文档库 最新最全的文档下载
当前位置:文档库 › 煤粉高效洁净燃烧技术

煤粉高效洁净燃烧技术

煤粉高效洁净燃烧技术
煤粉高效洁净燃烧技术

煤粉高效洁净燃烧技术 Prepared on 22 November 2020

煤粉高效洁净燃烧技术

近年来,随着各国政府对环保工作的日益重视,全世界范围内都兴起了治理污染、保护环境的运动。新的环保技术及产品不断涌现,同时也不断地产生新的难题。煤粉燃烧在污染排放中占重要地位,也是历来治理污染的重点和难点。许多国家在治理环境污染活动中一直把它作为中心任务,也取得了比较明显的效果。据预测,2000~2010年我国煤炭在一次能源需求中的比重仍为70%左右,2050年可降至50%以下,但煤炭消费的绝对量还是大大增加了。因此,对我国政府而言,控制环境保护总体指标,首先必须控制燃煤造成的污染,其出路无非在于大力发展以煤炭高效洁净利用为宗旨的洁净煤技术。

在洁净煤技术不断发展的十几年内,国内外均开发了许多产品和成套技术。有先进的选煤技术、水煤浆技术、煤炭气化、煤炭液化技术,有循环流化床、增压循环流化床、整体煤气化联合循环等技术,有各种处理水平的烟气净化技术及粉煤灰综合利用技术等。综合考虑我国现状,煤粉高效洁净燃烧及烟气净化技术在近期应有较广阔的应用空间。

●煤粉高效洁净燃烧技术及烟气净化技术现状

煤粉高效洁净燃烧及烟气净化技术包括高效燃烧技术、低NOx燃烧技术、烟气脱硫技术、烟气脱硝技术、除尘技术等。现简要介绍如下:一般而言,煤粉高效燃烧技术与低NOx燃烧技术是互为矛盾的两种技术。降低NOx生成与排放根本在于控制燃烧区域的温度不能太高,但低温燃烧又影响煤粉的燃烧率,协调好这两项技术的应用使之达到综合最佳效果

是目的,实际上就要求对煤粉燃烧的全过程加以控制。既能够保证煤粉着火的稳定性,又有较低的燃烧温度,同时有足够长的并在一定温度下的燃烧时间保证燃烬。目前世界上较先进的燃烧技术基本兼顾了这些因素,其中以直流燃烧器为主的有:ABB-CE公司利用一次风弯头的惯性分离作用,在弯头出口中间设置有孔隔板,将煤粉气流分成上浓下淡两段气流,形成上下浓淡煤粉燃烧器,并在喷口处装有轴向距离可调整的V型钝体,通过合理组织二次风,同时达到了稳定、高效、低NOx排放的燃烧效果;三菱重工(MHI)开发了PM型燃烧器,利用弯头的离心作用,把一次风分成上下浓淡两股气流,同时采用烟气再循环和炉内整体分级燃烧技术,也达到了较好的效果。

以旋流燃烧器为主的有:FW公司利用旋风子使进入主燃烧器的一次风浓度增加,并降低一次风速以保证煤粉气流着火稳定性,并控制NOx的生成量;有较多工业应用的还有B&W公司的PAX型旋流煤粉燃烧器、日本I HI公司的宽调解范围旋流煤粉燃烧器、德国斯坦米勒公司多级分级供风旋流燃烧器等。上述这些工业产品均能够保证NOx排放在400mg/Nm3以下,并具有较高燃烧效率。目前国外正在开发的低NOx燃烧技术可以控制NOx 生成量是在200mg/Nm3左右,已达到了比较高的水平。但由于世界上很多先进国家对NOx排放规定了严格的标准,仅靠改进和提高燃烧技术难以达到NOx控制值,因而有些锅炉机组在尾部增设了烟气脱硝装置。

我国近年来也开发了很多型式的低NOx燃烧技术,具有代表性的是浓淡煤粉燃烧器,包括水平浓淡、上下浓淡直流燃烧器、旋流燃烧器和可控浓淡旋流煤粉燃烧器等。但由于我国存在煤种多变等问题,致使这些技术在应用中遇到了一些问题,包括采用国外类似技术制造的燃煤机组也遇到了同样

的问题。通过努力,最近针对褐煤锅炉已开发并已工业应用了具有一定煤种自适应性的低负荷稳燃低NOx排放成套燃烧技术,可以控制NOx排放量在400mg/Nm3以下,燃烧效率在99%以上,比较先进。

烟气脱硫、脱硝与除尘是烟气净化的三个主要内容。在烟气脱硫方面,湿法脱硫占绝对主导地位,在发达国家占有市场90%以上。其他为半干法脱硫、炉内喷钙尾部增湿、排烟循环硫化床法、电子束氨法等脱硫技术。从发展看,湿法脱硫仍由于其指标高而占主导地位,排烟循环硫化床脱硫方法也由于其技术经济的综合优势而逐步占据了一些市场并将在发展中国家逐步得到大量应用。对我国而言,对新建机组最好采用湿法脱硫技术设备一步到位;对改造机组视煤种含硫量而定,如高硫煤可采用排烟循环硫化床方法,对低硫煤可采用炉内喷钙配以尾部增湿,尤其是现已存在的大量水膜除尘器可以综合利用其价值。在烟气脱硝方面,国外一般采用选择性还原反应装置,去除烟气中大部分的氮氧化物,其他方法尚在开发和研究阶段。国内由于资金、场地等限制,尚无工业应用先例,而且暂时也无能力完成示范机组建设。在烟气除尘方面,由于发达国家对烟尘排放率和超细颗粒脱尘率的要求持续升高,许多国家已逐步将电除尘器改为脉冲反吹滤袋式除尘器,这可以澳大利亚、美国等国家为代表。我国近期计划把大批中型机组的旋风除尘器或水膜除尘器替换成电除尘器,指标为出口烟尘不超过200mg/Nm3,飘尘则无要求。在拟建的大连台山增压循环硫化床锅炉上,中方准备采用脉冲反吹式滤袋除尘器,以达到较高性能。

●国家电站燃烧工程技术中心“八五”、“九五”期间科研工作情况和成果应用情况

一、研究设施情况介绍

无论机理研究还是中试规模试验均可分为三部分:空气动力特性试验、气固两相流特性试验和煤燃烧特性试验,因此,中心分别建设了三个试验大厅以满足三种试验的不同要求。

空气动力特性试验大厅共800m²,供风母管制,总风量为50000 Nm³/h,分四个区域:单只燃烧器流动特性研究区、炉内流动特性区、优化结构节能降阻区、测量装置与风门检测和其他产品技术开发区。测试仪器有丹迪三维热线系统,PIV系统和其他常规仪器仪表。目前已完成了30多台架试验室研究工作并多在现场应用中取得了比较好的效果。此外,还有其他的配套机理研究试验台架和流场计算软件等。

气固两相流试验大厅500m²,也是供风母管制,总风量为35000 Nm³/h,压头10000Pa,供粉量可达200kg/h,粉为碳化硅或煤粉及电厂飞灰三种。可进行浓淡燃烧器开发、旋风分离及除尘器改进和电除尘、滤袋除尘器研究以及脱硫塔流动特性研究,也可进行磨损试验研究等。此外还有独立的煤粉均分器试验台、自动可调叶栅百叶窗煤粉分配器试验台及其它机理试验台。测试仪器有激光全息照相系统、片光源拍摄系统、库尔特粒度仪、光纤浓度分析系统、流场图形再现分析系统及及其它浓度和流场的常规测试系统。

●煤燃烧特性试验大厅700m²,可分为三大部分。

第一大部分为引进加拿大安大略省电力公司燃煤燃烧中试试验系统装置(CRF)。每小时燃煤量为20kg,热功率为。该装置分原煤干燥系统、原煤粉碎系统、制粉系统、燃烧系统、一二次风系统、烟气处理系统、炉内喷钙

系统、烟气除尘系统、烟气成分测试系统和控制系统等。测试系统与控制系统采用罗斯蒙特烟气在线分析系统和其它流量、温度、压力传感器,全部输入计算机并由计算机对所有变量进行在线动态调整,以满足试验条件和要求。该装置可全面准确地模拟原煤干燥、粉碎、制粉、输粉、燃烧、烟气处理的全过程,可重点进行运行参数、燃料品质对燃烧的稳定性、燃烬程度、沉积物的形成、污染物的形成、粒子的排放和收集的影响程度的评估与研究,并可在此过程中开发新的低NOx燃烧技术、炉内喷钙技术和其它烟气处理技术。这套装置自动化程度高,控制、测试仪器水平高,试验重复率好,可进行较为广泛的技术开发与研究,是国际上较为先进的煤燃烧试验装置之一。目前,中心对这套试验装置又进行了一些改造,重建了燃烧系统、增加了燃烧功率至,增加了烟气尾部增湿活化装置、增加了悬浮法烟气脱硫装置,并正在开展新的研究。

第二大部分是与荷兰能源基金会(ECN)合建的常压夹带流气化和燃烧模拟装置(AEFGC)。它装有一个整体、预混合和多级平火焰煤气燃烧器,每小时燃煤量为5g左右,通过在不同级段提供不同的混合气粉,模拟颗粒在实际过程中经历的初始加热率、预混合和气态环境,是近似单颗粒机理研究的基础设施。同它配备的有气体分析系统、供粉系统、测试系统和其它先进的控制系统。

第三部分是基础研究设施,包括热重/差热同步分析实验室、燃料元素快速分析及燃料其它特性分析实验室。可进行燃煤着火特性、燃烬率、燃烧反应动力学以及脱硫的机理性试验研究和分析。

除这些物理研究之外,中心还配置了一些专门人员进行流动、扩散和燃烧的数值模拟研究工作,并从德国引进了一套包括NOx生成预测的数值模拟软件,取得了一定的成果。

二、研究情况和应用情况:

“八五”、“九五”期间,中心先后承担了百余项纵向、横向科研与生产改造和产业制造项目。其中国家科委“九五”重点攻关项目专题子专题项目七项、国家计委示范生产线建设项目两项。另外,国内外发表论文百余篇,并多次获得国家科委、国家电力公司、东北电力集团公司、辽宁省科委与沈阳市的奖励。现简要介绍一下研究的重点课题和应用情况。

(一)整体分级低NOx燃烧技术开发

该项目是国家“九五”重点攻关项目子专题。研究内容是开发一种从整体上将煤粉着火区与燃烬区分开,获得低负荷稳燃、低NOx排放、提高煤粉燃烧效率、降低炉内结渣强度、提高机组出力效果的实用技术。通过理论分析和数值模拟研究、试验室机理研究和中试等多种研究手段研究,中德专家共同提出了一种工程改造方案,并在元宝山发电厂2号炉上得以实施。该锅炉由德国Steimueller公司制造,额定蒸发量h,于1986年投产。作为当时国内最大的火力机组存在着炉内严重结渣,再热器超温严重,锅炉出力仅为额定出力75%,NOx排放为1000mg/Nm3以上等严重问题。改造方案实施后,解决了上述全部问题。并且,改造方案工程实施难度较小。这一课题的完成,使中心在掌握褐煤燃烧特性、合理组织燃烧结构、降低污染物排放、减轻结渣等方面都取得了较好的成果。

(二)具有自适应性的低NOx煤粉燃烧技术研究:

该项目是国家“九五”重点攻关项目子专题。一般的低NOx燃烧技术,不随煤种变化而变化,也不因负荷变动而随之相应调整。这样有时在煤种及负荷变动很大的情况下,就不可避免地发生喷口结渣或低NOx燃烧效果不佳等共伴矛盾。在本项目研究中,采取了将煤粉分为二级浓缩的办法,一级是自动可调的增强效果浓缩器或强制均分器,一级为基础浓缩器。二种方法结合可得到与负荷和煤种变化同步变化的连续可调浓缩比,实现可控燃烧过程。从而实现沿炉膛高度方向热负荷可调、提高燃烧效率、低NOx燃烧、减少再热器减温水、避免炉内结渣、低负荷稳燃性能好等功能。这项技术及产品适用于风扇磨煤机的燃烧制粉系统,实施时还应配套中心研制的FDD 智能型流量测量装置等以确保合理配置二次风等。该技术产品已应用于二台300MW机组和三台200MW机组,均取得了相当显着的经济效益和社会效益。

(三)可调、可控、均分、均流、低阻的煤粉均分器开发:

该项目也是国家“九五”重点攻关项目子专题。对于中速磨煤机或双进双出钢球磨煤机而言,保证同磨各只燃烧器的煤粉总量、煤粉浓度、煤粉细度偏差不大于10%,是CE锅炉设计标准,更是保证各只燃烧器热功率偏差较小、着火条件相同、避免炉内结渣和现代低污染燃烧技术正确应用的必要条件。开发这项关键技术涉及到很多学科和技术领域。此前国际上只有美国、德国和日本能够使这项技术变为商业化产品。通过机理研究和中试模化研究,中心研制了分别配套于200MW、300MW、600MW机组的WF型煤粉均分器、一次风隔离门、调整门和速断门等系列配套产品。上述产品在朝阳电厂解决了原德国产煤粉均分器替代问题,解决了铁岭发电厂300MW机组

结渣、风机倒转而引起的跳闸、炉膛灭水等问题以及元宝山发电厂引进技术国产600MW机组煤粉均分器配套等问题。这项技术的研制,为大型火电机组的安全洁净和经济运行,提供了设备和技术保障。

(四)燃烧制粉系统防磨技术研究:

这也是国家“九五”重点攻关项目子专题项目,该项目旨在开发经济、耐磨、安全的制粉系统设备,提高磨煤机易磨损部件的寿命。通过研究现已开发出成型的可修复中速磨煤机磨辊等产品,并广泛应用于沈阳周边几个大型火力发电厂。

(五)火力发电厂烟气脱硫装置开发:

本项目为国家科委“九五”重点攻关地方攻关项目,项目核心在于开发一些适合我国国情并具有我国特色的脱硫装备与技术,为大规模工业改造作技术储备,通过几年的研究工作,分别在中试规模试验台上完成了炉内喷钙脱硫和炉内喷钙尾部增湿活化烟气脱硫以及悬浮法烟气脱硫试验研究,掌握了技术和工艺的关键,并初步设计了工程改造方案和关键设备,为下一步工作打下了基础。

(六)除尘、脱硫一体化应用技术开发:

本项目为中加合作项目。我国在七、八十年代建设了一大批以水膜除尘器为除尘方式的中小机组,近年来由于环境保护的要求,亟待提高其除尘效率。本项目采用国外成熟技术,设计将原文丘里管部分拆除,替换为水洗室和新型文丘里管,清洗水部分为新增水循环系统。整个烟系统阻力不大于原系统阻力,总耗水量增加不到一半,除尘特性指标与四电场电除尘器持平。此外,可在水循环系统中加入脱硫剂,预期脱硫效率在60%以上,还可在炉

内增加喷钙设备,总脱硫效率达80%以上。这样,既利用了现有设备,又达到了国家标准,并在简易脱硫技术应用上有所突破,取得明显的综合效益。该项目的示范工程正在设计实施之中。

除上述六个项目之外,中心在其它高效低污染燃烧技术、节能技术、混煤燃烧技术、可靠性管理系统、燃料计算机管理系统、输煤自动化系统、电力系统图纸计算机管理系统等自动化控制方面也取得了成果,并广泛地应用于电厂,创造了显着的直接和间接的经济及社会效益。

●关于“十五”期间国家洁净煤燃烧技术发展方向的几点想法:

关于问题。国家应制订一个比较长期的稳定政策并强化实施,刺激脱硫技术设备规模化、产业化发展。并组织力量联合对湿法脱硫技术设备国产化进行攻关、对CFB脱硫技术进行成套化攻关,以经济手段鼓励脱硫新技术新工艺的开发和工程化示范应用。

考虑到国情的限制,在新建机组中大力推广高效洁净燃烧技术的同时,还要对现有机组加大改造力度,尤其对NOx的排放要采取一些强制措施,推进高效洁净低NOx燃烧技术的推广,减轻酸雨的危害。

提高除尘效率的改造要考虑到未来烟气脱硫后的情况。目前的改造以推广电气除尘器为主,如果未来采用非湿法脱硫技术改造机组,电除尘效率将大受影响。要考虑采用除尘脱硫一体化技术建立示范工程项目,还应尝试新型滤袋式除尘器的示范应用。

把节能技术与洁净煤技术有机地结合起来,互相兼顾。研究开发燃煤联合循环和煤炭转化等高新洁净煤技术,为下世纪的大规模应用打好技术基础。

大力开展清洁能源的研究工作,太阳能、风能等洁净能源的技术水平,使其产品达到商业化水平,并着手开展其推广应用工作。

低氮分级燃烧技术介绍

低氮分级燃烧技术 一.低NO x优化燃烧技术的分类及比较 为了实现清洁燃烧,目前降低燃烧中NO、排放污染的技术措施可分为两大类:一类是炉内脱氮,另一类是尾部脱氮。 1.1炉内脱氮 炉内脱氮就是采用各种燃烧技术手段来控制燃烧过程中NO x的生成,又称低NO x燃烧技术,下表给出了现有几种典型炉内脱氮技术的比较。 表2

1.2尾部脱氮 尾部脱氮又称烟气净化技术,即把尾部烟气中已经生成的氮氧化物还原或吸附,从而降低NO x排放。烟气脱氮的处理方法可分为:催化还原法、液体吸收法和吸附法三大类。 催化还原法是在催化剂作用下,利用还原剂将NO x还原为无害的N2。这种方法虽然投资和运转费用高,且需消耗氨和燃料,但由于对NO x效率很高,设备紧凑,故在国外得到了广泛应用,催化还原法可分为选择性非催化还原法和选择性催化还原法相比,设备简单、运转资金少,是一种有吸引力的技术。 液体吸收法是用水或者其他溶液吸收烟气中的NO x。该法工艺简单,能够以硝酸盐等形式回收N进行综合利用,但是吸收效率不高。 吸附法是用吸附剂对烟气中的NO x进行吸附,然后在一定条件下使被吸附的NO x脱附回收,同时吸附剂再生。此法的NO x脱除率非常高,并且能回收利用。但一次性投资很高。 炉内脱氮与尾部脱氮相比,具有应用广泛、结构简单、经济有效等优点。表2中各种低NO x燃烧技术是降低燃煤锅炉NO x排放最主要也是比较成熟的技术措施。一般情况下,这些措施最多能达到50%的脱除率。当要进一步提高脱除率时,就要考虑采用尾部烟气脱氮的技术措施,SCR和SNCR法能大幅度地把NO x 排放量降低到200mg/m3,但它的设备昂贵、运行费用很高。 根据我国发展现状和当前经济实力还不雄厚的国情,以及相对宽松的国家标准CB13223一2003,在今后相当长一段时间内,我国更适合发展投资少、效果也比较显着的炉内脱氮技术。即使采用烟气净化技术,同时采用低NO x燃煤技术来控制燃烧过程NO x的产生,以尽可能降低化设备的运行和维护费用。 表2中各炉内脱氮技术又以燃料分级效率较高。燃料再燃技术是有效的降低NO x排放的措施,早在1980年日本的三菱公司就将天然气再燃技术应用于实际锅炉,NO x排放减少50%以上。美国能源部的“洁净煤技术”计划也包括再燃技术,其示范项目分别采用煤或天然气作为再燃燃料,NO x排放减少30%到70%。在日本、美国、欧洲再燃技术大量应用于新建电站锅炉和已有电站锅炉的改造,在商业运行中取得良好的环境效益和经济效益。在我国燃料再燃烧技术研究和应用起步较晚,主要是因为我国过去对环保的要求较低,另一方面则是出于技术经

煤粉 燃烧器详细介绍

一种防结焦结构以及煤粉燃烧器 技术领域 本实用新型涉及煤粉燃烧器技术领域,尤其涉及一种防结焦结构以及煤粉燃烧器。 背景技术 5 煤粉燃烧器是指能够让煤粉在短时间内充分燃烧,产生高温涡流的设备,现有的煤粉燃烧器的结构如图1至图3所示,其包括炉体1-1、炉膛1-11、支架1-2与底座1-3,炉体1-1的左侧中部设置有送煤管1-4,送煤管1-4的一端延伸至炉体1-1的外侧,送煤管1-4的另一端延伸至炉体1-1的内侧,送煤管1-4位于外部的一侧底部倾斜设置有煤粉进管10 1-5,送煤管1-4的中心设置有点火管1-6,点火管1-6内通过气缸1-7可水平移动的设置有点火枪1-8,点火枪1-8上设置有雾化喷油嘴,送煤管1-4的右端与点火管1-6的右端之间沿周向均匀的设置有若干第一叶片1-9,炉体1-1内对应送煤管1-4的中部与右侧分别设置有相连通的环形进风腔1-10与第一环形出风腔1-12,第一环形出风腔1-12的右端沿15 周向均匀的设置有若干第二叶片1-13,第一叶片1-9与第二叶片1-13均与轴线呈一定的角度,保证产生旋流效果,炉膛1-11与炉体1-1之间设 与第二环形出风腔1-15,环形进风腔 1-10之间设置有第二耐高温浇注料层1-16,支架1-2上设置有鼓风机1-17,鼓风机1-17分别通过第一供气管20 1-18、第二供气管1-19与第一环形出风腔1-12、第二环形出风腔1-15相连通,在行走电机1-20的带动下,炉体1-1可以在底座1-3上进行移动。 磨煤喷粉机将煤粉从煤粉进管1-5进入,然后通过送煤管1-4后在第一叶片1-9的作用下以旋流的方式喷出,煤粉被点燃后进行燃烧,点25 火枪1-8在点火之后被气缸1-7拉入点火管1-6内,避免烧损,与此同时,

第二章 清洁燃料技术

第二章清洁燃料技术,课后习题答案 1.列举燃料完全燃烧的需要的条件,解释3T的含义? 答: ①空气条件,通入空气的量要适宜,保证燃料能够充分的燃烧;②温度条件,温度要适合燃料的充分燃烧;③时间条件以及燃料和空气的混合条件,燃烧时间必须充分,燃料要充分混合。“3T”是指温度(Temperature)、时间(Time)和湍流(Turbulence)。 2.烟气中硫氧化物主要以哪种形式存在? 答: 烟气中,硫主要以SO2,SO3,的形式存在,氮主要以NO NO2的形式存在 3.有效降低氮氧化物产生的途径是什么? 答: 【关键词】氮氧化物;低NOx燃烧技术;机理 氮氧化物是造成大气污染的主要污染源之一。通常所说的氮氧化物NOx有多种不同形式:N2O、NO、NO2、N2O3、N2O4和 N2O5,其中NO和NO2是主要的大气污染物。我国氮氧化物的排放量中70%来自于煤炭的直接燃烧。 研究表明,氮氧化物的生成途径[2]有三种:(1)热力型NOx,指空气中的氮气在高温下氧化而生成NOx;(2)快速型NOx,指燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成NOx;(3)燃料型NOx,指燃料中含氮化合物在燃烧过程中进行热分解,继而进一步氧化而生成NOx;在这三种形式中,快速型NOx所占比例不到5%;在温度低于1300℃时,几乎没有热力型NOx。对常规燃煤锅炉而言,NOx主要通过燃料型生成途径而产生。控制NOx排放的技术指标可分为一次措施和二次措施两类,一次措施是通过各种技术手段降低燃烧过程中的NOx 生成量;二次措施是将已经生成的NOx通过技术手段从烟气中脱除。 1.热力型 热力NOx的生成和温度关系很大,在温度足够高时,热力型NOx的生成量可占到NOx总量的30% ,随着反应温度T的升高,其反应速率按指数规律增加。当T<1300℃时NOx的生成量不大,而当T>1300℃时T每增加100℃,反应速率增大6~7倍。 热力型NOx的生成是一种缓慢的反应过程,是由燃烧空气中的N2与反应物如O 和OH以及分子O2反应而成的。所以,降低热力型NOx的生成主要措施如下: ①降低燃烧温度,避免局部高温。 ②降低氧气浓度。 ③缩短在高温区内的停留时间。 2.快速型 快速型NOx是在碳氢化合物燃料在燃料过浓时燃烧,燃料挥发物中碳氢化合物高温分解生成的CH自由基和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成。快速NOx在燃烧过程中的生成量很小,影响快速NOx生成的主要因素有空气过量条件和燃烧温度。 3.燃料型 燃料型NOx是由燃料中氮化合物在燃烧中氧化而成,由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800℃时就会生成燃料型NOx,它在煤粉燃烧NOx 产物中占60~80%。由于煤的燃烧过程由挥发分燃烧和焦炭燃烧两个阶段组成,故燃料型NOx的形成也由气相氮的氧化(挥发分)和焦炭中剩余氮的氧化(焦炭)两部分组成,其中挥发分NOx占燃料型NOx大部分。 影响燃料型NOx生成的因素有燃料的含氮量、燃料的挥发分含量、燃烧过程温度、

21 百叶窗式水平浓淡煤粉燃烧器

109 百叶窗式水平浓淡煤粉燃烧器 在燃贫煤300MW 机组的应用研究 王纪宏 (河南安阳电厂) 摘要:为适应市场经济下的运行模式,针对发电企业改革中的深度调峰、超低NOx 排放问题,本文从百叶窗式水平浓淡煤粉燃烧器的结构分析了其稳燃性、NOx 低排放的机理,并通过安阳电厂#9、#10炉燃烧器的改造情况和试验结果分析,NOx 低排放量、稳燃性达到了国际领先水平,为企业创造了可观的经济效益和社会效益。文章还提出了对洁净燃烧和节能的一些新观点和建设性建议。 关键词:300MW 机组;百叶窗式水平浓淡煤粉燃烧器;改造;试验;Nox ;稳燃性 1 前言 安阳电厂#9、#10炉(DG1025/18.2-II4)为亚临界一次中间再热自然循环汽包炉,平衡通风,固态排渣,中储式结构,分别于1998年3、9月投产,运行基本稳定。为了适应电力市场频繁调峰、保证锅炉洁净燃烧,分别在2000、2001年机组大修中,将五层一次风全部改造为百叶窗式水平浓淡煤粉燃烧器。设计燃煤特性见附表。 2 燃烧器概述 2.1 结构特点 水平浓淡煤粉燃烧器分浓缩器和喷口两部分(如图1)。 图1 水平浓淡煤粉燃烧器横截面图

浓缩器由五块有一定倾角的耐磨陶瓷板组成,又称百叶窗浓缩器。燃烧器喷口由三部分组成:从向火侧到背火侧依次为浓相喷口、淡相喷口和侧二次风喷口,三者均属于狭长形喷口。浓相喷口由波形船体和四块稳燃齿组成,淡相喷口和侧二次风喷口中间均有横隔板。浓相与淡相喷口之间有8度的偏离角。浓缩器和喷口之间为文丘里式气流加速管。同时整个喷口与风室之间上下各有14mm、左右各有9mm间隙,以形成周界风。 2.2 降低NOx含量机理 燃煤燃烧过程中,所产生的氮氧化物NOx有两种:燃料型NOx和温度型NOx。 燃料型NOx:这是燃料氮在燃烧过程中氧化生成的。生成温度一般在600~800℃,正常燃烧情况下,燃料型NOx的生成量约占80~85%,最高可达90%。研究表明:当过量空气系数α≤0.7时,没有燃料型NOx产生。可见,提高煤粉浓度,降低氧气浓度,可以有效控制NOx生成。 温度型NOx:这是在高温下由燃烧所需空气中的氮气氧化生成的。研究表明,当温度小于1500℃,几乎测不出NOx;当温度大于1500℃,NOx的生成量相当明显。控制温度型NOx 生成的主要措施是:降低燃烧温度水平;降低氧浓度;缩短烟气在高温区停留时间。燃煤炉中,温度型NOx的生成量约占15~20%。 目前,控制锅炉燃烧中NOx主要从三个途径入手:改善燃烧、燃料脱氮和烟气净化。改善燃烧,包括改进燃烧器,改善运行条件两方面。其指导思想是降低燃烧温度和燃烧区的过量空气系数,组织二级燃烧。此燃烧器是综合利用了上述方式。一次风喷口向火侧煤粉浓度比背火侧煤粉浓度高6倍左右,在向火侧,相对氧气量低;在背火侧,燃烧温度相对较低。这样,有效地抑制了两种NOx的生成量。同时该燃烧器淡相气流、侧二风均偏离浓相气流8度,一定意义上组织了二级燃烧。水平摆动二次风喷口正常运行时,向增大切圆方向摆动15°,下层二次风假想切圆由φ700/500mm,改造为φ1667.4/1468.6mm,即均偏离了燃烧区,对整个燃烧区形成包围状态,构成了“外包风”,组织二级燃烧,极大程度地抑制了两种NOx 的生成。 2.3 稳燃节能机理 水平浓淡煤粉燃烧器节能性表现在三方面:低负荷不投油稳燃性;缩短点火时间;燃尽性。 该燃烧器设计指导思想之一是:充分发挥向火侧着火优势,在向火侧实现高浓度燃烧, 着火基地。浓相煤粉着火后,为淡相煤粉提供了高温 热源,淡相煤粉也迅速着火,最终形成了稳定的燃烧 火炬。该燃烧器浓相喷口内的波形船体形成燃烧“三 高区”,增加了一次风与回流高温烟气的接触面积;四 块稳燃齿,每个齿附近均有一个小小的旋涡与回流。 这些均有利于点火、稳燃和燃尽。 3 改造情况 3.1 燃烧器改造情况(如图2) 五层一次风全部更换为百叶窗式水平浓淡煤粉燃 图2 燃烧器喷口排列示意图110

洁净煤燃烧技术期末总复习题

洁净燃烧技术期末总复习题 第一部分 1、循环流化床锅炉在额定负荷下运行时,以下区域是什么流动状态: –(1)二次风口以上区域;快速床甚至密相输送状态 –(2)二次风口以下区域;可能是湍流床甚至是鼓泡床状态 –(3)立管内:移动床状态 –(4)回料阀内:湍流流动状态 –(5)尾部烟道内:典型希相气力输送 2、简述广义流态化范围内,各种气固流动状态的流动特征和存在的条件; ---1.固定床(移动床):床层固体颗粒整体相对于器壁产生移动,床层颗粒之间没有相对运动 ---2. 鼓泡流化床:鼓泡流化床,超过临界流化风速的空气以气泡形式流过床层,床内存在明显的密相界面。散式流化床,当流化风速超过临界流化风速后,床层会随流化风速增大而继续膨胀,床内基本无气泡产生。一直到流化风速达到一个临界速度Umb后,床内才产生气泡。节(腾)涌流化床,当流化风速或床层高度增加时,气泡尺寸也随之增大。如果床截面较小而又较深时,气泡尺寸可能会增大到与床直径或床宽度相差不大的程度,此时气泡会以节涌的形式(类似于一个运动的活塞)通过床层。 ---3.循环流化床:湍流床,湍流床的运行风速会高于细颗粒的终端沉降速度,而低于粗颗粒的终端沉降速度。快速流化床,气固之间具有最高的滑移(相对)速度;固体颗粒具有成团与返混 现象;固体颗粒之间混合良好;床内已不存在明显的密相界面,但床内仍呈现上稀下浓的固体颗粒浓度分布 --4. 密相气力输送:单位高度的床层压降沿床层高度不变。 --5.稀相气力输送:增大风速,单位高度的床层压降上升;而在密相气力输送状态下,增大风速,单位高度的床层压降会减小 --循环流化床的条件:⑴合适的床料颗粒物性;⑵运行风速大于颗粒终端沉降速度;⑶足够大的颗粒循环速率; 3、简述鼓泡流化床临界流化风速和床层压降在循环流化床锅炉运行中的作用。 --鼓泡流化床临界流化风速:保证床内颗粒充分流化。 --床层压降:判断料层是否处于流化状态,确定锅炉运行时静止料层的厚度和所需配的风机压头大小。 4、影响循环流化床锅炉炉内传热过程的主要因素有那些? 气体速度、固体颗粒流速、平均颗粒粒径、受热面在炉内的布置高度、受热

浓淡燃烧器

在燃气锅炉的设备中燃烧器的地位非常重要,燃烧器决定着燃料燃烧过程能不能实现完全燃烧,所以要减少NOx的生成量就要考虑燃烧器的性能。由燃烧器对NOx的生成量控制程度,我们把低氮燃烧器分为以下6种: 1.阶段燃烧器 根据分级燃烧原理设计的阶段燃烧器,使燃料与空气分段混合燃烧,由于燃烧偏离理论当量比,故可降低NOx的生成。 2.自身再循环燃烧器 一种是利用助燃空气的压头,把部分燃烧烟气吸回,进入燃烧器,与空气混合燃烧。由于烟气再循环,燃烧烟气的热容量大,燃烧温度降低,NOx减少。 另一种自身再循环燃烧器是把部分烟气直接在燃烧器内进入再循环,并加入燃烧过程,此种燃烧器有抑制氧化氮和节能双重效果。 3.浓淡型燃烧器 其原理是使一部分燃料作过浓燃烧,另一部分燃料作过淡燃烧,但整体上空气量保持不变。由于两部分都在偏离化学当量比下燃烧,因而NOx都很低,这种燃烧又称为偏离燃烧或非化学当量燃烧。 4.分割火焰型燃烧器 其原理是把一个火焰分成数个小火焰,由于小火焰散热面积大,火焰温度较低,使“热反应NO”有所下降。此外,火焰小缩短了氧、氮等气体在火焰中的停留时间,对“热反应NO”和“燃料NO”都有明显的抑制作用。 5.混合促进型燃烧器

烟气在高温区停留时间是影响NOx生成量的主要因素之一,改善燃烧与空气的混合,能够使火焰面的厚度减薄,在燃烧负荷不变的情况下,烟气在火焰面即高温区内停留时间缩短,因而使NOx的生成量降低。混合促进型燃烧器就是按照这种原理设计的。 6.低NOx预燃室燃烧器 预燃室是近10年来我国开发研究的一种高效率、低NOx分级燃烧技术,预燃室一般由一次风(或二次风)和燃料喷射系统等组成,燃料和一次风快速混合,在预燃室内一次燃烧区形成富燃料混合物,由于缺氧,只是部分燃料进行燃烧,燃料在贫氧和火焰温度较低的一次火焰区内析出挥发分,因此减少了NOx的生成。 锅炉系统中的一种喷口,结构相对简单。在燃煤锅炉中,为了降低燃烧产生的NOx,采用空气分级燃烧技术,即将锅炉炉膛分为主燃区、燃尽区。在燃尽区设置OFA供风,使主燃区产生的碳氢化合物被活化,主燃区产生的含氮中间产物进入OFA区,部分被还原为N2,未完全燃烧的燃料在燃尽区得到充分燃烧,即降低污染和又增加燃料利用率。亦有防止锅炉外爆的功能(锅炉外爆条件之一:足够的燃料)。一般在各个主燃烧器上方均有OFA喷口(多层燃烧器只在最上层 设有)。 在四角切圆锅炉中,燃尽风分为两类,一类是紧凑燃尽风,即 CCOFA(Close-coupled Overfire Air),CCOFA与主燃烧器一体;另一类是分离燃尽风,即SOFA(Separated Overfire Air),SOFA与主燃烧器分开布置。 浓淡燃烧器原理 2014-01-21 10:38 浓淡燃烧器原理 1. 所谓浓淡燃烧器,就是采用将煤粉——空气混合物气流,即一次风气流分离成富粉流和贫粉流两股气流,这样可在一次风总量不变的前提下提高富粉流中的煤粉浓度。 2. 富粉流中燃料在过量空气系数远小于1的条件下燃烧,贫粉流中燃料则在过量空气系数大于或接近1的条件下燃烧,两股气流合起来使燃烧器出口的总过量空气系数仍保持 在合理的范围内。

《洁净煤燃烧技术》课程复习题.doc

洁净煤燃烧技术课程复习题 目录 洁净煤燃烧技术课程复习题 (1) 第一章 超临界与超超临界燃煤发电技术 (3) 1.1. 超临界锅炉的工作原理 (3) 1.2. 超临界锅炉水冷壁安全工作存在的不利条件及其原因 (3) 1.3. 为什么采用螺旋管圈后水冷壁管间的吸热偏差较小?超临界锅炉 消除热偏差有哪些方法 (3) 1.4. 垂直管低质量流速技术中的正流量补偿特性原理 (4) 第二章超超临界机组结构特点及应用 (4) 2.1、 结合系统简图说明HG/OOOMW 超超临界锅炉带再循环泵的启动 系统流程,并说明启动初期尽量减小工质热损失的措施 (4) 2.2、 常见低氮燃烧技术原理(双调风旋流燃烧技术、PM 燃烧技术及 MACT 燃烧技术) (5) 2.3、 超临界机组高温氧化原理及改善措施 (6) 2.4、 超超临界机组常采用二次再热技术的优势 (6) 第三章循环流化床锅炉 (6) 3.1、CFB 锅炉本体结构及工作原理 (6) 3.2、 为什么说CFB 锅炉是一种洁净煤燃烧设备 (7) 3.3、 超临界锅炉可以采用CFB 燃烧技术的优势 (7) 3.4、 结合简图说明富氧CFB 锅炉燃烧过程 (7) 4.1、 IGCC 原理框图 ............................................. 8 4.2、 气化炉气化反应模型 .. (9) 4.4、常温湿法净化技术原理与高温干法净化技术原理的比较 (10) 第五章烟气净化 (8) 4.3、两种煤气冷却工艺流程的组成及特点 (9) 10 第四章 体煤气化联合循环

5.1、湿式石灰石?石膏法脱硫的化学反应机理及工艺流程 (10) 5.2、湿式石灰石烟气脱硫吸收塔的四个工作区域及作用 (11) 5.3、湿式石灰石?石膏法脱硫工艺系统中浆液的PH值为什么维持在 5?6之间 (11) 5.4、湿式石灰石?石膏法脱硫工艺系统存在的问题及改进措施 (11) 5.5、烟塔合一的条件及优点 (11) 5.6、循环流化床烟气脱硫的运行控制 (12) 5.7、S CR反应原理及主要影响因素 (12) 5.8、S CR工艺流程 (13) 5.9、烟气杂质对SCR催化剂性能的影响 (13) 5.10、燃煤电厂控制汞排放的方法 (13)

中央煤粉燃烧器技术方案

1 回转窑煤粉烧嘴 技 术 方 案

目录 1.总则 2.煤粉烧嘴设计要求 3.功能指标、保证值和考核办法4.监造及见证、出厂验收5.安装验收和技术服务 6.附件图纸

1 总则 1.1新型中央煤粉烧嘴是北京**环保设备有限公司研制开发的新一代的燃烧设备,该项目课题组研究人员基于多年的实践经验,根据冷、热态实验的技术参数,以国内外的煤粉烧嘴为基础,采用现代最新燃烧技术的大速差和强旋流理论,结合全国原煤资源的特性以及我国工业炉的燃料燃烧特点,运用计算机仿真技术,综合考虑多学科研究和发展成果研制而成。该燃烧器适用于冶金球团工程的回转窑以及建材水泥行业和石灰行业的及工业窑炉加热装置,具有一次风量比例低、燃烧推力大的显著技术特点。其高速的出口射流,大大强化了煤粉气流和二次热风的混合,最大限度消除了不完全燃烧,减少了不必要的热损失,并有利于降低热耗和利用低、劣质燃料;其独特的结构设计,具有灵便快捷的火焰调节手段,可使火焰形状随时满足窑内工况的需要,有利于建立合理的煅烧制度,提高产品质量;其卓越的燃烧特性,可提高工业窑炉的煅烧能力,充分发掘了设备的潜在能力以增加产量。 1.2本技术方案是适用于太钢**铁矿项目200万t/a链篦机-回转窑球团工程煤粉燃烧 器设备订货、设计、制造、检验、试验及交货等方面提出基本要求和最低要求。 1.3本技术方案未经卖方北京**环保设备有限公司允许,严禁买方转载和复制。 1.4本技术方案是根据北京**国际工程技术有限公司提供煤粉燃烧器的技术规格书要求编制而成。新型煤粉燃烧器由北京**环保设备有限公司完成制造,用户在使用之前要仔细使用手册和相关技术说明,安装、操作及维护等问题作了较为详细的介绍。 2、燃烧器性能保证的前提条件 用户需为本燃烧器的使用提供基本的使用条件,以保证HDF-K55型回转窑用四风道煤粉燃烧器达到良好的使用效果。本燃烧器性能保证的前提条件如下: ●相关工艺系统正常; ●窑头二次风温约1100℃左右; ●送煤风配置误差最大不超过10%; ●送煤粉的空气中不得含有大颗粒的异物或棉纱等物; ●燃烧器的喷嘴及煤粉入口处不允许出现堵塞现象。 2.煤粉烧嘴设计要求 2.1适应的煤粉成份

煤炭清洁燃烧现状与展望讲解学习

一、技术概述 我国是世界耗煤第一大国,主要用于火力发电燃煤锅炉,由于大部分火电厂未对燃煤排气中的SO2、NO X采取措施脱除,因此造成对环境的污染越来越严重。目前主要有两类方式对燃煤排放气体中的SO2、NO X进行处理。 一类是在炉内通过燃烧技术的改进,降低SO2、NO X排放量,这种技术主要应用于常规燃煤发电厂,称之为煤清洁发电技术。目前已有商业应用。煤的清洁发电技术主要有:循环流化床燃烧技术(CFBC)、增压流化床燃烧联合循环技术(P FBC-CC)、整体煤气化蒸汽-燃气联合循环技术(IGCC)。 另一类是在炉后,尾部烟气中进行脱硫脱硝。采用的主要的技术和方法主要有:(一)湿法烟气脱硫技术;(二)旋转喷雾半干烟气脱硫技术;(三)炉内喷钙尾部增湿脱硫技术;(四)电子束照射法;(五)磷铵肥法;(六)活性焦法等,统称为脱硫(脱硝)技术。 二、现状及国内外发展趋势 (一)煤清洁发电技术 1、国外发展趋势 (1)国外CFBC锅炉正向大型化方向迅速发展,循环流化床锅炉的炉型较多,各家公司都有自己独特的流派,竞争很激烈。目前国外已运行的CFBC锅炉的容量等级已达到100-180MW,且技术上比较成熟并正在设计和研制200-300 MW的CFBC锅炉,1995年由法国stein公司制造的250MWCFBC锅炉的投运,其容量上已接近300MW等级。 (2)在八十年代中期国外已开始建设PFBC-CC示范电站。瑞典ABB-Car bon公司在PFBC-CC的商业化进程中处于领先地位,开发的输入热功率为200M

W的P200装置首批五套已先后在瑞典、西班牙、美国和日本的电站投入运行。首台输入功率为800MW的P800装置也正在日本Karita电站建设中。 (3)经过净化处理的合成煤气为燃料的IGCC发电系统是目前最清洁高效的燃煤发电方式。目前国外已建成工业装置5套,正在建设和计划建设的电站超过2 4座,总容量超过8200MW,首台工业装置是1972年在德国克曼电厂建成的为1 70MW机组。1994年建成的荷兰Buggenum电厂,其净效率达到43.2%,是目前效率最高的IGCC装置;1995年在美国Wabash投运的262MW机组是目前世界投运最大的IGCC装置。 各家公司面向市场,展开激烈的竞争,针对各自的技术特点,开发大型洁净煤发电装置。随着IGCC的技术发展和成熟,今后的市场需求将会增大。 CFBC、PFBC及IGCC等洁净煤燃烧技术从今后国外市场来分析,尤其在亚洲地区是有发展前途的,主要是对这些地区的环境保护有利,对改造老的电厂有利,其中CFBC技术,由于我国已做了不少工作,取得了可喜的成果,并在此基础上积极采用引进技术或技贸结合等多种方式来加大开发研制的力度,使大型化100 MW级以上的产品趋于成熟,则在21世纪前期阶段,发挥我国的地理、价格等优势,在亚洲地区可占有较大份额。 2、国内发展趋势 (1)循环流化床燃烧技术(CFBC) 我国目前CFBC锅炉容量相对较小,已有数十台几种不同流派的75t/hCFBC 锅炉(12MW)投入运行。130t/h(25MW)、220t/h(50MW)CFBC锅炉正处于设计安装阶段。国内虽已有CFBC锅炉开发和相关研究,但大型化进程仍较为缓慢,远不能满足我国电力工业发展的需要。近年来国内各锅炉制造厂以各种方式与国外厂家合作,加快大型CFBC锅炉的开发和研制,东方锅炉厂为进口的410t/ hCFBC锅炉承担部份分包任务,后又引进美国FW公司大型CFBC锅炉设计制造

煤的清洁燃烧技术

煤的先进清洁燃烧技术介绍 【摘要】中国作为世界上最大的发展中国家,每年都需要燃烧大量的煤。据可靠统计,2013年中国煤的燃烧量达到了36亿吨,比世界其他国家燃煤量的总和还要多。大量煤的燃烧不仅使中国煤炭资源急剧减少,而且严重污染了大气环境,所以发展煤的清洁燃烧技术迫在眉睫。本文从煤的污染物的产生原因和防止措施出发,详细介绍了当前比较先进的煤炭清洁燃烧技术。 【关键词】煤燃烧清洁 一、引言 燃烧是当今世界的主要能源来源,超过85%的全球一次能源消费都是由化石燃料的燃烧提供的。然而,全球能源需求量的不断增长与有限的化石能源储量之间存在着严重的矛盾,从而引发了一系列政治、经济和社会问题;化石燃料燃烧所排放的大量颗粒物、二氧化碳、二氧化硫、氮氧化物等大气污染物还会影响环境安全和人类健康。因此,如何实现高效清洁的燃烧已经成为包括我国在内的世界各国所面临的重大问题。 二、直接燃煤是我国城乡大气污染的主要原因 由于传统的燃煤方式和煤炭加工过程中产生大量的污染物,必然会导致严重的大气污染、酸雨和水污染,甚至造成生态环境与自然植物的破坏,特别是以煤为主要能源的动力燃料的消耗。每年我国电站锅炉、工业炉窑与工业锅炉,仅发电与其它工业耗煤就占了煤炭总消费量的2/3左右,而用于民用生活仅占1/10左右,用于城市供热的占不到1/20。因此,长期以来我国在能源生产与消费中,以煤炭作为主要能源而直接燃烧,又正是造成我国严重大气污染的主要原因之一。

三、煤粉富氧燃烧技术 燃烧中碳捕集即富氧燃烧技术,它是在现有电站锅炉系统基础上,用高纯度的氧气 代替助燃空气,同时辅助以烟循环的燃烧技术,可获得高达富含80%体积浓度的C0 2 烟 气,从而以较小的代价冷凝压缩后实现C0 2 的永久封存或资源化利用:具有相对成本低、易规模化、可改造存量机组等诸多优势,被认为是最可能大规模推广和商业化的CCUS 技术之一。其系统流程:由空气分离装置(ASU)制取的高纯度氧气(0 2 纯度95%以上),按一定的比例与循环回来的部分锅炉尾部烟气混合,完成与常规空气燃烧方式类似的燃 烧过程,锅炉尾部排出的具有高浓度C0 2 的烟气产物,经烟气净化系统(FGCD)净化处理 后,再进入压缩纯化装置(CPU),最终得到高纯度的液态C0 2 ,以备运输、利用和埋存。 国际能源署在减少温室气体排放的研究与开发计划中明确指出,在全球能源与电力 生产如此多样化的今天,不能仅用一种方法来达到减少和控制 CO 2 排放的目的,应采用不同的方法或相互的结合来适应各种不同的燃料资源、环境和地区的具体条件。从技术创新角度来说,可采用提高电站的效率、采用超高参数的发电机组、联合循环等方法; 而 从燃煤烟气产物中捕集CO 2、储存和利用这些高浓度 CO 2 被认为是近期内减缓CO 2 排放 的根本方法,也是真正实现无碳化、低碳化较为可行的措施与技术。中国在发展空间受制、减排压力不断增大的严峻挑战下,积极推动温室气体减排与控制技术的研究与应用尤为重要。 四、浓淡燃烧技术 煤粉浓淡燃烧技术是指通过一定的措施把一次风分成煤粉浓度高的浓气流和煤粉浓度低的淡气流喷入炉内进行燃烧。理论和实践均证明:采用浓淡燃烧技术可提高煤粉着火的稳定性和有效地降低 NOx 排放量。 NOx 生成机理: 再燃区:

煤粉高效洁净燃烧技术

煤粉高效洁净燃烧技术 Prepared on 22 November 2020

煤粉高效洁净燃烧技术 近年来,随着各国政府对环保工作的日益重视,全世界范围内都兴起了治理污染、保护环境的运动。新的环保技术及产品不断涌现,同时也不断地产生新的难题。煤粉燃烧在污染排放中占重要地位,也是历来治理污染的重点和难点。许多国家在治理环境污染活动中一直把它作为中心任务,也取得了比较明显的效果。据预测,2000~2010年我国煤炭在一次能源需求中的比重仍为70%左右,2050年可降至50%以下,但煤炭消费的绝对量还是大大增加了。因此,对我国政府而言,控制环境保护总体指标,首先必须控制燃煤造成的污染,其出路无非在于大力发展以煤炭高效洁净利用为宗旨的洁净煤技术。 在洁净煤技术不断发展的十几年内,国内外均开发了许多产品和成套技术。有先进的选煤技术、水煤浆技术、煤炭气化、煤炭液化技术,有循环流化床、增压循环流化床、整体煤气化联合循环等技术,有各种处理水平的烟气净化技术及粉煤灰综合利用技术等。综合考虑我国现状,煤粉高效洁净燃烧及烟气净化技术在近期应有较广阔的应用空间。 ●煤粉高效洁净燃烧技术及烟气净化技术现状 煤粉高效洁净燃烧及烟气净化技术包括高效燃烧技术、低NOx燃烧技术、烟气脱硫技术、烟气脱硝技术、除尘技术等。现简要介绍如下:一般而言,煤粉高效燃烧技术与低NOx燃烧技术是互为矛盾的两种技术。降低NOx生成与排放根本在于控制燃烧区域的温度不能太高,但低温燃烧又影响煤粉的燃烧率,协调好这两项技术的应用使之达到综合最佳效果

是目的,实际上就要求对煤粉燃烧的全过程加以控制。既能够保证煤粉着火的稳定性,又有较低的燃烧温度,同时有足够长的并在一定温度下的燃烧时间保证燃烬。目前世界上较先进的燃烧技术基本兼顾了这些因素,其中以直流燃烧器为主的有:ABB-CE公司利用一次风弯头的惯性分离作用,在弯头出口中间设置有孔隔板,将煤粉气流分成上浓下淡两段气流,形成上下浓淡煤粉燃烧器,并在喷口处装有轴向距离可调整的V型钝体,通过合理组织二次风,同时达到了稳定、高效、低NOx排放的燃烧效果;三菱重工(MHI)开发了PM型燃烧器,利用弯头的离心作用,把一次风分成上下浓淡两股气流,同时采用烟气再循环和炉内整体分级燃烧技术,也达到了较好的效果。 以旋流燃烧器为主的有:FW公司利用旋风子使进入主燃烧器的一次风浓度增加,并降低一次风速以保证煤粉气流着火稳定性,并控制NOx的生成量;有较多工业应用的还有B&W公司的PAX型旋流煤粉燃烧器、日本I HI公司的宽调解范围旋流煤粉燃烧器、德国斯坦米勒公司多级分级供风旋流燃烧器等。上述这些工业产品均能够保证NOx排放在400mg/Nm3以下,并具有较高燃烧效率。目前国外正在开发的低NOx燃烧技术可以控制NOx 生成量是在200mg/Nm3左右,已达到了比较高的水平。但由于世界上很多先进国家对NOx排放规定了严格的标准,仅靠改进和提高燃烧技术难以达到NOx控制值,因而有些锅炉机组在尾部增设了烟气脱硝装置。 我国近年来也开发了很多型式的低NOx燃烧技术,具有代表性的是浓淡煤粉燃烧器,包括水平浓淡、上下浓淡直流燃烧器、旋流燃烧器和可控浓淡旋流煤粉燃烧器等。但由于我国存在煤种多变等问题,致使这些技术在应用中遇到了一些问题,包括采用国外类似技术制造的燃煤机组也遇到了同样

煤粉燃烧器

煤粉燃烧器的分析 摘要:本文分析了几种有代表性的预燃室型煤粉稳燃装置的原理及其特性,并根据其原理提出了几种改进的方案。 关键词:回流区;煤粉锅炉燃烧器;钝体 前言:我国电力行业以劣质媒为主要燃料,这是我国能源政策的要求,同时也是我国煤碳资源分布状况、开采运输条件等所决定的。从经济性和发展趋势看,燃油锅炉和燃用优质煤锅炉所占比重将越来越少,燃用劣质煤锅炉,特别是大容量劣质煤锅炉将越来越多。锅炉燃用劣质煤时普遍存在着火困难、燃烧稳定性差、燃尽率低等问题。对于有些煤种,还存在着炉膛水冷壁结焦、尾部受热面磨损腐蚀、排放物严重污染环境等问题。另一方面,要求越来越多的锅炉机组参加电网调峰。锅炉参加电网调峰时,需要改变负荷和调整运行方式,这就进一步加剧了劣质煤锅炉己存在的问题的严重性。这些问题急需解决,而解决这些问题的重要手段就是研制和开发新燃烧设备。 我们小组从《燃烧学》课本上介绍的两种传统煤粉燃烧稳燃装置出发: 旋流稳燃器: 稳燃原理: 旋流射流的一个最大特点就是射流内部有一个反向回流区,旋转的射流不但从射流外侧卷吸周围的介质,而且还从内部回流区内卷吸介质,而内部回流区的烟气温度很高,能有效助燃和稳燃。 存在的问题: 1.预燃筒壁的积粉和结渣: 不能作为主燃烧器在锅炉运行中长期使用,甚至在短期的锅炉点火启动和低负荷稳燃运行使用时也成问题,因预燃室简壁结焦严重或出现局部温度过高而烧毁预燃室. 2.旋流叶片的磨损: 在长期多变负荷运行过程中,旋流叶片受到高速煤粉流的冲刷,容易磨损变形,造成煤粉流的堵塞,影响旋流效果 3.低负荷条件下工作不稳定,容易熄火,需要喷油助燃。 4.对无烟煤等低挥发分含量煤种的效果不好。 钝体直流稳燃器: 稳燃原理: 钝体是不良流线型体,在大雷诺数下流体流经钝体时在钝体的某个位置会是

锅炉煤粉燃烧器说明书

LHX-高效节能型锅炉煤粉燃烧器 产 品 说 明 书 西安路航机电工程有限公司

一、工作原理: ①燃烧器是锅炉的主要燃烧设备,他通过各种形式,将燃料和燃烧所需要的空气送入炉膛使燃料按照一定的气流结构迅速、稳定的着火:连续分层次供应空气,使燃料和空气充分混合,提高燃烧强度。 煤粉燃烧器就是利用二次风旋转射流形成有利于着火的回流区,以及旋转射流内和旋转射流与周围介质之间的强烈混合来加强煤粉气流的着火特性。旋转射流的工质除了二次风外,还可以有一次风。在二次风蜗壳的入口处装有舌形挡板,用以调节气流的旋流强度,蜗壳煤粉燃烧器的结构简单,对于燃烧烟煤和褐煤有良好的效果,也能用于燃烧贫煤 运行参数:一次风率r1,一、二次风量比,一、二次风速w1和w2及风速比w1 /w2有关。。锅炉燃烧器使用的是气化原理,能使燃油完全 气化,整个燃烧器采用三级点火方式,先用高能点火器点燃轻柴油,再用轻柴油点燃浓煤粉,最后点燃淡煤粉,实现煤粉全部燃烧。 ②为避免工业锅炉积灰过多,本产品采取炉外排渣系统.进入锅炉体内的烟气灰渣尘只占燃料燃烧总的渣量的15%,其中只有小部分沉于锅炉体内,绝大部分烟气尘随烟气流入炉外的收尘系统.工业锅炉本体只需采用压缩空气吹灰系统即可避免锅炉本体人工掏渣。本产品的使用效果与燃油燃气的工业锅炉效果基本一致。

③本产品燃烧煤种与水煤浆燃烧煤种大大放宽,而不需要特优烟煤,而对于一般烟煤、无烟煤、褐煤等甚至劣质杂煤均可.使用其煤粉燃烬率可达到99%,炉渣含碳量为1%左右.炉渣为黄白色是农业化肥和建材的良好的混合材,以达到循环利用的目的.其耗煤量与一般链条锅炉可节省煤耗为25-30%以上。 二.环保技术指标: 由于燃烧系统的彻底改进,相对于链条式的工业锅炉,由燃煤层燃燃烧方式改为煤粉燃烧方式,同时又采用炉外排渣技术。其中燃烧筒(立式、卧式)的捕渣率能达到85%以上,进入工业炉的炉渣量几乎小于15%以上,只有极小部分烟尘沉于炉内,大部分随烟气流进炉后收尘系统.这样极大的减轻了炉尾部的收尘器的收尘量,进入锅炉内的细微烟尘只需要设置采用压缩空气吹灰孔即可,锅炉必须设置专用检查炉门。本公司依据水膜旋风除尘器的基本原理研发成功:文氏管双级脱硫水雾除尘器(不锈钢等钢结构见另外产品说明书),进而彻底淘汰多年普遍使用的水膜麻石除尘器,使锅炉后的除尘系统简单化,而除尘效果更优。经测算:除尘效率可达到99%,粉尘含量≤100mg/m3,SO2≤250~ 300mg/m3, NO2≤400mg/m3,总体排放指标,可达到国家城市二类地区的环保指标。 三.全线实现PLC全自动热工仪表控制系统

煤粉高效燃烧技术发展状况调研报告

煤粉高效燃烧技术发展状况调研报告 为促进煤炭清洁高效利用,摸底监管辖区内有关情况,推广先进技术经验,西北能源监管局于2015年上半年对煤粉高效燃烧技术发展情况进行了调研,具体情况如下: 一、基本情况 (一)煤粉高效燃烧技术背景及意义 煤粉高效燃烧技术包括煤粉加工技术和高效煤粉锅炉技术。煤粉加工,指煤炭通过烘干、研磨等物理加工形成细小颗粒。高效煤粉锅炉技术,指以“煤粉高效燃烧”为核心,采用煤粉集中制备、精密供粉、空气分级燃烧、炉内脱硫、炉壳(或水管)式锅炉换热、高效布袋除尘、烟气脱硫和全过程自动控制等先进技术,以实现燃煤锅炉的高效运行和洁净排放,主要适用于工业企业生产用蒸汽、工业及民用供暖。 煤炭是我国的主体能源和重要工业原料,近年来,煤炭工业取得了长足发展,煤炭产量快速增长,生产力水平大幅提高,为经济社会发展做出了突出贡献,但煤炭利用方式粗放、能效低、污染重等问题没有得到根本解决。长期以来,燃煤发电行业承担了重要的减排任务,但目前全国脱硫机组占比已超过90%,随着《火电厂大气污染物排放标准》(GB13223-2011)的实施,火电机组排放指标可降空间变小,其它燃煤领域的大气污染防治问题亟需得到重视。据环保部统计,目前我国燃煤工业锅炉占全国工业锅炉总量和总蒸发量约85%,每年消耗原煤约7亿吨,约占全国煤炭消费总量的20%;排放烟尘785万吨,约占全国烟尘排放量的43%;排放二氧化硫626万吨,约占全国二氧化硫排放量的26%;排放氮氧化物732 万吨,约占全国氮氧化物排放量的12%,是我国第二大煤烟型污染来源。此外,我国目前原煤利用集中度不足50%,低于全球60%的平均水平,更远低于发达国家90%的水平,各种分散供热取暖小锅炉及民用煤炉年消耗原煤2亿吨,其中绝大多数没有采取任何除尘、脱硫、脱硝等环保措施,也是大气污染的重要因素之一。由此可见,工业锅炉、散烧煤污染治理形势严峻。在燃煤发电行业减排空间日益缩小的情况下,实施工业锅炉改造、减少煤炭分散直接燃烧成为各级政府的共识,是各地节能减排最主要的方向之一,煤粉高效燃烧技术开始得到重视与发展。 (二)煤粉高效燃烧技术发展现状 上世纪90年代中后期,煤粉高效燃烧技术在德国、法国已广泛应用,但在国内目前仍处于起步阶段。政策方面,2013年8月,国务院印发《关于加快发展节能环保产业的》(国发〔2013〕30号)文件,指出:重点提高小型燃煤锅炉高效燃烧等技术水平;2014年12月,国家能源局、环境保护部、工业和信息化部联合印发《关于促进煤炭安全绿色开发和清洁高效利用的意见》(国能煤炭〔2014〕571号),指出:要加快推广高效煤粉工业锅炉等高效节能环保锅 炉;2015年2月,工业和信息化部、财政部联合印发《工业领域煤炭清洁高效利用行动计划》(工信部联节〔2015〕45号),将新型高效煤粉锅炉系统技术列

清洁燃烧

煤的清洁燃烧 热能与动力工程3班蒋辉跃 目前,国内外的所采用的脱硫脱硝的技术与方法有许多的不同之处。究其原因,首先,国外的对环保节能的要求比较严格;其次,国外的技术比较先进和成熟;而中国的环保理念不够强烈和技术都没有发展起来。这就导致了国内的环保形势严峻状况。 煤是一种由C,H,O,N,S等元素组成的,缩聚了程度不同、结构复杂的高分子有机物与多种无机物混合的固溶胶体。煤在现有的燃烧工艺设备中,燃烧效率较低,煤在炉中燃烧后,炉植中还会有大量未燃物;烟气中也含有大量的有害气体.煤中内能没有被充分转化为热能释放出来。由于火力发电燃煤锅炉仍在广泛的使用,而大部分火电厂未对燃煤排气中的SO2、NOX采取措施脱除,因此造成对环境的污染越来越严重。所以的要实现煤的清洁燃烧,就必须考虑对燃煤排气中的SO2、NOX采取处理措施。 由于煤炭仍然是当今和今后世界能源的重要组成部分,因此,我国对清洁煤燃烧技术的研究与开发,一直没有停止投入大量人力和资金,从而取得了重大进展,特别是一些企业与长期从事热能工程、燃烧技术与环保工程等有关方面的科研工作者,对煤的洁净技术进行了大量的研究与实践,并使之市场化与商品化。其主要技术概括起来,主要包括煤燃烧前的处理和净化技术如:煤的洗选处理、型煤加工.水煤浆技术,以及高效低污染的煤的转化技术,含煤炭气化技术,煤炭液化技术(水煤浆、煤转油),煤、油共炼技术,以及煤层甲烷气的利用等煤炭燃烧中的净化技术,包括各种脱硫、脱硝

技术与消烟除尘技术。如流化床脱硫脱硝燃烧技术、炉内喷钙脱硫与烟气脱硫技术、型煤固硫技术等。煤炭燃烧后的除尘技术,主要是采用各种机械、湿式、电除尘器与袋式除尘器技术等 目前主要有两类常用的方式对燃煤排放气体中的SO2、NOX 进行处理。 一类是在炉内通过燃烧技术的改进,降低SO2、NOX 排放量,这种技术主要应用于常规燃煤发电厂,称之为煤清洁发电技术。目前已有商业应用。煤的清洁发电技术主要有:循环流化床燃烧技术(CFBC)、增压流化床燃烧联合循环技术(PFBC-CC)、整体煤气化蒸汽-燃气联合循环技术(IGCC)。 另一类是在炉后,尾部烟气中进行脱硫脱硝。采用的主要的技术和方法主要有:1.湿法烟气脱硫技术、2.旋转喷雾半干烟气脱硫技术、3.炉内喷钙尾部增湿脱硫技术、4.电子束照射法、5.磷铵肥法、6.活性焦法等,统称为脱硫(脱硝)技术。 工业化国家脱硫脱硝法规均相当严格。因此,大型燃煤装备的脱硫脱硝系统普及率已达90%以上。由于技术发展的原因,这些系统一般采用两套装置为湿法工艺外加脱硝技术的湿法系统分别进行,但目前普遍形成后处理障碍。湿法废弃物石膏的出路问题已经困扰了这些国家的可持续性发展。因此近年来日本、美国、德国都投入相当的力量开发成功了干法脱硫脱硝一体化技术作为下世纪的储备技术。该技术适用于大型燃煤装备的脱硫脱硝工艺。 我国是世界耗煤第一大国,主要用于火力发电燃煤锅炉排硫量相

浓淡燃烧器原理

浓淡燃烧器原理 2014-01-21 10:38 浓淡燃烧器原理 1. 所谓浓淡燃烧器,就是采用将煤粉——空气混合物气流,即一次风气流分离成富粉流和贫粉流两股气流,这样可在一次风总量不变的前提下提高富粉流中的煤粉浓度。 2. 富粉流中燃料在过量空气系数远小于1的条件下燃烧,贫粉流中燃料则在过量空气系数大于或接近1的条件下燃烧,两股气流合起来使燃烧器出口的总过量空气系数仍保持在合理的范围内。 3. 浓淡分离原理 (1)离心式煤粉浓缩器用在W型火焰锅炉上; (2)利用管道转弯所产生的离心力使煤粉浓缩,在四角切圆燃烧的炉膛上得到应用; 百叶窗锥形轴向分离器; (3)带有旋流叶片的煤粉浓缩器,用于燃用高水分褐煤的风扇磨煤机直吹式燃烧系统中。 4. 稳燃原理 富粉流中煤粉浓度的提高,即该股气流一次风分额降低,将使着火热减少,火焰转播速度提高,燃料着火提前。但是,煤粉浓度并非越高越好。如果煤粉浓度过高,则会因氧量不足影响挥发分燃烧,颗粒升温速度降低,反而使火焰转播速度下降,着火距离拉长,并会产生煤烟。最佳煤粉浓度值与煤种有关低挥发分煤和劣质烟煤的最佳值高于烟煤。富粉流着火后,为贫粉流提供了着火热源,后者随之着火,整个火炬的燃烧稳定性增强,从而扩大了锅炉不投油助燃的负荷调节范围及煤种适应性。 5. 减少污染 煤粉燃烧时有NO和极少量的NO2生成,它们统称为氮氧化合物,用NOX表示,是一种

有害的气体排放物。要降低NOX的生成量,要求火焰温度低,燃烧区段内氧浓度小,燃料在高温区内的停留时间短。浓淡燃烧器因能降低燃烧产物中NOX的排放量,所以也是一种低NOX燃烧器。 6. 防止结渣 煤粉颗粒在高温还原性气氛下,煤灰的灰熔点将大大降低,这样当烟中的灰粒接触到受热面或炉墙时,仍可能保持软化状态或熔化状态,会粘结在壁面上,形成结渣。 对于浓淡型煤粉燃烧器,将一次风煤粉气流沿水平方向进行浓淡分离,淡煤粉气流位于背火侧,即水冷壁一侧,使水冷壁附近煤粉浓度降低,氧浓度提高,还原性气氛水平下降,提高了灰粒的熔化温度,可减少炉膛结渣的可能性。同时,浓煤粉气流位于向火侧,有利于获取着火热,稳定燃烧。

相关文档