文档库 最新最全的文档下载
当前位置:文档库 › 混沌序列产生及其在图像

混沌序列产生及其在图像

混沌序列产生及其在图像
混沌序列产生及其在图像

混沌序列产生及其在图像、视频加密中

的应用研究

左建政

【摘要】:伴随着科技的不断进步,信息技术已经渗透进人们生活的各个方面,信息安全问题已经引起越来越多的关注,因此如何加强信息的保密性就成为了一个急需解决的难题。混沌信号所固有的非周期, 宽频谱和对初始值非常敏感等突出特征,使得其在信息加密中有着良好的应用前景。而要想提高混沌在信息加密中的保密性以及实用性,需要做的工作主要是以下两个方面:一方面,提高混沌自身的性能;另一方面,提高加密系统的性能。本文以此为背景,分别从上述两方面着手进行研究,取得了一系列新的结果。本文的主要工作和创新体现在以下几个方面: (1)系统地研究了各种混沌序列的产生方式。混沌序列的产生是混沌应用到信息加密的前提也是一项关键技术。从最初的模拟电路到现在数字系统,在不断地进步,当然也会产生一系列新的问题。本文总结以前所做的研究,系统地介绍了各种混沌序列的产生方式,包括模拟电路、FPGA、LabVIEW、DSP等。通

过分析和比较,为以后的继续深入研究发挥重要的参考作用。 (2)设计了一个新的混沌系统。从混沌信息加密工程的观点考虑,构造一个庞大的混沌函数库是必要的。为了设计性能良好的混沌系统,在研究Sprott系统的基础上,构造了一个新的混沌系统。对构造的混沌系统进行了动力学分析,其中包括分岔特性以及Ly apunov指数等特性分析,同时设计了相应的模拟电路,通过电路实验获得了与

仿真相符的混沌吸引子,验证了混沌系统的特性。 (3)设计了一个新的分数阶混沌系统。并且介绍了两种分数阶微积分的分析方法,时域求解法对其进行数值仿真,时频域转换法对其进行电路仿真。数值仿真结果表明系统存在混沌的最低阶数是2.31。设计了该系统的分数阶混沌振荡电路,电路仿真与数值仿真结果相符,证实了该分数阶混沌振荡电路的可行性。分数阶混沌系统更能反映系统呈现的工程物理现象,一个确定的分数阶混沌系统随着其阶数即分数值的不同而呈现不同的状态,因而这种系统具有更大的密钥空间,不容易被复制。 (4)首次利用数字系统产生分数阶混沌序列。对分数阶混沌系统的广泛研究开始于最近十几年,目前的研究大多处于理论阶段。本文通过利用LabVIEW等数字系统,获得了真实的分数阶混沌序列。通过LabVIEW与MATLAB的接口,首先利用MATLAB编程计算混沌状态方程,然后再在LABVIEW平台设计前面板,调节参数,最后通过数据采集卡即可实现分数阶混沌序列输出。数字系统可以做到参数相同,并且精度可控,容易控制。 (5)借助DSP平台,利用分数阶混沌序列,成功实现了图像、视频的实时加密、解密。利用前面得到的分数阶混沌序列作为图像、视频加密的密钥流,对图像、视频中每一帧图像的像素点进行异或加密。分数阶混沌系统密钥空间大,因此安全性高,需要考虑的主要就是实时性的问题,而借助于运算速度非常快的DSP芯片,能很好地满足实时性的要求。这种加密方式突破了传统软件加密时,加密速度慢、容易被破译的缺点,具有广阔的应用前景

(完整版)基于MATLAB的混沌序列图像加密程序

设计题目:基于MATLAB的混沌序列图像加密程序 一.设计目的 图像信息生动形象,它已成为人类表达信息的重要手段之一,网络上的图像数据很多是要求发送方和接受都要进行加密通信,信息的安全与保密显得尤为重 要,因此我想运用异或运算将数据进行隐藏,连续使用同一数据对图像数据两次异或运算图像的数据不发生改变,利用这一特性对图像信息进行加密保护。 熟练使用matlab运用matlab进行编程,使用matlab语言进行数据的隐藏加密,确保数字图像信息的安全,混沌序列具有容易生成,对初始条件和混沌参数敏感等特点,近年来在图像加密领域得到了广泛的应用。使用必要的算法将信息进行加解密,实现信息的保护。 .设计内容和要求 使用混沌序列图像加密技术对图像进行处理使加密后的图像 使用matlab将图像信息隐藏,实现信息加密。 三.设计思路 1. 基于混沌的图像置乱加密算法 本文提出的基于混沌的图像置乱加密算法示意图如图1所示 加密算法如下:首先,数字图像B大小为MX N( M是图像B的行像素数,N是图像B的列像素数),将A的第j行连接到j-1行后面(j=2,3, A,M,形成长度为MX N的序列C。其次,用Logistic混沌映射产生一个长度为的混沌序列{k1,k2,A,kMX N},并构造等差序列D: {1,2,3, A,MX N-1,MX N}。再次,将所

产生的混沌序列{kl, k2. A, kMX N}的M N个值由小到大排序,形成有序序列{k1', k2'. A' kMX N' },确定序列{k1, k2, A, kMX N}中的每个ki在有序序列{k1', k2', A , kMX N' }中的编号,形成置换地址集合 {t1 , t2 , A, tM X N},其中ti为集合{1 , 2, A, MX N}中的一个;按置换地址集合{t1 , t2 , A, tM X N}对序列C进行置换,将其第i个像素置换至第ti列, i=1 , 2, A, MX N,得到C'。将等差序列D做相同置换,得到D'。 最后,B'是一个MX N 的矩阵,B' (i ,j)=C ' ((i-1) X M+j),其中i=1 , 2, A, M j=i=1 , 2, A, N,则B'就是加密后的图像文件。 解密算法与加密算法相似,不同之处在于第3步中,以序列C'代替随机序列{k1, k2, A, kMX N},即可实现图像的解密。 2. 用MATLAB勺实现基于混沌的图像置乱加密算法 本文借助MATLAB^件平台,使用MATLAB!供的文本编辑器进行编程实现加密功能。根据前面加密的思路,把加密算法的编程分为三个主要模块:首先,构造一个与原图a等高等宽的矩阵b加在图像矩阵a后面形成复合矩阵c: b=zeros(m1, n1); ifm1>=n1 ifm1> n1 fore=1: n1 b=(e,e); end else fore=1: n1 end fore=1:( n1-m1) b((m1+e-1),e)=m1+e-1 end end c=zeros(m1*2, n1); c=zeros(m1*2,1); c=[b,a]; 然后,用Logitic映射产生混沌序列:

混沌映射(序列)matlab算法“小全”:Logistic、Henon、帐篷、kent(含混沌二值图像生成函数)

混沌映射(序列)matlab 算法“小全”:Logistic 、Henon 、帐篷、kent (含 混沌二值图像生成函数) 1.Logistic (罗切斯特)映射 变换核: ) 1(1n n n x ax x ?=+绘图程序: n=64; key=0.512; an=linspace(3.1,3.99,400); hold on;box on;axis([min(an),max(an),-1,2]);N=n^2; xn=zeros(1,N);for a=an; x=key;for k=1:20; x=a*x*(1-x);%产生公式end; for k=1:N; x=a*x*(1-x);xn(k)=x; b(k,1)=x;%一维矩阵记录迭代结果end; plot(a*ones(1,N),xn,'k.','markersize',1);end; %figure;%imhist(b) 实用混沌加密函数: function ichao_ans=ichaos_logistic(varargin)%logistic 序列生成算法%函数名: %logistic 混沌序列生成函数%参数:%(n ,key ),n 为矩阵阶数,key 为迭代初始值。%(n ),n 为矩阵阶数,key=0.600。 %()或(n ,key ,...),n=64,key=0.600。switch nargin; case 1; n=varargin{1};key=0.600;case 2; n=varargin{1}; key=varargin{2};otherwise key=0.600;n=64;end N=n^2; xn=zeros(1,N);a=4; x=key;for k=1:20; x=a*x*(1-x);%产生公式end; for k=1:N; x=a*x*(1-x); xn(k)=x;%一维矩阵记录迭代结果end;c=reshape(xn,n,n);%一维矩阵转换二维矩阵d=zeros(n,n); %二维混沌矩阵调制for a1=1:n; for a2=1:n; if c(a1,a2)>=0.5;d(a1,a2)=1;else d(a1,a2)=0;end;end;end; %figure;title('logistic 映射');%imshow(d);ichao_ans=d;

混沌时间序列分析

第四章
混沌时间序列分析
一.相空间重建 二.相关维数 三.最优延迟时间 四. Lyapunov特征指数 五.应用举例
一、相空间重建
1

2

Embedding
Φ
A M System with dynamics f has an attractor A ? M
Z ?d
A is transformed into a set Z ? ?d such that the all the important geometric characteristics of A will be preserved. Lets also assume Φ is invertible.
Ruelle(1981),法国科学家
对m维动力系统:
? x1 = f1 ( x1 , x 2 , .... x m ) ? ? x 2 = f 2 ( x1 , x 2 , ... x m ) ? ? ................... ? ? x m = f m ( x1 , x 2 , ... x m )
( x1 , x2 ,.....xm )
是状态空间坐标
x(t ), x(t + τ), x(t + 2τ),......., x [t + (m ? 1)τ]
3

Phase Space Reconstruction
一个单变量时间序列:x0 , x1 , x2 ,...
?τ = 1.?t ? ?n = 3 ( x0 , x1 , x2 ) ( x1 , x2 , x3 ) ( x2 , x3 , x4 ) ............... ( xn ?1 , xn , xn +1 )
4

混沌序列产生及其在图像

混沌序列产生及其在图像、视频加密中 的应用研究 左建政 【摘要】:伴随着科技的不断进步,信息技术已经渗透进人们生活的各个方面,信息安全问题已经引起越来越多的关注,因此如何加强信息的保密性就成为了一个急需解决的难题。混沌信号所固有的非周期, 宽频谱和对初始值非常敏感等突出特征,使得其在信息加密中有着良好的应用前景。而要想提高混沌在信息加密中的保密性以及实用性,需要做的工作主要是以下两个方面:一方面,提高混沌自身的性能;另一方面,提高加密系统的性能。本文以此为背景,分别从上述两方面着手进行研究,取得了一系列新的结果。本文的主要工作和创新体现在以下几个方面: (1)系统地研究了各种混沌序列的产生方式。混沌序列的产生是混沌应用到信息加密的前提也是一项关键技术。从最初的模拟电路到现在数字系统,在不断地进步,当然也会产生一系列新的问题。本文总结以前所做的研究,系统地介绍了各种混沌序列的产生方式,包括模拟电路、FPGA、LabVIEW、DSP等。通 过分析和比较,为以后的继续深入研究发挥重要的参考作用。 (2)设计了一个新的混沌系统。从混沌信息加密工程的观点考虑,构造一个庞大的混沌函数库是必要的。为了设计性能良好的混沌系统,在研究Sprott系统的基础上,构造了一个新的混沌系统。对构造的混沌系统进行了动力学分析,其中包括分岔特性以及Ly apunov指数等特性分析,同时设计了相应的模拟电路,通过电路实验获得了与 仿真相符的混沌吸引子,验证了混沌系统的特性。 (3)设计了一个新的分数阶混沌系统。并且介绍了两种分数阶微积分的分析方法,时域求解法对其进行数值仿真,时频域转换法对其进行电路仿真。数值仿真结果表明系统存在混沌的最低阶数是2.31。设计了该系统的分数阶混沌振荡电路,电路仿真与数值仿真结果相符,证实了该分数阶混沌振荡电路的可行性。分数阶混沌系统更能反映系统呈现的工程物理现象,一个确定的分数阶混沌系统随着其阶数即分数值的不同而呈现不同的状态,因而这种系统具有更大的密钥空间,不容易被复制。 (4)首次利用数字系统产生分数阶混沌序列。对分数阶混沌系统的广泛研究开始于最近十几年,目前的研究大多处于理论阶段。本文通过利用LabVIEW等数字系统,获得了真实的分数阶混沌序列。通过LabVIEW与MATLAB的接口,首先利用MATLAB编程计算混沌状态方程,然后再在LABVIEW平台设计前面板,调节参数,最后通过数据采集卡即可实现分数阶混沌序列输出。数字系统可以做到参数相同,并且精度可控,容易控制。 (5)借助DSP平台,利用分数阶混沌序列,成功实现了图像、视频的实时加密、解密。利用前面得到的分数阶混沌序列作为图像、视频加密的密钥流,对图像、视频中每一帧图像的像素点进行异或加密。分数阶混沌系统密钥空间大,因此安全性高,需要考虑的主要就是实时性的问题,而借助于运算速度非常快的DSP芯片,能很好地满足实时性的要求。这种加密方式突破了传统软件加密时,加密速度慢、容易被破译的缺点,具有广阔的应用前景

基于MATLAB的混沌序列图像加密算法的研究的开题报告

吉林农业大学 本科毕业设计开题报告

课题名称:基于MATLAB的混沌序列图像加密算法的研究 学院(系):信息技术学院 年级专业:2009级电子信息科学与技术2班 学生姓名:XX 指导教师:刘媛媛 完成日期:2013年2月27日 目录 一、设计目的及意义 (3) 二、研究现状 (3) 三、设计内容 (3) 四、开发环境 (3) 五、分析设计 (3) 1、设计要求 (3) 2、设计原理 (3) 3、涉及到的程序代码 (4) 4、主要思想 (6) 六、结果及分析 (6)

1、运行示例 (6) 2、结果评估 (8) 七、参考文献 (9) 八、研究工作进度 (10) 一、设计目的及意义 熟练使用matlab运用matlab进行编程,使用matlab语言进行数据的隐藏加密,确保数字图像信息的安全,混沌序列具有容易生成,对初始条件和混沌参数敏感等特点,近年来在图像加密领域得到了广泛的应用。使用必要的算法将信息进行加解密,实现信息的保护。 二、研究现状 随着Internet技术与多媒体技术的飞速发展,数字化信息可以以不同的形式在网络上方便、快捷地传输。多媒体通信逐渐成为人们之间信息交流的重要手段。人们通过网络交流各种信息,进行网上贸易等。因此,信息的安全与保密显得越来越重要。信息的安全与保密不仅与国家的政治、军事和外交等有重大的关系,而且与国家的经济、商务活动以及个人都有极大的关系。 随着信息化社会的到来,数字信息与网络已成为人们生活中的重要组成部分,他们给我们带来方便的同时,也给我们带来了隐患:敏感信息可能轻易地被窃取、篡改、非法复制和传播等。因此信息安全已成为人们关心的焦点,也是当今的研究热点和难点。 多媒体数据,尤其是图像,比传统的文字蕴涵更大的信息量,因而成为人类社会在信息利用方面的重要手段。因此针对多媒体信息安全保护技术的研究也显得尤为重要,多媒体信息安全是集数学、密码学、信息论、概率论、计算复杂度理论和计算机网络以及其它计算机应用技术于一体的多学科交叉的研究课题。 三、设计内容 使用混沌序列图像加密技术对图像进行处理使加密后的图像 四、开发环境 MATLAB? & Simulink? Release 2010a windows7环境

混沌时间序列处理之第一步:相空间重构方法综述

第1章 相空间重构 第1章相空间重构 (1) 1.1 引言 (2) 1.2 延迟时间τ的确定 (3) 1.1.1自相关函数法 (4) 1.1.2平均位移法 (4) 1.1.3复自相关法 (5) 1.1.4互信息法 (6) 1.2嵌入维数m的确定 (7) 1.2.1几何不变量法 (7) 1.2.2虚假最近邻点法 (8) 1.2.2伪最近邻点的改进方法-Cao方法 (9) 1.3同时确定嵌入维和延迟时间 (10) 1.3.1时间窗长度 (10) 1.3.2 C-C方法 (10) 1.3.3 改进的C-C方法 (12) 1.3.4微分熵比方法 (14) 1.4非线性建模与相空间重构 (14) 1.5海杂波的相空间重构 (15) 1.6本章小结 (16) 1.7 后记 (16) 参考文献 (17)

1.1 引言 一般时间序列主要是在时间域或变换域中进行研究,而在混沌时间序列处理中,无 论是混沌不变量的计算、混沌模型的建立和预测都是在相空间中进行,因此相空间重构 是混沌时间序列处理中非常重要的第一步。 为了从时间序列中提取更多有用信息,1980年Packard 等人提出了用时间序列重构 相空间的两种方法:导数重构法和坐标延迟重构法[1]。从原理上讲,导数重构和坐标延 迟重构都可以用来进行相空间重构,但就实际应用而言,由于我们通常不知道混沌时间 序列的任何先验信息,而且从数值计算的角度看,数值微分是一个对误差很敏感的计算 问题,因此混沌时间序列的相空间重构普遍采用坐标延迟的相空间重构方法[2]。坐标延 迟法的本质是通过一维时间序列{()}x n 的不同时间延迟来构造m 维相空间矢量: {(),(),,((1))}x i x i x i m ττ=++?x(i) (1.1) 1981年Takens 等提出嵌入定理:对于无限长、无噪声的d 维混沌吸引子的标量时 间序列{()}x n ,总可以在拓扑不变的意义上找到一个m 维的嵌入相空间,只要维数 21m d ≥+[3]。Takens 定理保证了我们可以从一维混沌时间序列中重构一个与原动力系 统在拓扑意义下等价的相空间,混沌时间序列的判定、分析与预测是在这个重构的相空 间中进行的,因此相空间的重构是混沌时间序列研究的关键[2]。 1985年Grassberger 和Procaccia 基于坐标延迟法,提出了关联积分的概念和计算公 式,该方法适合从实际时间序列来计算混沌吸引子的维数,被称作G-P 算法[4]。G-P 算 法是混沌时间序列研究中的一个重要突破,从此对混沌时间序列的研究不仅仅局限于已 知的混沌系统,而且也扩展到实测混沌时间序列,从而为混沌时间序列的研究进入实际 应用开辟了一条道路[2]。 坐标延迟相空间重构技术有两个关键参数:即嵌入维m 和时间延迟τ的确定。在 Takens 定理中,对于理想的无限长和无噪声的一维时间序列,嵌入维m 和时间延迟τ可 以取任意值,但实际应用最后等时间序列都是含有噪声的有限长序列,嵌入维数和时间 延迟是不能任意取值,否则会严重影响重构的相空间质量。 有关时间延迟与嵌入维的选取方法,目前主要有两种观点。一种观点认为两者是互

基于混沌序列的密钥生成新方法

第36卷第12期2006年12月数学的实践与认识M A TH EM A T I CS I N PRA CT I CE AND TH EO R Y V o l 136 N o 112  D ecem.,2006  基于混沌序列的密钥生成新方法杨文安, 袁德明 (徐州建筑职业技术学院计算机技术工程系,江苏徐州 221008) 摘要: 设计了一种从混沌序列生成密钥的新方法.其基本原理是从混沌序列依次取若干数据构成实值序列,将其按非线性规则映射成二值序列,再用实值序列和任意指定序列分别置乱这个二值序列,被置乱后的二值序列即为所生成密钥.实验表明,在混沌密码体制研究中,这种密钥较一般序列密钥更具有独立性、均匀性和不可预测性. 关键词: 混沌序列;密码体制;密钥 1 引 言 收稿日期:2006209216 基金项目:徐州建筑职业技术学院自然科学基金(JYA 30409) 随着网络技术发展,网络安全问题成为当今社会的焦点.人们也在不断寻求解决网络安全问题的有效方法[1].混沌密码体制[2,3]就是适应网络安全的需要应运而生的. 混沌是确定性系统中具有理论意义上的完全随机运动,而不是通常所用的伪随机[4]运动.混沌系统具有确定性、有界性、初值敏感性、拓朴传递性与混合性、宽带性、快速衰退的自相关性和长期不可预测性[5]等.它所具有的基本特性恰好满足了信息保密通信和密码学的基本要求(即Shannon 提出的密码系统设计的基本原则:扩散原则和混淆原则,以及加 解密过程中的可靠性).在著名的L ogistic 混沌映射的基础上,作者设计了一种新型密码体制.该密码体制利用非线性变换从双混沌序列中产生两个二值序列,并对其进行置乱得到两组密钥,由这两组密钥构成密钥矩阵作用于明 密文信息实现信息的加 解密操作,进而达到信息保密的目的.有关新型密码体制的详细内容将另文介绍,本文重点介绍利用非线性变换从混沌序列中生成一组密钥的方法.利用文中方法生成的密钥较一般序列密钥更具有独立性、均匀性和不可预测性. 2 L og istic 混沌映射 美国普林斯顿大学的生态学家R .M ay 在研究昆虫群体繁殖规律时提出的L ogistic 混沌模型的离散形式为: x i +1=Λx i (1-x i ), 1<Λ<4, 0

Logistic混沌映射

Logistic混沌映射 引言 如果一个系统的演变过程对初始的状态十分敏感,就把这个系统称为是混沌系统。 在1972年12月29日,美国麻省理工教授、混沌学开创人之一E.N.洛仑兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个龙卷风,并由此提出了天气的不可准确预报性。至此以后,人们对于混沌学研究的兴趣十分浓厚,今天,伴随着计算机等技术的飞速进步,混沌学已发展成为一门影响深远、发展迅速的前沿科学。 混沌来自于非线性动力系统,而动力系统又描述的是任意随时间变化的过程,这个过程是确定性的、类似随机的、非周期的、具有收敛性的,并且对于初始值有极敏感的依赖性。而这些特性正符合序列密码的要求。1989年Robert Matthews 在Logistic映射的变形基础上给出了用于加密的伪随机数序列生成函数,其后混沌密码学及混沌密码分析等便相继发展起来。混沌流密码系统的设计主要采用以下几种混沌映射:一维Logistic映射、二维He’non映射、三维Lorenz映射、逐段线性混沌映射、逐段非线性混沌映射等,在本文中,我们主要探讨一维Logistic映射的一些特性。 Logistic映射分析 一维Logistic映射从数学形式上来看是一个非常简单的混沌映射,早在20世纪50年代,有好几位生态学家就利用过这个简单的差分方程,来描述种群的变化。此系统具有极其复杂的动力学行为,在保密通信领域的应用十分广泛,其数学表达公式如下: Xn+1=Xn×μ×(1-Xn) μ∈[0,4] X∈[0,1] 其中μ∈[0,4]被称为Logistic参数。研究表明,当X∈[0,1] 时,Logistic 映射工作处于混沌状态,也就是说,有初始条件X0在Logistic映射作用下产生的序列是非周期的、不收敛的,而在此范围之外,生成的序列必将收敛于某一个特定的值。如下图所示:

混沌时间序列分析

第四章 混沌时间序列分析
一.相空间重建 二.相关维数 三.最优延迟时间 四. Lyapunov特征指数 五.应用举例
一、相空间重建
1

2

Embedding
Φ
A
Z
M
?d
System with dynamics f has an attractor A ? M
A is transformed into a set Z ? ?d such that the all the important geometric characteristics of A will be preserved.
Lets also assume Φ is invertible.
Ruelle(1981),法国科学家
对m维动力系统:
JG
? ?
JxJ1G
=
f1 ( x1 , x 2 ,....x m )
? ?
x
2
=
f 2 ( x1 , x 2 ,...x m )
? ? ?
.J. x
J.G.
m
.
.. =
.
.
. f
..
m
.. (
... x1
. ,
. x
2
, ...x m
)
(x1, x2 ,.....xm ) 是状态空间坐标
x(t), x(t + τ), x(t + 2τ),......., x[t + (m ?1)τ]
3

相关文档
相关文档 最新文档