文档库 最新最全的文档下载
当前位置:文档库 › 注浆量计算书

注浆量计算书

注浆量计算书
注浆量计算书

注浆量的确定

为了减小和防止地面沉降,在盾构掘进中,要尽快在脱出盾构后的衬砌背面环形建筑空隙中充填足量的浆液材料。根据地质条件,确定浆液配比、注浆压力、注浆量及注浆起讫时间对同步注浆能否达到预期效果起关键作用。

二次(或多次)压浆是弥补同步注浆的不足,减少地表沉降的有效辅助手段,可使盾构在穿越建筑物、地下管线时,大大降低地面沉降。

1.注浆目的

(1) 使管片尽早支承地层,减少地基沉陷量,保证环境安全;

(2) 确保管片衬砌早期稳定性;

(3) 作为隧道衬砌防水的第一道防线,提供长期、匀质、稳定防水功能;

2.注浆方式

盾构机掘进过程中形成的管片与土体之间的空隙将采用注浆回填,浆液是通过运浆车送到洞内,注浆与掘进保持同步,采用同步注浆。

盾构推进中的同步注浆和衬砌壁后补压浆是充填盾构壳体与管片圆环间的建筑间隙和减少后期土体变形的有效手段,同时也可加强隧道的稳定性,也是盾构推进施工中的一道重要工序。为了防止盾构机注浆孔堵塞,同步注浆选择具有和易性好、泌水性小的浆液进行及时、均匀、定量压注,确保其建筑空隙得以及时和足量的充填,浆液配比如表9-9。压浆量和压浆点视压浆时的压力值和地层变形监测数据而定。压浆属一道重要工序,须指派专人负责,对压入位置、压入量、压力值均作详细记录,并根据地层变形监测信息及时调整,确保压浆工序的施工质量。

所配出的浆液应具备以下性能:

(1) 不堵塞盾构机注浆孔;

(2) 和易性好,能更好地充填盾构推进造成的间隙;

(3) 可以防止因浆液固结体积减小而引起的地面沉降;

(4) 提供一个围绕隧道衬砌的长期、匀质、稳定的防水层;

注浆量可根据监测信息分析视情况而定,浆液配比也可视情况适当进行调整。

在盾构掘进的过程中,每环注浆量控制在建筑空隙150%~200%,为减少地下的后期变形,必要时进行衬砌壁后注浆,注浆参数及注浆点的选择根据实际情况而定(待100m试验段施工得出的数据而定)。二次注浆采用水泥浆,但在隧道开挖对地表建筑物或管线有较大影响的地段,为减少地面沉降,选择速凝型浆液,在水泥浆中添加适当比例的水玻璃。

各项控制压力的选择考虑以下因素:

(1) 注浆位置的水压力和土压力;

(2) 不能使管片因受压而错位变形;

(3) 不会对盾尾密封刷造成损害;

(4) 既能防止地面下沉超限,又不导致地面隆起超限;

(5) 浆液不会进入土仓

上述压力在初步确定以后,还要根据地质情况和地面监测结果等进行调整。

注浆操作既可人工又可自动,控制开关设在盾构机操作盘上。

每环掘进之前,都要确认注浆系统的工作状态处于正常,并且浆液储量足够,掘进中一旦注浆系统出现故障,立即停止掘进进行检查和修理。

3.注浆主要参数

(1) 注浆压力

根据注浆目的要求调整注浆压力,充分充填盾构施工产生的地层空隙,避免由此引起的地表沉陷,影响地表建筑物与地下管线的安全。同时,防止过大的注浆压力引起地表有害隆起或破坏管片衬砌。同步注浆注浆压力应大于开挖面的土压力,一般可控制在1.1~1.2倍的静止土压力范围内。

(2) 注浆量

Q=V·λ

λ—指注浆率(一般取150%~200%)

V—盾构施工引起的空隙(m3)

V=π(D2-d2)L/4

D—指盾构切削外径(m)(削切外径11.93m)

d—指预制管片外径(m)(预制管片外径11.6m)

L—回填注浆段长即预制管片每环长度(预制管片每环宽1.8m)

根据公式计算得注浆量:

Q=(11.93 -11.6)×3.14×1.5×(150%-200%)/4=16.458~21.94m3

即注浆量为16.458~21.94m3/环(1.8m)

注浆量和注浆压力由技术人员确定。注浆工应及时做好拌浆记录和注浆压力、注浆量的记录,并按期检查浆液质量。尤其是应控制和记录每一环的实际注浆量以及与环状间隙的理论容积的比较值,注浆量一般控制在理论空隙值的150%—200%。

当出现管片错台和地面沉降量超限时,说明注浆不足或不理想,应尽快进行补充注浆。

4.注浆工艺流程

盾尾注浆的工艺流程如图所示。

地基处理 第13章 高压喷射注浆法

Jet Grouting ) 概述 高压喷射注浆法是利用钻机把带有喷嘴的注浆管钻入(或置入)至土层预定深度后,将高压水泥浆或水通过钻杆由喷嘴喷出,形成喷射流,以此切割土体并与土拌和形成水泥土加固体的地基处理方法。 应用到灌浆工程中,创造出一种全新的施工法-CCP 工法(Chemical 年铁道部科学研究院率先开发高压喷射我国冶金、水电、煤炭、建也相继进行了试验和建筑和新建工程的地基支挡和护底、构造地下按喷射流移动轨迹分为旋喷、定喷和摆喷三种。按注浆管类型分为单管法、双管法、三管法和多重管法。加固形状可分为柱状、壁状、一、高压喷射注浆法种类 边旋转提升,固结体呈圆柱状,喷射的方向固定不变,固 ,喷射的方向呈较小角度来回 呈较厚墙状 。 管喷射高压水泥浆液作为喷射流,衰减快,破碎土的有效0.3~0.8m 。注浆管同时喷射高压浆液喷射流,成桩直径1m 左

同时喷射高压水流、压缩射流的共同作用,破坏使地基中一部分土粒随,高压浆液随之填充空隙。 ~2.0m ,但桩体强度较内射流保持出口压力; 主要区域,该区域内 紊流发达; 终期区域,其喷射流 变成不连续喷流。 在初期区域内,喷射流速度分布保持均匀的部区段),喷射核末端扩散宽度稍有增加,轴向动压有所减小的过渡部分称为迁移区高压喷射流的构造 高压喷射注浆法适用于处理淤泥、淤泥质土、流塑、软塑或可塑粘性土、粉土、砂土、黄土、素填土和碎石土等对于硬粘性土、含较多的块石或大量植物根茎的地基,因喷射流可能受到阻挡或削弱,切削范围小或影响处理效位:m) 0.9~1.5 0.8~1.2 1.2~1.80.9~1.3 1.5~ 2.01.0~1.4 1.0~1.60.7~1.1 1.2~1.80.8~1.2三管法双管法

预应力张拉灌浆专项方案(附计算书)

预应力张拉灌浆专项方案 一、准备工作 1、千斤顶和油泵: 千斤顶根据设计的张拉吨位采用YDC1500型穿心式千斤顶,千斤顶使用前应进行检验维修、固定编组、并标定。 千斤顶标定后与相应的油表是一一对应的,因此在标定时就要按编号对应起来,防止施工时错用油表。根据每束钢绞线的张拉应力计算出油表相应的读数,即有张拉应力KN换算成油表读数MPa。 2、波纹管和钢绞线: 波纹管在使用前应注意检查,不得使用有锈蚀及沾有油污,泥土或有撞击、压痕、裂口的波纹管。 波纹管的安装和连接波纹管的定位采用给定设计高程,井字钢筋焊接固定,防止在施工过程中发生位置改变,直线段约为100cm一道固定装置,曲线段50cm;波纹管的连接采用专用管接头连接,并用胶布封裹严密。 锚垫板、螺旋筋,应采用厂家供应的定型产品。在波纹管与锚垫板接头处用胶布封裹严密,防止漏浆。 本工程采用符合(GB/T5224-2003)标准的高强度低松弛应力钢绞线,其力学性能如下:f pk=1860Mpa,E P=1.95×105Mpa,整根钢绞线公称截面为140mm2。未经按国际检查验收合格的产品不得使用,保管中严禁雨淋,防止锈蚀,绝不允许沾染油污。 编束时,应保持每根钢绞线之间平行,不缠绕,每隔1.0~1.5米

用20#软铁丝绑扎一道,在每束的两端2.0米范围内保证绑扎间距不大于50厘米。 钢绞线伸出锚垫板长度,下料前务必要核对图纸长度,确定无误后方可下料。 穿束采用钢套牵引法,要采取措施防止钢绞线捅坏波纹管。钢绞线切割采用冷切割。 3、锚具: 锚具选用符合国家技术质量标准的产品。应符合下列要求: ①本工程使用的锚具出厂时应包括试制定型鉴定的检验证书及 本批产品出厂检验,外观检查,硬度检验和静载锚固能力试验等较完整的检验数据。 ②锚具、锚具的联结器使用煤油或柴油洗净全部零部件表面的油污、铁屑、泥砂等杂物。 ③锚垫板上要采取适当的定位措施,保证钢束与锚垫板垂直。 ④夹具:夹具应具有良好的自锚性能、松锚性能和重复使用性能。需敲击才能松开的夹具,必须保证其对预应力筋的锚固没有影响,且对操作人员的安全不造成危险。 4、钢铰线检验下料及穿束:钢铰线在使用前,应进行抽样检测,各项指标均应满足规范的要求。钢铰线的下料在平整后的场地进行,防止污染,下料应用砂轮切割机切断,采用穿束机和人工配合的方法穿束。

高压喷射注浆法在工程中的应用

高压喷射注浆法在工程中的原理和应用 摘要:文章首先分析了高压喷射注浆法的机理,并介绍了高压喷射注浆法在地基加固工程中的具体应用技术,针对施工过程中经常出现的问题提出了处理措施。 一、高压喷射灌浆技术 高压喷射法就是利用工程钻机钻孔至设计处理的深度后,用高压泥浆泵,通过安装在钻杆(喷杆)杆端置于孔底的特殊喷嘴,向周围土体高压喷射固化浆液(一般使用水泥浆液),同时钻杆(喷杆)以一定的速度边旋转边提升,高压射流使一定范围内的土体结构破坏,并强制与固化浆液混合,凝固后便在土体中形成具有一定性能和形状的固结体。 固结体的形状和喷射流的移动方向有关。一般分为旋转喷射(简称旋喷),定向喷射(简称定喷)和摆动喷射(简称摆喷)。旋喷桩主要用于加固地基,提高地基的抗剪强度,改善地基土的变形性能,使其在上部结构荷载作用下,不至破坏或产生过大的变形。定喷固结体呈壁状,摆喷形成厚度较大的扇状固结体。定喷和摆喷通常用于地基防渗,改善地基土的水力条件及边坡稳定等工程。 高压喷射注浆法是利用高压水或浆液射流切割搅拌地层,同时射入水泥浆或复合浆液,形成新的凝结体,改变了原地层的结构或全置换成新复合材料结构,提高承载力或原地基的防渗能力,达到加固地基和防渗的目的。其工艺是利用钻机或其他造孔设备造孔,然后把带有喷头的注浆管下至土层的预定深度,由高压水泵或高压泥浆泵把浆液以10~25 Mpa 的高压射流在喷嘴中射出,以冲击和破坏预定深度地层的土体。该射流能量大,速度快,当呈脉动状态的射流动压强度大于土体强度的时候,土粒便从原土体中剥落下来,一部分细小的土粒随着浆液冒出地面,其余较粗的土粒在喷射流的冲击力、离心力和重力作用下,与随之射入的水泥浆等浆液渗搅混合后,按一定的浆土比例和质量大小规律地重新排列,在土体中形成凝结体。喷射时,若一面提升一面旋转,则形成柱状体即旋喷桩,若一面提升一面按一定的方向角度摆动,则形成墙状体。 (一)加固机理 高喷法如三管高喷法用压缩空气包裹高压喷射水流冲击破坏搅动土体,同时用低压灌浆泵灌入浆液,浆液被高压水、气射流卷吸带入,同时与被搅动土体混合形成固结体。加固地基,形成桩、板、墙的机理可用五种作用来说明: 1、高压喷射流切割破坏土体作用喷流动压以脉冲形式冲击土体,使土体结构破坏出现空洞。 2、混合搅拌作用钻杆在旋转和提升的过程中,在射流后面形成空隙,在喷射压力作用下,迫使土粒向与喷嘴移动相反的方向(即阻力小的方向)移动,与浆液搅拌混合后形成固结体。 3、置换作用三重管高喷法又称置换法,高速水射流切割土体的同时,由于通入压缩空气而把一部分切割下的土粒排出灌浆孔,土粒排出后所空下的体积由灌入的浆液补入。 4、充填、渗透固结作用高压浆液充填冲开的和原有的土体空隙,析水固结,

品茗安全计算基坑支护计算书文件

土钉施工规范工程 浅基坑 安 全 专 项 施 工 方 案 编制人: 职务: 校对人:职务: 审核人:职务: 审批人:职务: 公司 编制时间:年月日

第一节、编制依据------------------------------------------------------------------------------------------------ - 2 - 第二节、工程简况------------------------------------------------------------------------------------------------ - 3 - 第三节、施工总体布署 ----------------------------------------------------------------------------------------- - 4 - 第四节、基坑支护工程 ----------------------------------------------------------------------------------------- - 9 - 第五节、土方挖运工程 ---------------------------------------------------------------------------------------- - 11 - 第六节、质量保证措施 ---------------------------------------------------------------------------------------- - 13 - 第七节、安全生产与文明施工 ------------------------------------------------------------------------------ - 18 - 第八节、雨期施工措施 ---------------------------------------------------------------------------------------- - 20 - 第九节、土钉墙支护计算书---------------------------------------------------------------------------------- - 21 -

小导管注浆量计算方法

市政暗挖工程小导管注浆的注浆量计算方法 查询一: 在浆液的黏稠度固定的情况下,注浆压力直接与岩(土)层的裂隙宽度和粗糙度、裂隙发育程度、裂隙水头压力有关。压力过高亦会劈裂岩(土)体,因此注浆压力一般控制在0.5MPa~1.0MPa。 注浆量计算: 小导管注浆单管浆液扩散半径一般为0.5m~1.0m。这与深孔超前围幕注浆的扩散半径2m~4m(管径75mm ~110 mm、注浆压力1.5MPa~4MPa )有明显区别, 故《隧道施工规范》中的注浆量计算公式(如下)不能作为小导管注浆量的估算公式。 =PR2×H×G×A×B, Q 1 ——注浆量,m3; 式中:Q 1 R——扩散半径,m; H——注浆管有效长度,m; G——岩体空隙率,%; A——注浆系数,0.7~0.9; B——浆液损耗系数,1.1~1.4。 据实际验证,以下计算公式相对符合实际单孔注浆量。 =PR2×L×G=P×[(0.6~0.7)×S]2×L×G Q 2 ——注浆量,m3; 式中:Q 2 S——小导管中心距离,m; L——小导管有效长度,m; R——考虑到注浆范围相互重叠的原则, 扩散半径取(0.6~0.7)×S,m; G——岩体空隙率,%; Ⅳ、Ⅴ级围岩取3%~5%,Ⅲ级围岩取2%~3%,软岩取1%~2%,堆积体取12%。 实际施工中因钻孔偏差或钻眼内的地质原因,注浆液窜浆或跑浆经常出现, 每个注浆管内的注浆量很不均匀,因此理论单眼注浆量尚不能作为单孔注浆的一

个控制指标, 应以整排小导管的理论推算总量作为控制指标。故按整排小导管上下各0.5 m~1m范围的岩土体内均已注浆填充考虑,应以下列公式估算注浆总量。 =(π×H/360)×[(R+t)2-(R-t)2]×G×L, Q 3 ——注浆量,m3; 式中:Q 3 H——拱部小导管布设范围相对于圆心的角度; R——小导管位置相对于圆心的半径; t——浆液扩散半径,0.5 m~1m; L——小导管有效长度,m; G——岩体孔隙率,%; Ⅳ、Ⅴ级围岩取3%~5%,Ⅲ级围岩取2%~3%,软岩取1%~2%,堆积体取12%。 按此理可推算同一断面上单排或多排小导管的注浆总量。仅仅为理论,但是根据现场情况,计量的做法是比较普遍的。 查询二: 隧道施工中常用的注浆如小导管、深孔注浆等,介绍了注浆量的计算方法。 一、注浆压力计算 根据注浆所处地层深度来估算。注浆压力随注浆深度增加而增加,浅部增加率快,深度增加率慢。 P=KH P—设计注浆压力(终压值)Mpa H—注浆处深度,m K—由注浆深度确定的压力系数,取值:0.03~0.028 二、注浆量计算 1、Q=Ahnα(1+β) Q—注浆量 A—注浆范围岩层面积 h—注浆长度 n—地层孔隙率(根据地层而定) α—注浆孔隙充填率,一般在0.7~0.9或通过试验

高压喷射注浆施工工艺方法要点

施工工艺方法要点 (1)旋喷桩施工工艺流程: 单管旋喷桩施工工艺流程: 钻机就位钻孔——钻孔至设计标高——旋喷开始——边旋喷边提升——旋喷结束成桩 三重管旋喷法施工工艺流程: ①振动沉桩机就位,放桩靴,立套管,安振动锤;②套管沉入设计深度;③拔起一段套管,卸上段套管,使下段露出地面;④套管中插入三重管,边旋、边喷、边提升;⑤自动提升旋喷管;⑥拔出旋喷管与套管,下部形成圆柱喷射桩加固体。 (2)施工前先进行场地平整,挖好排浆沟,做好钻机定位。要求钻机安放保持水平,钻杆保持垂直,其倾斜度不得大于1.5%。 (3)旋喷桩施工程序为:机具就位→贯入注浆管、试喷射→喷射注浆→拔管及冲洗等。 (4)单管法和二重管法可用注浆管射水成孔至设计深度后,再一边提升一边进行喷射注浆。三重管法施工须预先用钻机或振动打桩机钻成直径150~200mm孔,然后将三重注浆管插入孔内,按旋喷、定喷或摆喷的工艺要求,由下而上进行喷射注浆,注浆管分段提升的搭接长度不得小于200mm。 (5)在插入旋喷管前先检查高压水与空气喷射情况,各部

位密封圈是否封闭,插入后先作高压水射水试验,合格后方可喷射浆液。如因塌孔插入困难时,可用低压(0.1~2MPa)水冲孔喷下,但须把高压水喷嘴用塑料不包裹,以免泥土堵塞。 (6)喷嘴直径、提升速度、旋喷速度、喷射压力、排量等旋喷参数见表或根据现场试验确定。 注:高压泵喷射的(单管法、二重管法)是浆液或(三重管法)水。 (7)当采用三重管法旋喷,开始时,先送高压水,再送水泥浆和压缩空气,在一般情况下,压缩空气可晚送30s。在桩底部边旋转边喷射1min后,再进行边旋转、边提升、边喷射。

高压喷射注浆法(旋喷桩法)施工工艺标准

高压喷射注浆法(旋喷桩法) 选喷桩法适用于淤泥、淤泥质土、黏性土、粉土、黄土、砂土、人工填土和碎石土等的地基加固。桩径一般,最大2m,深达45m,其抗压强度5-10MPa,渗透系数可降至10-7-10-8cm/s。 A. 旋喷 (一)施工准备 1.材料 (1)浆液材料以水泥为主材,加入不同外加剂后,可具有速凝早强、抗冻等性能。一般普硅425#纯水泥浆,固结体强度28天可最大达1-2MPa。 固结体的强度和抗渗性能(MPa)

(2)喷浆量可按下列两种方法计算取大值) (3)对地下水丰富的工程需要在水泥浆中掺入速凝早强剂,通常有氯化钙、水玻璃及三乙醇胺等,用量为水泥用量的2%-4%,早期强度能提高倍。 (4)旋喷固结体的平均抗压强度为20MPa以上高强型,一般注浆用的水泥要求不低于525号普硅水泥,通常掺入高效能扩散剂有NNO、NR3、NaNa2、Na2SiO3等。 (5)对于有抗渗要求的旋喷固体,不宜使用矿渣水泥,如仅要求抗渗而无抗冻要求的可使用火山灰水泥,在水泥浆中掺入2%-4%的水玻璃,注浆用的水玻璃模数要求在较为合适,浓度要在30-45波美度为宜。 (6)对改善型,在水泥浆中掺入膨润土,使浆液悬浮性增加,微减小水泥颗粒沉淀量,以至浆液的析水率减小,稳定性强,其配方为: 水:水泥:陶土:碱(水玻璃)=1:1:3: (7)在水泥浆中掺入其它外加剂,如铝酸钠、三乙醇胺(NR3)、β-萘磺酸盐甲醛缩合物(NF)、氧节——节树脂磺酸盐(CRS)、亚甲基二萘磺酸钠(NNO)、沸石粉等,按不土要求的流定性和稳定度凝结时间或提高抗压强度作适当选择。 2.作业条件 选喷注浆加固方案拟定前需要进行试验性调查及工作准备。 (1)工程地质资料,各钻孔柱状图及地质剖面图,有各土层的物理力学特性,化学成分,各种要求参数齐全。 (2)旋喷体作端承桩时,应注意持力层顶面的起伏变化情况,用作摩擦桩的注意土层不均匀性,有无软弱夹层。 (3)室内配方,为了解喷射注浆后桩体可能有的强度和决定浆液合理配合比,必须取现场各层土样,在室内按不同的含水量和配合比进行配方试验,优选出最合理的浆液配方。 (4)根据估算喷射直径来选用喷射注浆的种类和喷射方式。

注浆公式

浅谈对隧道超前小导管注浆的质量管理和计量控制 发布日期:2007/02/07 来源:傅伟何敏芳 [摘要]:隧道超前小导管加钢支撑辅助开挖的施工工艺特别适用于自稳时间较短的砂层、砂卵(砾)石层、小断层带、软弱围岩带、浅埋地段、地下水较多的较弱破碎围岩地段。本文就超前小导管注浆工艺中的质量管理和计量控制方面的问题进行探讨,供各位同行参考。 [关键词]:隧道;超前小导管注浆;质量管理;计量控制 超前小导管注浆加钢支撑是隧道工程辅助开挖的一种施工工艺,简称小管棚施工工艺。该工艺特别适用于自稳时间较短的砂层、砂卵(砾)石层、小断层带、软弱围岩带、浅埋地段、地下水较多的较弱破碎围岩地段。小管棚施工工艺相对于大管棚施工工艺比较,具有相对简单便捷、经济实效。一般隧道进、出口端往往属于地质围岩类别低、自稳性差、开挖面渗水多的情况,因此超前小导管加钢支撑辅助开挖的进洞施工工艺被普遍采用。 但在实践施工中普遍存在对小导管注浆的作用认识不清、对其工艺流程中的操作把关不严、对注浆量的控制不当等情况,造成实际注浆止水效果不明显、围岩固结不佳、计量注浆量远大于实际注浆量等问题。现将本人在工程施工中积累的部分经验和推导出来的公式供大家探讨。 一、小导管注浆的分类 根据不同的注浆目的注浆材料一般分为二类:第一类为注水泥砂浆,其主要作用为增强导管的刚度,如浙江17省道十八跳隧道;第二类为注水泥浆或水泥—水玻璃双液浆等化学浆液,其主要作用为: (1)通过浆液的化学作用,将坑道周围喷浆区的松散岩体在短时间凝固并达到一定自稳力,为掘进时的施工安全提供保障; (2)浆液进入岩(土)体的空隙凝结固化后起防水作用。 水泥—水玻璃双液浆的固结时间一般为4小时左右,单液水泥浆的固结时间一般为8小时左右。在甬金高速公路白峰岭隧道金华端施工中,右洞为水泥—水玻璃双液注浆,左洞为水泥浆单液注浆,在地质条件、施工操作工

SMW工法计算书

深基坑支护设计 4 SMW工法计算书 ---------------------------------------------------------------------- [ 支护方案 ] ---------------------------------------------------------------------- 水泥土墙支护 ---------------------------------------------------------------------- [ 基本信息 ] ----------------------------------------------------------------------

---------------------------------------------------------------------- [ 放坡信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 超载信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- [ 土层参数 ] ----------------------------------------------------------------------

高压旋喷桩设计参数

高压旋喷桩因施工地层适应性较强而作为基坑止水帷幕得到较多地应用。目前常规的旋喷桩施工分为单管旋喷桩、二重管旋喷桩和三重管旋喷桩。设计施工中存在的问题:1)三种旋喷桩主要的区别在于施工中喷嘴的数量和喷射介质不同,各种旋喷桩的喷射介质压力(水泥浆压力、水压力和气体压力)容易混淆甚至误用;(2)三种旋喷桩的其它设计施工工艺参数(水灰比、提升速度、水泥用量等)也存在差异。本文针对上述问题,对现行规范加以梳理和总结对比,防止混淆或误用。 Ⅰ、问题的提出 高压旋喷桩因施工地层适应性较强而作为基坑止水帷幕得到较多地应用。目前常规的旋喷桩施工分为单管旋喷桩、二重管旋喷桩和三重管旋喷桩。设计施工中存在的问题: (1)三种旋喷桩主要的区别在于施工中喷嘴的数量和喷射介质不同,各种旋喷桩的喷射介质压力(水泥浆压力、水压力和气体压力)容易混淆甚至误用; (2)三种旋喷桩的其它设计施工工艺参数(水灰比、提升速度、水泥用量等)也存在差异,应加以总结对比,防止混淆或误用。 Ⅱ、针对上述问题的文献查阅 (1)喷射介质压力: 《建筑地基处理技术规范(JGJ79-2012)》中明确:“单管法及双管法的高压水泥浆和三管法高压水的压力应大于20MPa,气流压力应大于”。 《深圳市基坑支护工程技术规范(SJG05-2011)》中明确:“高压喷射注浆单管及二重管法的高压水泥浆液应大于20Mpa;三重管法高压水射流的压力应大于25Mpa,低压水泥浆液流量的压力宜大于,气流压力宜取”。 《水电水利工程高压喷射灌浆技术规范(DL/T5200-2004)》中如下表所示: (2)浆液水灰比: 《建筑地基处理技术规范(JGJ79-2012)》中明确:“水泥浆液的水灰比应按工程要求确定,水灰比宜取~”。 《深圳市基坑支护工程技术规范(SJG05-2011)》中明确:“水泥浆液的水灰比可取,三重管法宜取”。 《水电水利工程高压喷射灌浆技术规范(DL/T5200-2004)》中明确:“高喷灌浆浆液的水灰比可为:。 (3)提升速度: 《建筑地基处理技术规范(JGJ79-2012)》中明确:“提升速度可取。 《深圳市基坑支护工程技术规范(SJG05-2011)》中明确:“提升速度可取。 《水电水利工程高压喷射灌浆技术规范(DL/T5200-2004)》中如下表所列: (4)旋喷桩单位米的水泥用量 暂没搜集到权威的关于旋喷桩水泥用量(或水泥参量)的说明。定额中不区分旋喷桩的直径,深圳规范中不同深度的旋喷桩水泥消耗量略有不同,关于旋喷桩的水泥用量: 广东省2010定额中的水泥用量(,双管300kg/m,三管455kg/m。 深圳市定额中的水泥用量(,双管180kg/m—200kg/m,三管420kg/m—500kg/m。 Ⅲ、概述总结

锚杆计算书

锚杆设计计算书 1.抗浮锚杆设计依据 本工程抗浮锚杆设计依据为: (1)《高层建筑岩土工程勘察规程》(JGJ72-2004); (2)《建筑边坡工程技术规范》(GB50330-2002); (3)《建筑地基基础设计规范》(GB50007-2002); (4)《岩土锚杆(索)技术规程》(CECS22-2005); (5)《建筑地基基础设计规范》(DBJ 15-31-2003)。 2.抗浮锚杆设计 2.1抗浮设计要求 锚杆的抗拔力根据设计给定的地下室抗浮力标准进行计算。结合建筑的性质以及场地条件,浮力设计值中取荷载分项系数为1.25。 2.2锚杆抗拔力计算 抗浮锚杆主要依靠锚杆锚固体与土体的粘结力(抗剪强度)来抵抗(水体对基础或底板的浮力)上拔力。 根据《岩土锚杆(索)设计与施工规范》(CECS22-2005)规定,非粘性土中圆柱型锚杆锚固段长度按下列公式进行估算,并取其中较大值: L a>K·N t/πDf mgψ(7.5.1-1) L a> K·N t/nπDf msψ(7.5.1-2) 锚杆杆体的截面公式:A s≥K t N t/f yk 锚杆杆体的截面面积公式:As 上述公式中: La——锚杆锚固段长度(m); Kt——锚杆锚固体的抗拔安全系数,永久锚杆,取2.2(K值已考虑群锚效应); Nt——锚杆的轴向拉力设计值(KN); D ——锚固体的直径150mm; f mg——锚固段注浆体与地层间的粘结强度标准值,取f mg=200kPa(CECS22-2005 保守取底值); f ms——锚固段注浆体与钢筋间的粘结强度标准值,取f ms=2000kPa; ——采用钢筋数量≥2根时,界面的粘结强度降低系数,取0.85~0.6; ——锚固长度对粘结强度的影响系数,取1.0~1.3,计算取值1.1; f yt——钢筋抗拉强度标准值,当采用Ⅲ级热轧钢筋时,其抗拉强度标准值为 f yt=400N/mm2; As——锚杆钢筋的截面积(mm2); A ——单根Ⅲ级热轧钢筋的截面积; Kt——锚杆杆体的抗拉安全系数,永久锚杆取1.6; N ——钢筋根数; 由于单根锚杆的轴向拉力值Nt和锚固段长度La都是未知数,类比其它工程实践数据,通常先行确定锚固段长度La,再来计算校核单根锚杆的轴向拉力值Nt。从材料经济性和施工可靠性等因素综合考虑,结合佛山市顺协工程勘察有限公司2007年12月6日提供的《团

高压摆喷灌浆方案

1 工程概况 清河水库位于穆棱市八面通镇清河村南1km处的清河流域中上游,距八面通镇6km。总库容305.5万m3,是一座以防洪、灌溉为主的小(Ⅰ)型水库,设计标准为50年一遇洪水,校核标准为500年一遇洪水,灌溉设计保证率为75%。清河水库主体工程包括大坝、溢洪道和放水洞。大坝为混合土坝,坝长310m,溢洪道为开敞式侧堰,堰长37m,放水洞为坝下埋管式砼箱涵,洞长42m。 清河水库始建于1958年大跃进期间,由群众队伍进行施工,工程质量相对较差,虽然经过几次维修改造,但仍存在坝体、坝基渗漏严重等诸多问题,被鉴定为三类坝。清河水库除险加固工程于2008年3月1日开工建设,对土坝渗漏采用高压摆喷灌浆技术进行处理,通过试验检测,土坝渗透指标由施工前的10-3cm/s提高到10-6cm/s,防渗效果良好。 2 高压摆喷灌浆技术要点 2.1 技术原理。高压摆喷灌浆技术是采用三管法,喷射介质为水、水泥基质浆液和压缩空气,使喷射管做一定角度的摆动和提升运动,利用高压水形成高速喷射流束,冲击、切割、破碎地层土体,并以水泥基质浆液充填、掺混其中,形成扇形断面板墙状的凝结体,以提高坝体防渗能力的施工技术。 2.2施工工序和设备。高压摆喷灌浆施工工序为:布孔、钻孔、制浆、高压灌浆、静压回灌。主要施工设备有:钻机、高喷台车、制浆机、高压水泵、空压机、灌浆泵。 2.3 布孔与钻孔。布孔分三个阶段。第一阶段布先导孔,沿坝体灌浆轴线方向每30米左右布置一个先导孔,利用先导孔采取芯样,可摸清各坝段坝体土质类别、地层变化、漏浆程度、基岩深度等情况。第二阶段布试验孔,根据工程地质报告和先导孔钻孔情况在大坝一端按设计孔距布置试验孔,进行现场试验确定合适的孔距和灌浆参数。第三阶段布灌浆孔,按现场试验确定的孔距沿防渗墙轴线布灌浆孔,先导孔可作为灌浆孔之一。钻孔可采用任意一种钻进方式。 清河水库布置了9个先导孔,9个试验孔,共210个灌浆孔(含先导孔和试验孔),采用回转钻进并泥浆护壁。钻孔孔距为1.5m,孔径为130mm,设计深度为进入基岩以下1m,实际孔深超出设计深度0.3mm.。 2.4制浆。高压摆喷灌浆浆液为水泥浆。使用水泥为32.5级普通硅酸盐水泥,水灰比为1.2:1~0.8:1,浆液密度为1.55g/cm3~1.7g/cm3。水泥浆采用二级

明开槽支护专项施工方案(附计算书)

目录 第一章编制依据 (3) 1.1编制说明 (3) 1.2编制依据 (3) 1.3编制原则 (4) 1.4编制目标 (4) 第二章工程概况 (4) 2.1工程概况 (4) 2.2工程地质和水文地质条件 (7) 2.3工程周边环境及使用条件 (8) 2.4风险源等级划分及处理措施 (9) 第三章施工部署 (10) 3.1施工部署 (10) 3.2施工现场平面布置 (13) 第四章主要施工方法及技术措施 (14) 4.1工程测量 (14) 4.2竖井初衬施工 (14) 4.3明开槽支护设计 (22) 4.4支护结构及土方开挖施工 (27) 第五章监控量测与应急预案 (31) 5.1监控量测 (31) 5.2应急预案 (37) 第六章施工安全与质量保证措施 (43) 6.1安全保证措施 (43) 6.2质量保证措施 (51) 第七章雨季施工技术措施 (58) 7.1明开槽施工要求 (58) 7.2材料、构件储存及保管 (59) 7.3机械设备 (59)

7.4电气设备 (60) 7.5雨期施工组织管理 (60) 7.6雨期施工安全技术措施 (60) 7.7暴雨急措施 (61) 7.8防汛应急预案 (61) 计算书一 (62)

第一章编制依据 1.1编制说明 1.1.1编制说明 依据14#楼换热站一次支沟及消防水池的特点,综合考虑本单位的资源情况、施工经验和施工能力,结合现场调查情况,编写成本工程的明开槽支护专项施工方案。 1.1.2编制范围 14#楼换热站一次支沟及消防水池明开沟槽。 1.2编制依据 1.2.1施工图纸 (1)北京****************************项目热力工程14#楼换热站一次支沟,图号: N622G1-S0120。 (2)北京**************************** C地块消防水池基坑支护项目方案设计,工程编号: 2019-HSJ-0006A。 1.2.2地勘报告 北京****************************项目岩土工程勘察报告,勘察编号:1403-025。 1.2.3国家、行业、地方规程、规范及标准、法令等 (1)《岩土锚杆与喷射混凝土支护工程技术规范》(GB 50086-2015); (2)《建筑基坑工程监测技术规范》(GB50497-2009); (3)《建筑地基基础设计规范》(GB50007-2011); (4)《建筑基坑支护技术规程》(JGJ120-2012); (5)《土层锚杆设计与施工规程》(CECS22:90) ; (6)《基坑土钉支护技术规程》(CECS96:97); (7)《中华人民共和国安全生产法》(2014版); (8) 《建筑基坑支护技术规程》(DB11/489-2016); (9)《危险性较大的分部分项工程安全管理规定》(住房和城乡建设部令第37号); (10) 关于实施《危险性较大的分部分项工程安全管理规定》有关问题的通知(建办质【2018】31号)。 1.2.4辅助工具

高压旋喷注浆原理及施工

岩土钻掘设备课程设计 课题名称:高压喷射注浆工艺 汇报人:孔海潮 小组成员:李立辰张田田孔海潮 张继超张良余子烨李洲 院系:工程学院班级:051123 专业:地质工程(岩土钻掘方向) 指导老师:卢春华

精品文档 。 1欢迎下载 前言 ........................ 错误!未定义书签。 第一章 高压喷射注浆法的定义与种类 (2) 第一节 高压喷射注浆法的定义 (2) 第二节 高压喷射注浆法的种类 (3) 第二章 高压喷射注浆法旳特点及适用条件 (5) 第一节 高压喷射注浆法的主要特点 (5) 第二节 高压喷射注浆法的适用条件 (5) 第三章 高压喷射注浆法加固机理 (7) 第一节 喷射流的相关性质 (7) 第二节 高压喷射流对土体的破坏作用 (9) 第三节 高压喷射流成桩(壁)机理 (10) 第四章 高压喷射注浆机械 (12) 第一节 施工机具 (12) 第五章 施工工艺 ........................ (20) 第一节 高压喷射注浆工艺流程见图 (20) 第二节 施工要点 (21) 第三节 常见施工问题及处理22展望 (22)

2 中国地质大学(武汉) 前言 1960年日本在中西涉博士发明了单管高压旋喷注浆法(CCP工法)以后,又相继开发了二重管高压旋喷注浆法(JGS工法)、三重管高压旋喷注浆法(GJG工法),他们在三重管高压旋喷注浆法的基础上,开发的555一MAN施工法(SuPer5011stabilizationManagement)和RJP(超高压旋喷注浆法,RodinJetPile)工法,旋喷直径最大可达4m,其研究的全方位高压旋喷注浆法(MJS工法),是一种全方位(水平和倾斜方向)大孔径旋摆喷技术,该技术包括喷头测试装置和排泥处理装置。近年来,日本又把高压喷射注浆法与深层水泥浆液搅拌法结合起来,同时发挥机械搅拌和射流搅拌两者的优点,形成了深层喷射搅拌混合法。 高压喷射注浆技术的发明,完善了注浆技术体系,使施工注浆结构体成为现实。低压的渗透注浆可使土体不变形、浆液充填土颗粒间孔隙、附加地应力较小,中压的压密注浆造成土体变形、浆液与土体共同形成似柱状固结体、附加地应力较大,较高压的劈裂注浆能够破坏土体、产生树状固结体、附加地应力较大,而高压喷射注浆利用高压将土体切割后部分获全部排出、浆液在切割范围内均匀搅拌或置换形成高强度的结构体、附加地应力小,注浆技术成为较完整的技术体系。高压喷射注浆技术的发展促进了注浆材料的发展,使成本低廉的水泥浆材逐步替代化学浆材,进一步减小了对环境的污染和降低工程造价。 我国注浆技术起步较晚但发展迅速,上世纪50年代开始初步掌握注浆技术,60年代开始在继水电行业进行坝基基础注浆,静压注浆法在许多行业的矿山井巷、软基加固、边坡治理等领域得到应用,70年代末在铁路行业开始进行高压喷射注浆法的研究和应用,随后在冶金、煤炭、水电、建筑、交通等各部门进行了大量的工程应用。历经四十余年的发展,我国注浆技术得到了成熟的进步,注浆材料和注浆设备均实现了自行研制和生产,注浆技术水平已可跻身国际先进行列。 第一章高压喷射注浆法的定义与种类 第一节高压喷射注浆法的定义 高压喷射注浆,就是利用钻机把带有喷嘴的注浆管钻进至土层预定深度后,以20--40MPa的压力把浆液或水从喷嘴中喷射出来,形成喷射流冲击破坏土层,当能量大、速度快和动脉状的射流动压大于土层结构强度时,土颗粒便从土层中剥落下来。一部分细颗粒随浆液或水冒出地面,其余土粒在射流的冲击力、离心力和重力等力的作用下,与浆液搅拌混合,并按一定的浆土比例和质量大小,有规律的重新排列,浆液凝固后,便在土层中形成一个固结体。

地基承载力计算公式

地基承载力计算公式的说明:f=fk+ηbγ(b-3)+ηdγο(d-0.5) fk——垫层底面处软弱土层的承载力标准值(kN/m2) ηb、ηd——分别为基础宽度和埋深的承载力修正系数 b--基础宽度(m) d——基础埋置深度(m) γ--基底下底重度(kN/m3) γ0——基底上底平均重度(kN/m3) 地基的处理方法 利用软弱土层作为持力层时,可按下列规定执行:1)淤泥和淤泥质土,宜利用其上覆较好土层作为持力层,当上覆土层较薄,应采取避免施工时对淤泥和淤泥质土扰动的措施;2)冲填土、建筑垃圾和性能稳定的工业废料,当均匀性和密实度较好时,均可利用作为持力层;3)对于有机质含量较多的生活垃圾和对基础有侵蚀性的工业废料等杂填土,未经处理不宜作为持力层。局部软弱土层以及暗塘、暗沟等,可采用基础梁、换土、桩基或其他方法处理。在选择地基处理方法时,应综合考虑场地工程地质和水文地质条件、建筑物对地基要求、建筑结构类型和基础型式、周围环境条件、材料供应情况、施工条件等因素,经过技术经济指标比较分析后择优采用。 地基处理设计时,应考虑上部结构,基础和地基的共同作用,必要时应采取有效措施,加强上部结构的刚度和强度,以增加建筑物对地基不均匀变形的适应能力。对已选定的地基处理方法,宜按建筑物地基基础设计等级,选择代表性场地进行相应的现场试验,并进行必要的测试,以检验设计参数和加固效果,同时为施工质量检验提供相关依据。 经处理后的地基,当按地基承载力确定基础底面积及埋深而需要对地基承载力特征值进行修正时,基础宽度的地基承载力修正系数取零,基础埋深的地基承载力修正系数取1.0;在受力范围内仍存在软弱下卧层时,应验算软弱下卧层的地基承载力。对受较大水平荷载或建造在斜坡上的建筑物或构筑物,以及钢油罐、堆料场等,地基处理后应进行地基稳定性计算。结构工程师需根据有关规范分别提供用于地基承载力验算和地基变形验算的荷载值;根据建筑物荷载差异大小、建筑物之间的联系方法、施工顺序等,按有关规范和地区经验对地基变形允许值合理提出设计要求。地基处理后,建筑物的地基变形应满足现行有关规范的要求,并在施工期间进行沉降观测,必要时尚应在使用期间继续观测,用以评价地基加固效果和作为使用维护依据。复合地基设计应满足建筑物承载力和变形要求。地基土为欠固结土、膨胀土、湿陷性黄土、可液化土等特殊土时,设计要综合考虑土体的特殊性质,选用适当的增强体和施工工艺。复合地基承载力特征值应通过现场复合地基载荷试验确定,或采用增强体的载荷试验结果和其周边土的承载力特征值结合经验确定。 常用的地基处理方法有:换填垫层法、强夯法、砂石桩法、振冲法、水泥土搅拌法、高压喷射注浆法、预压法、夯实水泥土桩法、水泥粉煤灰碎石桩法、石灰桩法、灰土挤密桩法和土挤密桩法、柱锤冲扩桩法、单液硅化法和碱液法等。 1、换填垫层法适用于浅层软弱地基及不均匀地基的处理。其主要作用是提高地基承载力,减少沉降量,加速软弱土层的排水固结,防止冻胀和消除膨胀土的胀缩。

小导管注浆量计算

小导管注浆量计算 Hessen was revised in January 2021

竖井小导管注浆量计算 一、注浆量计算 方法一: Q=Ahnα(1+β) Q—注浆量; A—注浆范围岩层表面积; h—注浆有效长度; n—地层孔隙率(根据地层而定); α—注浆孔隙充填率,一般在~或通过试验; β—浆液损失率,一般取10~30%; 其中A=(+)*2*(**2),(+)*2为注浆周长,(**2)为注浆扩散高度; h为注浆有效长度,由于导管水平夹角为30°故h=cos30° *3.0m=2.6m; n为,设计给出天然孔隙比(e0=V孔/(V总- V孔)=,推出天然孔隙率n=V孔/V总=;(注:n的取值现场实际情况较其它类似情况大得多); α注浆孔隙充填率,估取; β浆液损失率,估取20%;(注:未考虑现场涌水量过大,20%为保守估计值); 据上,当小导管每环间距时: Q=(+)*2*(**2)****(1+)

=38.76m3 则每延米注浆量Q==25.84m3 故总的注浆量Qm=*=为图纸注浆范围) 方法二(参照横通道小导管注浆计算原理,即按总量计算注浆 量): 每环注浆总量:Q=S*G*L = * ** =38.656m3 S——注浆扩散范围面积(扩散范围暂为0.7m); G——岩体孔隙率(根据孔隙比换算成孔隙率),本围岩孔隙率较大,暂取较小值39%。 L——导管有效长度,m,为 3.0m; 则每延米注浆量Q= =25.77m3 故总的注浆量Qm=*=为图纸注浆范围) 二、水泥-水玻璃双液计算 竖井注浆为水泥-水玻璃双液,体积配合比根据实际需要现场调配,其依据是根据文献《山东交通科技》(见附件)一书总第一百 六十九期(2004年12月)对隧道注浆(水泥-水玻璃双浆液)的探讨,现场体积配合比根据实际调配为1:(水泥浆:水玻璃),水 泥浆重量比为1:1(水泥:水)。水泥浆密度为m3,水玻璃密度为m3,计算如下:

高压喷射注浆地基建筑组织设计施工项目方案建筑方案

7-1-5 高压喷射注浆地基 7-1-5-1 旋喷注浆桩地基 旋喷注浆桩地基,简称旋喷桩地基是利用钻机把带有特殊喷嘴的注浆管钻进至土层的预定位置后,用高压脉冲泵,将水泥浆液通过钻杆下端的喷射装置,向四周以高速水平喷入土体,借助流体的冲击力切削土层,使喷流射程内土体遭受破坏,与此同时钻杆一面以一定的速度(20r/min)旋转,一面低速(15~30c m/min)徐徐提升,使土体与水泥浆充分搅拌混合,胶结硬化后即在地基中形成直径比较均匀,具有一定强度(0.5~8.0MPa)的圆柱体(称为旋喷桩),从而使地基得到加固。 1.分类及形式 旋喷法根据使用机具设备的不同又分为: (1)单管法 用一根单管喷射高压水泥浆液作为喷射流,由于高压浆液射流在土中衰减大,破碎土的射程较短,成桩直径较小,一般为0.3~0.8m。 (2)二重管法 用同轴双通道二重注浆管复合喷射高压水泥浆和压缩空气二种介质,以浆液作为喷射流,但在其外围裹着一圈空气流成为复合喷射流,成桩直径1.0m左右。 (3)三重管法 同轴三重注浆管复合喷射高压水流和压缩空气,并注入水泥浆液。由于高压水射流的作用,使地基中一部分土粒随着水、气排出地面,高压浆流随之填充空隙。成桩直径较大,一般有1.0~2.0m,但成桩强度较低(0.9~1.2MPa)。 成桩形式分旋喷注浆、定喷注浆和摆喷注浆等三种类别。加固形状可分为

柱状、壁状和块状等。 2.特点及适用范围 旋喷法具有以下特点:提高地基的抗剪强度,改善土的变形性质,使在上部结构荷载作用下,不产生破坏和较大沉降;能利用小直径钻孔旋喷成比孔大8 ~10倍的大直径固结体;可通过调节喷嘴的旋喷速度、提升速度、喷射压力和喷浆量,旋喷成各种形状桩体;可制成垂直桩、斜桩或连续墙,并获得需要的强度;可用于已有建筑物地基加固而不扰动附近土体,施工噪声低,振动小;可用于任何软弱土层,可控制加固范围;设备较简单、轻便,机械化程度高,材料来源广;施工简便,操作容易,速度快,效率高,用途广泛,成本低。 适于淤泥、淤泥质土、粘性土、粉土、砂土、湿陷性黄土、人工填土及碎石土等的地基加固;可用于既有建筑和新建筑的地基处理,深基坑侧壁挡土或挡水,基坑底部加固防止管涌与隆起,坝的加固与防水帷幕等工程。但对含有较多大粒块石、坚硬粘性土、大量植物根基或含过多有机质的土以及地下水流过大、喷射浆液无法在注浆管周围凝聚的情况下,不宜采用。 3.桩径的选择 桩直径大小由注浆方法、土的类别、密度、施工条件等而定,表7-21可供参考。 桩径大小选用(m) 表7-21 旋喷方法 单管法二重管法三重管法土质 直径 粘性土 0

注浆量计算书

注浆量的确定 为了减小和防止地面沉降,在盾构掘进中,要尽快在脱出盾构后的衬砌背面环形建筑空隙中充填足量的浆液材料。根据地质条件,确定浆液配比、注浆压力、注浆量及注浆起讫时间对同步注浆能否达到预期效果起关键作用。 二次(或多次)压浆是弥补同步注浆的不足,减少地表沉降的有效辅助手段,可使盾构在穿越建筑物、地下管线时,大大降低地面沉降。 1.注浆目的 (1) 使管片尽早支承地层,减少地基沉陷量,保证环境安全; (2) 确保管片衬砌早期稳定性; (3) 作为隧道衬砌防水的第一道防线,提供长期、匀质、稳定防水功能; 2.注浆方式 盾构机掘进过程中形成的管片与土体之间的空隙将采用注浆回填,浆液是通过运浆车送到洞内,注浆与掘进保持同步,采用同步注浆。 盾构推进中的同步注浆和衬砌壁后补压浆是充填盾构壳体与管片圆环间的建筑间隙和减少后期土体变形的有效手段,同时也可加强隧道的稳定性,也是盾构推进施工中的一道重要工序。为了防止盾构机注浆孔堵塞,同步注浆选择具有和易性好、泌水性小的浆液进行及时、均匀、定量压注,确保其建筑空隙得以及时和足量的充填,浆液配比如表9-9。压浆量和压浆点视压浆时的压力值和地层变形监测数据而定。压浆属一道重要工序,须指派专人负责,对压入位置、压入量、压力值均作详细记录,并根据地层变形监测信息及时调整,确保压浆工序的施工质量。 所配出的浆液应具备以下性能: (1) 不堵塞盾构机注浆孔; (2) 和易性好,能更好地充填盾构推进造成的间隙; (3) 可以防止因浆液固结体积减小而引起的地面沉降;

(4) 提供一个围绕隧道衬砌的长期、匀质、稳定的防水层; 注浆量可根据监测信息分析视情况而定,浆液配比也可视情况适当进行调整。 在盾构掘进的过程中,每环注浆量控制在建筑空隙150%~200%,为减少地下的后期变形,必要时进行衬砌壁后注浆,注浆参数及注浆点的选择根据实际情况而定(待100m试验段施工得出的数据而定)。二次注浆采用水泥浆,但在隧道开挖对地表建筑物或管线有较大影响的地段,为减少地面沉降,选择速凝型浆液,在水泥浆中添加适当比例的水玻璃。 各项控制压力的选择考虑以下因素: (1) 注浆位置的水压力和土压力; (2) 不能使管片因受压而错位变形; (3) 不会对盾尾密封刷造成损害; (4) 既能防止地面下沉超限,又不导致地面隆起超限; (5) 浆液不会进入土仓 上述压力在初步确定以后,还要根据地质情况和地面监测结果等进行调整。 注浆操作既可人工又可自动,控制开关设在盾构机操作盘上。 每环掘进之前,都要确认注浆系统的工作状态处于正常,并且浆液储量足够,掘进中一旦注浆系统出现故障,立即停止掘进进行检查和修理。 3.注浆主要参数 (1) 注浆压力 根据注浆目的要求调整注浆压力,充分充填盾构施工产生的地层空隙,避免由此引起的地表沉陷,影响地表建筑物与地下管线的安全。同时,防止过大的注浆压力引起地表有害隆起或破坏管片衬砌。同步注浆注浆压力应大于开挖面的土压力,一般可控制在1.1~1.2倍的静止土压力范围内。 (2) 注浆量 Q=V·λ λ—指注浆率(一般取150%~200%) V—盾构施工引起的空隙(m3) V=π(D2-d2)L/4 D—指盾构切削外径(m)(削切外径11.93m)

相关文档