喻。

光伏技术-单晶硅与多晶硅的区别

光伏技术:单晶硅与多晶硅的区别 单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。 多晶硅与单晶硅的差异主要表现在物理性质方面。例如在力学性质、电学性质等方面,多晶硅均不如单晶硅。多晶硅可作为拉制单晶硅的原料。 单晶硅可算得上是世界上最纯净的物质了,一般的半导体器件要求硅的纯度六个9以上。大规模集成电路的要求更高,硅的纯度必须达到九个9。目前,人们已经能制造出纯度为十二个9 的单晶硅。单晶硅是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。 高纯度硅在石英中提取,以单晶硅为例,提炼要经过以下过程:石英砂一冶金级硅一提纯和精炼一沉积多晶硅锭一单晶硅一硅片切割。 冶金级硅的提炼并不难。它的制备主要是在电弧炉中用碳还原石英砂而成。这样被还原出来的硅的纯度约98-99%,但半导体工业用硅还必须进行高度提纯(电子级多晶硅纯度要求11个9,太阳能电池级只要求6个9)。而在提纯过程中,有一项三氯氢硅还原法(西门子法)的关键技术我国还没有掌握,由于没有这项技术,我国在提炼过程中70%以上的多晶硅都通过氯气排放了,不仅提炼成本高,而且环境污染非常严重。我国每年都从石英石中提取大量的工业硅,以1美元/公斤的价格出口到德国、美国和日本等国,而这些国家把工业硅加工成高纯度的晶体硅材料,以46-80美元/公斤的价格卖给我国的太阳能企业。 得到高纯度的多晶硅后,还要在单晶炉中熔炼成单晶硅,以后切片后供集成电路制造等用。什么是单晶硅 可以用于二极管级、整流器件级、电路级以及太阳能电池级单晶产品的生产和深加工制造,其后续产品集成电路和半导体分离器件已广泛应用于各个领域,在军事电子设备中也占有重要地位。

太阳能级多晶硅生产项目环评报告表

1、项目基本情况

福建亿田硅业有限公司建设的太阳能级多晶硅生产线,总投资6000万元,年生产太阳能级多晶硅1500吨。根据《中华人民共和国环境保护法》(1989)和《中华人民共和国环境影响评价法》及国家环保总局颁布的《建设项目环境保护影响评价分类管理名录》的有关规定和环保主管部门的要求,确定项目环评形式为报告表。业主于2008年10月委托石狮市阳光环保技术综合服务有限公司编制该项目的环境影响报告表。我公司接受委托后,组织有关人员进行现场踏勘,在对项目开展环境现状调查、资料收集等和调研的基础上,按照环境影响评价有关技术规范和要求,完成了本项目环境影响报告表的编制工作。 2、项目概况、建设内容 2.1项目概况 工程名称:太阳能级多晶硅生产 工程性质:新建 企业名称:福建亿田硅业有限公司 厂址:松溪县旧县乡岩下村 建设规模:年生产太阳能级多晶硅1500吨 项目投资:6000万元,其中环保投资36万元。 员工:100人(其中住厂30人) 工作制度:年生产300天,每天一班制。 2.2建设内容 项目总用地面积50.4亩,总建筑面积12000㎡,建有生产车间6栋10500m2;办公楼1栋占地800㎡。详见附图2、附图3。

2.3主要设备 项目主要设备见表2-1: 表2-1 主要设备一览表 2.4水、能源消耗 项目用水量11.6/d ,3480t/a ;耗电量约20000000kwh/a 。 2.5生产工艺流程 金属硅原材料

工艺简介:将采购来的结晶硅原料进行破碎至粉状后(每小时2吨),用31%盐酸洗筛(每小时洗硅粉1500公斤,盐酸每小时用量120公斤),再水洗除酸。(水洗废水中加入烧碱中和水中的酸,使水PH值达到国家排放标准)。甩干后进入数控冶炼炉炼化,加入氩气(氩气外购,用量约为100KG/T),进行二次物理分凝过程(微机控制温度大约1000度),冷却除杂,即为产品—多晶硅。 2.6污染源分析 2.6.1废水 2.6.1.1用水量 (1)生产用水 项目用水主要在太阳能级多晶硅生产过程中水洗筛选工艺所产生的,用水约每小时500kg,4t/d,1200t/a。 (2)生活用水 该项目有员工100人,住厂30人,用水量按住厂员工每人每天用水150L,不住厂员工每人每天30L计算,则生活用水量约为6.6t/d,1980t/a; (3)绿化用水 厂区内绿化等用水约1t/d,300t/a。 合计用水量为11.6t/d,3480t/a。 2.6.1.2废水量及染污物源强 项目水洗筛选废水排放量按95%计,3.8t/d,1140t/d,该水含酸,业主使用烧碱中和水中的酸,使水PH值达到国家排放标准;绿化用水不排放;生

相关文档
相关文档 最新文档