文档库 最新最全的文档下载
当前位置:文档库 › 汽车空调电磁离合器设计

汽车空调电磁离合器设计

汽车空调电磁离合器设计
汽车空调电磁离合器设计

浅析汽车空调压缩机电磁离合器的设计

来源:未知本站编辑:中华论文联盟日期: 2011-08-16 23:34 点击数:257

一、汽车空调压缩机电磁离合器的工作原理

离合器线圈通电后在线圈内产生了电磁力,在电磁力的作用下,驱动盘被吸合到压缩机皮带轮的端面上,由于压缩机皮带轮是由汽车发动机驱动,在电磁吸引力的作用下,皮带轮结合面和驱动盘之间产生了强大的摩擦力,并且带动驱动盘旋转,由驱动盘带动压缩机工作。反之,线圈断电,压缩机停止工作。

一、电磁离合器的磁通回路

为了使电磁离合器的驱动盘和皮带轮具有足够的摩擦力,必须是在电磁离合器的驱动盘和皮带轮之间产生较强的磁场。线圈通电后,由铁磁物质的皮带轮、驱动盘、线圈壳体和气隙所形成的磁通的闭合路径称为磁路。该磁场的磁场强度H沿着磁力线形成闭合回路,其方向为磁力线上各个点上的切线方向。

4极电磁离合器的磁路如图1所示。6极电磁离合器的磁路如图2所示。

从图l图2的结构图中我们可以看出离合器线圈是放在U型线圈壳体里面,并且用耐热树脂密封在壳体里面的,因此泄漏到空气中的漏磁通很小,可以忽略不计。另外离合器线圈的电力是由汽车蓄电池供应,可以认为是恒稳电流,因此由恒稳电流在铁芯中产生的磁场是稳定的。

三、电磁离合器的电磁吸引力的计算

为便于分析可以由图1、图2电磁离合器线圈部分简化成为由线圈+铁芯组成的一个简单的电磁铁。当线圈中通以电流后,大部分磁通线沿铁芯、衔铁和工作气隙构成闭合回路,这部分磁路称为主磁路,还有一小部分磁通线没有经过工作气隙和衔铁,而经过空气自成回路,这部分磁通称为漏磁通。主磁通使衔铁磁化,磁化后衔铁的磁极与铁芯的磁极正好相反,相互吸引,产生吸力。但是漏磁通部通过衔铁,不会使它磁化,因此也不会产生吸力。在一般的情况下,我们总要尽量减少漏磁通。

电磁离合器在非工作状态下,驱动盘和皮带轮端面间是有间隙的,这个间隙一般为0.3-0.55mm之间。

作用在驱动盘端面上的电磁吸引力;F=B S/u牛

式中:B-线圈内部磁感应强度韦伯/平方米

S-气隙处铁芯的截面积平方米

u一空气中的磁导率

线圈内产生的磁感应强度B与导磁物质中产生的磁场强度H之间的关系式:

B=HU式中;H-磁场强度

μ——铁芯的磁导率

H=NI/L式中:H-磁场强度A/M

N-线圈匝数

I-电流强度A

L-铁芯平均长度M

上式的具体计算可由电磁离合器的具体结构尺寸和选用材料来进行。

四、电磁离合器传递扭矩的计算

应用电磁离合器的电磁吸引力的计算可以计算出电磁离合器传递的扭矩。假设驱动盘和皮带轮之间的摩擦系数为6(6的数值,在机械加工工艺达到稳定的量产条件后,可以通过实验室实验获得)。

T=FR 6式中;T-传递扭矩N.M

F--电磁吸引力N

R--摩擦面的有效平均半径M

电磁吸引力的大小还和驱动盘的弹性体的材料的不同而不同,当材料和工艺条件确定后,具体数值可以通过实验获得。五、在进行零部件结构设计时需要注意的几个问题

1.电磁离合器皮带轮轴承

皮带轮轴承的工作环境是非常恶劣的,既要承受冬季零下-40℃的严寒,又要承受夏季+40℃的酷暑,又要承受4000-6500r/min 的连续运转和6500-8000r/min的短时间运转,一般轴承很难胜任。因此在轴承的选择上一定要慎重。

2.线圈

由H级耐高温高强度的圆漆包线制成,需承受1 50℃连续高温。线圈的温升必须满足下式;T= (R-R)(234.5+T)/R<85℃ 式中;R一室温电阻 R--115℃电阻

3.磁路材料

构成磁路的皮带轮、线圈壳体、驱动盘必须用高导磁材料制成。现在的线圈壳体由08AL或10钢制成,皮带轮和驱动盘由10-20钢制成。计算表明,在磁路的总磁压降中,发生在皮带轮、驱动盘、线圈壳体中的磁压降只占20%,其余80%损耗在气隙中。4.隔磁环和磁极

由于前盖是非磁性材料(铝合金),磁力线不可能穿入,所以磁力线只能如图1、图2所示,穿过最小的空气气隙形成一条封闭回路。

现在使用的电磁离合器有4级和6级两种,4级离合器有4对磁极,6级离合器有6对磁极,级数越多,电磁吸引力越大。但是级数多离合器的结构就复杂,有时还受到尺寸的影响不能把离合器做的很大。因此目前电磁离合器多采用4对磁极。

5.气隙

电磁离合器上对传递扭矩有影响的气隙一共有三个,驱动盘和皮带轮端面间的气隙、线圈外壳和皮带轮上的放置线圈外壳的槽两边的间隙。在进行电磁离合器设计时既要尽量减小气隙,还要考虑到结构上的强度要求。在满足结构强度的要求的情况下还要考虑加工工艺的经济合理。因此在进行电磁离合器的设计时需要权衡好这三方面的关系。经过多年的工作实践以及进行的大量试验得出;驱动盘和皮带轮在断电状态下的间隙在0.30-0.50mm,线圈外壳和皮带轮上的放置线圈外壳的槽两边的间隙在0.40-0.50mm,就可以满足电磁离合器的使用要求。

气隙的大小是影响承载能力的重要因素,因此电磁离合器的传递扭矩的公式可以写成下式:T=0.4NSB 6 R N.M 式中:N-磁极对数

S-驱动盘磁极面积

B--磁感应强度

8-摩擦系数

R-驱动盘平均直径

6.在进行电磁离合器设计的时候尽量做到各个磁极的截面积相等,以减少漏磁通的产生。

7.驱动盘和皮带轮端面的平面度

众所周知,电磁离合器是靠摩擦力来传递扭矩的,因此皮带轮端面和驱动盘端面是否良好的贴合,对传递扭矩具有决定性的意义。

笔者在车间现场做过多种不同组合的平面度状况对比试验,根据实验皮带轮、驱动盘端面的平面度误差小于0.05mm(只许凹)时可以满足传递扭矩的使用要求。

六、为了保证驱动盘平面度,可以采取如下措施

1.在设计上,应该加大驱动盘的厚度,但是在加大厚度的同时必须考虑到隔磁环的加工。由于隔磁环尺寸较小,在设计和制造加工隔磁环槽冲模,以及冲制隔磁环槽时的工作难度都会同时加大,因此要全面考虑增加厚度的加工工艺性。

2.在进行驱动盘和弹性元件的铆合时,一定要注意不能使驱动盘变形,设计好铆合工装,减少铆合力对平面度的影响。

3.生产、搬运。装配、维修的过程中驱动盘因外力而引起的变形,由于驱动盘的强度较小,因此不良的使用和维修很容易引起驱动盘变形而大大降低承载能力。

七、结论

应用磁路理论可以沿着电磁离合器磁力线的轨迹,校核磁力线所通过的各个截面的面积是否为等截面,如果出现不等截面就可能出现漏磁现象。

通过对电磁离合器的电磁力和电磁扭矩的计算,为分析电磁离合器在制造使用中发生的打滑和降低成本提供了理论根据。

电磁离合器传递扭矩的大小与线圈的匝数、电流强度、铁磁材料的材质、有效摩擦半径、结合面的摩擦系数以及弹性体的弹性力有关。

本文中对电磁离合器在设计和制造中需要注意的几个方面也做了介绍,这些都是在实际工作中的经验,这些经验受笔者公司的设计能力、制造设备、实验条件的限制,可能有欠缺的地方,请读者在应用这些经验时要根据自己公司的实际情况进行修正。

汽车空调系统

毕业论文 学院名称:烟台职业学院系别:汽车工程系 专业:汽车电子技术 论题:汽车空调系统 姓名:闫茂更 班级:08汽车电子 学号:2008104003 指导老师:孙春燕

汽车空调系统 摘要:其实汽车空调和我们熟悉的家用空调制冷原理是一样的。都是利用R12或是R134a压缩释放的瞬间体积急剧膨胀就要吸收大量热能的原理制冷。(由于R12对大气臭氧层的破坏,出于环保的要求发达国家从1996年开始改用R134a 做制冷剂汽车空调的构造和家用的分体空调类似) 【关键词】空调系统工作原理特点日常维护 汽车空调的组成 汽车空调一般主要由压缩机(compressor)、电控离合器、冷凝器(condenser)、蒸发器(evaporator)、膨胀阀(expansion valve)、贮液干燥器(receiver drier)、管道(hoses)、冷凝风扇、真空电磁阀(vacuum solenoid)、怠速器和控制系统等组成。汽车空调分高压管路和低压管路。高压侧包括压缩机输出侧、高压管路、冷凝器、贮液干燥器和液体管路;低压侧包括蒸发器、积累器、回气管路、压缩机输入侧和压缩机机油池。 贮液干燥器——实际上是一个贮存制冷剂及吸收制冷剂水分、杂质的装置。一方面,它相当于汽车的油箱,为泄露制冷剂多出的空间补充制冷剂。另一方面,它又像空气滤清器那样,过滤掉制冷剂中掺杂的杂质。贮液干燥器中还装有一定的硅胶物质,起到吸收水分的作用。

冷凝器和蒸发器——它们虽然叫法不一样,但结构类似。它们都是在一排弯绕的管道上布满散热用的金属薄片,以此实现外界空气与管道内物质的热交换的装置。冷凝器的冷凝指的是其管道内的制冷剂散热从气态凝成液态。其原理与发动机的散热水箱相近(区别只在于水箱的水一直是液态而已),所以它经常被安装在车头,与水箱一起,共同享受来自前方的习习凉风。总之冷凝器是哪里凉快哪里去,以便其散热冷凝。蒸发器与冷凝器正好相反,它是制冷剂由液态变成气态(即蒸发)吸收热量的场所。 压缩机——是空调制冷系统的心脏,它是一种使制冷剂在系统内 循环的动力源。 管道——由于要注入一定压力的制冷剂,所以必须采用金属管道。特别是从压缩机到冷凝器到制冷剂瓶到膨胀阀这段,由于属系统的高压段,所以比其它管道有更高的耐高压要求。 压缩机——顾名思义,压缩机就是起压缩的作用,它的作用是使制冷剂完成从气态到液态的转变过程,达到制冷剂散热凝露的目的。同时在整个空调系统,压缩机还是管路内介质运转的压力源,没有它,系统不仅不制冷而且还失去了运行的动力。 压缩机的分类: 活塞式:活塞式压缩机的结构酷似发动机,有曲轴、连杆、活塞、气缸等,但因为它并不产生能量,所以喷油咀、火花塞等就没有了。

汽车空调-电磁离合器

电磁离合器 定义:在电磁力作用下具有离合功能的离合器。 电磁离合器靠线圈的通断电来控制离合器的接合与分离。电磁离合器可分为:干式单片电磁离合器,干式多片电磁离合器,湿式多片电磁离合器,磁粉离合器,转差式电磁离合器等。电磁离合器工作方式又可分为:通电结合和断电结合。 干式单片电磁离合器:线圈通电时产生磁力吸合“衔铁”片,离合器处于接合状态;线圈断电时“衔铁”弹回,离合器处于分离状态。 干式多片湿式多片电磁离合器:原理同上,另外增加几个摩擦付,同等体积转矩比干式单片电磁离合器大,湿式多片电磁离合器工作时必须有油液冷却和润滑。 磁粉离合器:在主动与从动件之间放置磁粉,不通电时磁粉处于松散状态,通电时磁粉结合,主动件与从动件同时转动。优点:可通过调节电流来调节转矩,允许较大滑差。缺点:较大滑差时温升较大,相对价格高 转差式电磁离合器:离合器工作时,主、从部分必须存在某一转速差才有转矩传递。转矩大小取决于磁场强度和转速差。励磁电流保持不变,转速随转矩增加而剧烈下降;转矩保持不变,励磁电流减少,转速减少得更加严重。 转差式电磁离合器由于主、从动部件间无任何机械连接,无磨损消耗,无磁粉泄漏,无冲击,调整励磁电流可以改变转速,作无级变速器使用,这是它的优点。该离合器的主要缺点是转子中的涡流会产生热量,该热量与转速差成正比。低速运转时的效率很低,效率值为主、从动轴的转速比,即η=n2/n1

适用于高频动作的机械传动系统,可在主动部分运转的情况下,使从动部分与主动部分结合 或分离。 主动件与从动件之间处于分离状态时,主动件转动,从动件静止;主动件与从动件之间处于 接合状态,主动间带去从动件转动。 广泛适用于机床、包装、印刷、纺织、轻工、及办公设备中。 电磁离合器一般用于环境温度-20—50%,湿度小于85%,无爆炸危险的介质中,其线圈电压波动不超过额定电压的±5% 编辑本段电磁离合器的特点 1、高速响应:因为是干式类所以扭力的传达很快,可以达到便捷的动作。 2、耐久性强:散热情况良好,而且使用了高级的材料,即使是高频率,高能量的使用,也十分耐用. 3、组装维护容易:属于滚珠轴承内藏的磁场线圈静止形,所以不需要将中蕊取出也不必利用碳刷,使用简单。 4、动作确实:使用板状弹片,虽有强烈震动亦不会产生松动,耐久性佳。 编辑本段使用注意事项 ●干式电磁离合器使用时禁止加入油脂,否则将导致扭矩下降。 ●电磁离合器安装前必须清洗干净,去除防锈脂及杂物。 ●电磁离合器可同轴安装,也可以对轴安装,轴向必须固定,主动部分与从动部分均不允许有轴向窜动,对轴安装时,主动部份与从动部份轴之间同轴度应不大于0.lmm。 ●湿式电磁离合器工作时,必须在摩擦片间加润滑油,润滑方式采用(1)分浇油润滑;(2)油浴润滑,其浸入油中的部分约为离合器体积的5倍;(3)轴心供油润滑,在高速和高频动作时应采用轴心供油方法。

电动汽车拆解3——空调压缩机

空调压缩机:不断推进电动化 三电(SANDEN)从1971年开始生产车载空调压缩机。如今已在欧洲、北美和亚洲拥有生产基地,掌握着全球25%的份额。 受全球环保规定和高燃效技术发展的影响,在汽车行业中,发动机的小型化和HEV(混合动力车)·EV(电动汽车)化的速度正在加快。 关于应对环保规定的办法,除了提高发动机效率、添设增压器来缩小发动机体积外,HEV还可尽量延长电机驱动时间,EV可在轻量化的同时配备高性能电池等。具体做法因汽车厂商而异。 备有3类压缩机 本公司的空调压缩机大致分为三类。 面向需要提高现有内燃机效率、实现小型化的汽车厂商,供应的是借助传统发动机皮带传动类型的压缩机。面向以发动机为主体、电机为辅的车辆(Mild- HEV)供应的是皮带传动和电机驱动兼顾的混合式压缩机。对于以电机为主体(Strong-HEV、EV)的车辆,则供应电动压缩机。(图1)。 图1:空调压缩机的类型包括使用发动机驱动的类型,同时使用发动机和 电机驱动的混合动力型,单纯使用电机驱动的类型3种。 本公司的电动压缩机开发始于1986年。开发伊始虽然也经历过摸索阶段,但是在向推进车辆电动化的美国汽车厂商供货的过程中,产品化速度非常之快。 1990年,电动车“EVS-10”在美国投入使用。当时就是本公司供应的电动压缩机,但产量还非常少,在成本、充电电池、基础设施的限制下未能普及。

当时的电动压缩机需要另配逆变器,成本昂贵,空间利用率也比较低。之后,本公司在电动压缩机与逆变器的一体化、压缩机构的高效化及小型轻量化等方面推进了开发。 对于2005年上市的本田“思域混合动力”车型,本公司以此前开发的电动压缩机为基础,又开发出了皮带传动与电机驱动兼顾的混合式压缩机(图2)。这种混合式压缩机能够在车内温度高、车速慢等空调负荷较高的情况下同时使用皮带传动和电机驱动,使制冷能力达到最大(图3)。 图2:本田2005年9月上市的“思域混合动力” (a)车辆。(b)混合 式压缩机。同时支持发动机驱动与电机驱动。 图3:混合式压缩机的驱动分为三种(a)发动机运转带动压缩机工作时。 (b)空调专用电机运转带动压缩机工作时。(c)发动机用与电机用压缩 机同时运转时。 而在空调负荷较低时,则可以区别使用皮带传动和电机驱动,在车辆停止时单独使用电机驱动,以最低限度的制冷性能抑制车内温度的上升。 最新型电动压缩机 本公司2009年开始向德国戴姆勒(Daimler)的高级混合动力车“S400”供应电动压缩机(图4)。S400的要求非常高,面临低电压驱动等众多难题。但戴姆

汽车空调用平行流冷凝器标准

Q 江阴亚成制冷设备有限公司企业标准 Q/320281AKK02-2007 汽车空调用平行流冷凝器 2007-12-17发布2007-12-30实施江阴亚成制冷设备有限公司发布

前言 江阴亚成制冷设备有限公司生产的汽车空调用平行流冷凝器,目前尚无国家标准和行业标准,为保证产品质量,特制定企业标准Q/32028AKK02-2007《汽车空调用平行流冷凝器》作为企业组织生产、监督检查、交货验收的依据。 本标准的编写格式符合GB/T 1.1-2000和GB/T 1.2-2002的规定。 本标准的附录A、附录B、附录C为规范性附录。 本标准由江阴亚成制冷设备有限公司负责起草。 本标准由江阴亚成制冷设备有限公司负责批准。 本标准主要起草人:马恒南何军杰郭胜

汽车空调用平行流冷凝器 1 范围 本标准规定了汽车空调用铝制平行流冷凝器的产品分类要求、试验方法、检验规则、标志、包装、贮存等。 本标准适用于本公司生产的各种规格的汽车空调用铝制平行流冷凝器(以下简称冷凝器)。 2 规范性引用文件 下列文件所包含的条款,通过在本文件中引用而构成本文件的条款。凡是注日期的引用文件,其随后所 有的修改单(不包括勘误的内容)或修订版均不适用于本文件,然而,鼓励根据本文件达成协议的各方研 究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本文件。 QC/T 657-2000 汽车空调制冷装置试验方法 JIS D 1601-1995 汽车零部件振动试验方法 JIS Z 2371-2000 盐雾试验试验方法 3 术语 3.1冷凝器标准方位 扁管沿水平方向、产品迎风面垂直于水平的位置。冷凝器的名义换热量是在这一位置上确立和测量。 3.2 系列产品 冷凝器所用的扁管材料、结构、尺寸相同,且翅片的材料、结构、尺寸相同的产品。 4产品分类 4.1 产品的型式 产品的型式为铝制平行流式,由挤制铝扁管、集流管和翅片钎焊而成。 4.2型号 4.2.1型号表示法 改型序号,用大写字母、、 表示。 顺序号。用阿拉伯数字1、2、3、 等表示。 扁管厚度为2的可以不标。 翅片高度。 扁管宽度。 平行流冷凝器代号。 4.2.2标注示例 产品扁管宽度为18mm,翅片高度为8 mm,扁管厚度为2 mm,顺序号为1,原设计的冷凝器,可标注 为PL18×8-1。Q/320281AKK02-2007 产品扁管宽度为17mm,翅片高度为9.1 mm,扁管厚度为1.9mm,顺序号为1,第二次改进设计的冷 凝器,可标注为PL17×9.1×1.9-1B。Q/320281AKK02-2007

汽车空调压缩机常见故障分析诊断

依维柯空调压缩机常见故障分析 现装配于依维柯(IVECO)柴油汽车的空调压缩机,在使用过程中经常发生电磁线圈、轴承及离合器钢片烧坏的故障。 故障原因 根据长期修理这种压缩机的经验,发现主要有以下3种原因: (1)由于空调压缩机控制线路的插头产生松动,造成接触不良,使供给电磁线圈的电压下降、电流不稳,导致空调压缩机的电磁离合器有时接合有时分离,如此长时间工作,必将烧坏离合器和电磁线圈。 (2)空调压缩机电磁离合器的间隙一般设计为0.35-0.50mm,如果离合器间隙小于规定值,同时受到发动机温度的影响,安装在发动机旁的空调压缩机离合器钢片会产生热膨胀,导致离合器间隙过小,使关闭空调后离合器分离不开或者打滑,这样也易烧坏电磁线圈、轴承、离合器和制冷系统中的零部件。 (3)由于电磁离合器轴承中的套圈是塑料制成的,如果轴承中缺少润滑油,轴承在高速旋转时,就会产生摩擦而使温度急剧升高,这样就易烧坏塑料套圈,使轴承旋转不畅,同时还会烧坏电磁线圈、轴承及离合器。 使用注意事项 为了减少依维柯空调压缩机的故障,在使用空调时应注意以下三点: (1)应经常检查空调控制线路中各接插器的连接情况,若有问题应及时排除。 (2)若发现空调压缩机电磁离合器的间隙过小或者分离不开,应加上垫片使其达到规定的标准值或能够分离自如为止。 (3)定期保养空调压缩机,并对其电磁离合器轴承注入润滑油。 尼桑德胜C280空调压缩机不工作 故障现象:一辆尼桑德胜C280汽车发动机运转时,闭合空调开关,压缩机电磁离合器不工作,压缩机不运行。 故障分析与排除:尼桑德胜C280汽车采用单风口空调,空调压缩机是通过电磁离合器,由发动机带动运行的。 首先,观察蒸发器鼓风机能否运转,结果正常。这说明空调主继电器、鼓风机变速开关等均无毛病。

蒸发器冷凝器的作用.

冷凝器和蒸发器 冷凝器和蒸发器是汽车空调器中双重要的组件,其作用是实现两种不同流体之间的热量交换。所以,蒸发器和冷凝器都是换热器。具体讲来,在冷凝器中是制冷剂把热量放给周围环境空气。制冷剂在管内流动,在放热历程中,制冷剂蒸气逐步凝结成制冷剂液体。而周围环境空气受到加热,在蒸发器中则是制冷剂吸收周围被冷却空气—-车室内空气的热量,制冷剂在管内流动,在吸热的历程中,制冷剂液体不断的沸腾气化成制冷剂蒸气。空气则得到冷却,温度降低。在一定的条件下空气中还会有一部分水蒸气凝结析出。 4.1换热器的基来源根基理 在汽车空调中所采用的冷凝器和蒸发器都是制冷剂和空气之间被壁面(如金属管)离隔,二者不直接接触来实现温差传热的换热器。从传热角度考虑,换热的历程老是两种流体之间存在温差,而且也老是温度高的流体将热量传递给温度低的流体。为分析方便为达到目的,把温度高的流体称为热流体,把温度低的流体称为冷流体。在冷凝器中制冷剂称为热流体,那么空气就是冷流体。在蒸发器中恰好相反,空气是热流体,制冷剂却成了冷流体。是以蒸发气和冷凝器是实现热流体和冷流体之间热量转换的设备。在汽车空调中冷凝器放出制冷剂储存的热量,而蒸发气是制冷剂吸收空气中的热量。 4.2冷凝器 冷凝器是将压缩机排出的高压过热制冷剂蒸气,通过它放出热量后,凝结成液体或过冷液体的换热设备。 在汽车空调中,冷凝器都是采用空气冷却方式,或叫做风冷方式。其特点是不需要用水和水源,使用和安装方便。 (1)冷凝器构造 在汽车空调中采用的冷凝器首要有以下几种: ①管片式冷凝器 ②管带式冷凝器 ③平流式冷凝器 (2)冷凝器的安插 汽车空调的冷凝器,大多数安插在车头部,侧面或车底,经常有地面上的尘土和泥浆水飞溅在冷凝器上。其既增加了热阻,降低了传热性能,冷凝器的管子又受到这种酸性物质的腐蚀,管子容易烂穿。是以,在使用时应经常对冷凝器外貌进行清理。

汽车空调压缩机设计

目录 摘要 (1) Abstract (1) 第一章绪论 (1) 1.1 汽车空调的历程 (1) 1.2 汽车空调制冷系统的构成及原理 (3) 1.3 空调压缩机的发展 (4) 1.4 空调压缩机的前景 (5) 1.5 本章小结 (6) 第二章空调压缩机的结构与原理 (5) 2.1 空调压缩机的分类 (5) 2.2 汽车空调压缩机的特殊要求 (10) 2.3 活塞斜板式压缩机的结构原理 (10) 2.4 本章小结 (12) 第三章压缩机测绘 (13) 3.1 测绘的意义和过程 (13) 3.2 压缩机零件的测绘 (13) 3.2.1 电磁离合器 (14) 3.2.2 斜板轴 (15) 3.2.3 活塞 (16) 3.2.4 弹片阀 (17) 3.2.5 缸体 (18) 3.2.6 前后端盖 (19) 3.3 本章小结 (20) 第四章空调压缩机的三维建模 (21) 4.1 SolidWorks软件介绍 (21) 4.2 电磁离合器的三维建模 (22) 4.3 活塞体三维建模 (25) 4.4 前后端盖的三维建模 (30) 4.5 缸体的三维建模 (32) 4.6 轴的三维建模 (33) 4.7 空调压缩机的装配 (33) 4.8 本章小结 (35)

总结 (36) 参考文献 (37) 致谢 (38)

第一章绪论 1.1汽车空调的历程 汽车问世已有一百多年的历史。随着人们的生活水平的逐步提高,汽车已成为人们生活中的必需品,成为房间生活的延伸部分。对房间环境的要求同样延伸到汽车上,空调便是其中一个重要内容。汽车上安装空调装置的主要目的在于营造一个舒适的环境条件[1]。 汽车空调是从暖气开始的,最初是用煤炭脚炉取暖及把排气管从车室内通过。第一台完整的汽车空调装置出现在1927年,它包括一个加热器、一套通风系统及一个空气过滤器。从1936年起,美国开始着手研制汽车冷气机,到了1940年,美国Packard 公司首次在汽车上采用制冷装置,其后到50年代中在美国生产的Nash牌轿车上安装了冷暖兼容的整体式空调装置,60年代空调装置才开始在汽车上普及并获得迅速发展。根据粗略统计,截至80年代末,全世界车用空调装置年产量已超过3500万辆。发达国家中汽车空调的普及率达到80%~90%,二十世纪末全世界汽车空调器市场的年需求量达到7000万套。10年功夫就翻一番,可见其发展速度之快。 我国从1971年开始在长春一汽的红旗牌轿车上装上了空调器,上海也于80年代初在上海牌轿车上装上了国产空调器。我国从1994年开始在桑塔纳轿车(新车型)上试装了国产R134a空调器。我国车用空调装置虽起步较晚,但发展速度不慢。据统计,1992年我国空调汽车的产量为16万辆,总保有量为76万辆。到了2000年空调车产量可达88万辆,总保有量约485万辆。不到10年时间,增加了4~5倍。 1.1.1汽车空调的意义 汽车空调由五个要素组成,即温度、湿度、气流、洁净度和辐射。由于空调一定要有空气流动,一般由风机完成。风机的噪音及空气通过风道而产生的噪音使人感到不舒服,因而减少风机噪音及气流噪音也成了空调的任务[2]。 调节温度是空调的主要任务。汽车空调首先是有暖气设备,其结构比较简单,轿车和中小型汽车一般以发动机冷却水作为暖风的热源;而大型客车或严寒地区的车辆则常采用独立式加热器,夏季的降温则由制冷装置完成。

汽车冷凝器

汽车空调冷凝器

前言 本标准严格按GB/T1.1-2000及GB/T1.2-2000的要求编写而成。本标准由*************************负责起草。 本标准起草人:*** 本标准发布日期2012-02-01, 本标准实施日期2012-02-31。

汽车空调冷凝器 1范围 本标准规定了汽车空调制冷装置用冷凝器的分类与命名,要求,试验方法,检验规则,标志、标签、使用说明书,包装、运输、贮存。 本标准适用于汽车空调制冷装置用冷凝器。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB2828-87逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB9969.1-88工业产品使用说明书总则 ZB J73027-89制冷设备清洁度测定的一般规定 GB2516-81米制螺纹标准 QC/T656-2000汽车空调制冷装置性能要求 QC/T657-2000汽车空调制冷装置试验方法 ANSIB 1.1-87美制统一螺纹标准 3要求 顾客有要求的按顾客要求(标准、图纸、传真等),在顾客无要求的情况下,按以下要求:3.1焊接要求 3.1.1铝波浪带与铝口琴管焊接应牢固,焊缝均匀,焊接率不低于95%。每个脱焊处的长度应小 于20mm。铝波浪带焊后不允许变形,不允许烧坏。焊料不允许堆积、聚积。 3.1.2铝圆管与铝接头和铝口琴管焊后,焊缝应均匀,不允许焊料堆积。 3.2内腔清洁度 3.2.1冷凝器内腔内残存水量应不大于70mg/㎡。 3.2.2冷凝器内腔残存杂质质量应不得超过20mg/㎡,且最大长度或半径不得超过0.5㎜。 3.3密封性能 用氦质谱检漏仪检验冷凝器的密封性能,不允许泄漏、变形。 3.4耐压性能 应承受不低于3.6MPa的压力,无变形、泄漏现象。 3.5保压性能 成品冷凝器包装前测试保压性能,冷凝器内充入1MPa的干燥氮气,历时24小时,不允许泄漏。包装时泄压至0.2MPa。 3.6外观 3.6.1冷凝器喷漆应均匀、致密、光亮,不允许有凝聚点,不允许剥落,连接接头安装面不允许喷漆。 3.6.2冷凝器铝波浪带节距应均匀,铝波浪带,铝口琴管,铝圆管不允许变形。

汽车空调电磁离合器设计

浅析汽车空调压缩机电磁离合器的设计 来源:未知本站编辑:中华论文联盟日期: 2011-08-16 23:34 点击数:257 一、汽车空调压缩机电磁离合器的工作原理 离合器线圈通电后在线圈内产生了电磁力,在电磁力的作用下,驱动盘被吸合到压缩机皮带轮的端面上,由于压缩机皮带轮是由汽车发动机驱动,在电磁吸引力的作用下,皮带轮结合面和驱动盘之间产生了强大的摩擦力,并且带动驱动盘旋转,由驱动盘带动压缩机工作。反之,线圈断电,压缩机停止工作。 一、电磁离合器的磁通回路 为了使电磁离合器的驱动盘和皮带轮具有足够的摩擦力,必须是在电磁离合器的驱动盘和皮带轮之间产生较强的磁场。线圈通电后,由铁磁物质的皮带轮、驱动盘、线圈壳体和气隙所形成的磁通的闭合路径称为磁路。该磁场的磁场强度H沿着磁力线形成闭合回路,其方向为磁力线上各个点上的切线方向。

4极电磁离合器的磁路如图1所示。6极电磁离合器的磁路如图2所示。 从图l图2的结构图中我们可以看出离合器线圈是放在U型线圈壳体里面,并且用耐热树脂密封在壳体里面的,因此泄漏到空气中的漏磁通很小,可以忽略不计。另外离合器线圈的电力是由汽车蓄电池供应,可以认为是恒稳电流,因此由恒稳电流在铁芯中产生的磁场是稳定的。 三、电磁离合器的电磁吸引力的计算 为便于分析可以由图1、图2电磁离合器线圈部分简化成为由线圈+铁芯组成的一个简单的电磁铁。当线圈中通以电流后,大部分磁通线沿铁芯、衔铁和工作气隙构成闭合回路,这部分磁路称为主磁路,还有一小部分磁通线没有经过工作气隙和衔铁,而经过空气自成回路,这部分磁通称为漏磁通。主磁通使衔铁磁化,磁化后衔铁的磁极与铁芯的磁极正好相反,相互吸引,产生吸力。但是漏磁通部通过衔铁,不会使它磁化,因此也不会产生吸力。在一般的情况下,我们总要尽量减少漏磁通。 电磁离合器在非工作状态下,驱动盘和皮带轮端面间是有间隙的,这个间隙一般为0.3-0.55mm之间。 作用在驱动盘端面上的电磁吸引力;F=B S/u牛 式中:B-线圈内部磁感应强度韦伯/平方米 S-气隙处铁芯的截面积平方米 u一空气中的磁导率 线圈内产生的磁感应强度B与导磁物质中产生的磁场强度H之间的关系式: B=HU式中;H-磁场强度 μ——铁芯的磁导率 H=NI/L式中:H-磁场强度A/M N-线圈匝数 I-电流强度A L-铁芯平均长度M 上式的具体计算可由电磁离合器的具体结构尺寸和选用材料来进行。 四、电磁离合器传递扭矩的计算 应用电磁离合器的电磁吸引力的计算可以计算出电磁离合器传递的扭矩。假设驱动盘和皮带轮之间的摩擦系数为6(6的数值,在机械加工工艺达到稳定的量产条件后,可以通过实验室实验获得)。 T=FR 6式中;T-传递扭矩N.M F--电磁吸引力N R--摩擦面的有效平均半径M 电磁吸引力的大小还和驱动盘的弹性体的材料的不同而不同,当材料和工艺条件确定后,具体数值可以通过实验获得。五、在进行零部件结构设计时需要注意的几个问题 1.电磁离合器皮带轮轴承 皮带轮轴承的工作环境是非常恶劣的,既要承受冬季零下-40℃的严寒,又要承受夏季+40℃的酷暑,又要承受4000-6500r/min 的连续运转和6500-8000r/min的短时间运转,一般轴承很难胜任。因此在轴承的选择上一定要慎重。 2.线圈 由H级耐高温高强度的圆漆包线制成,需承受1 50℃连续高温。线圈的温升必须满足下式;T= (R-R)(234.5+T)/R<85℃ 式中;R一室温电阻 R--115℃电阻 3.磁路材料 构成磁路的皮带轮、线圈壳体、驱动盘必须用高导磁材料制成。现在的线圈壳体由08AL或10钢制成,皮带轮和驱动盘由10-20钢制成。计算表明,在磁路的总磁压降中,发生在皮带轮、驱动盘、线圈壳体中的磁压降只占20%,其余80%损耗在气隙中。4.隔磁环和磁极 由于前盖是非磁性材料(铝合金),磁力线不可能穿入,所以磁力线只能如图1、图2所示,穿过最小的空气气隙形成一条封闭回路。 现在使用的电磁离合器有4级和6级两种,4级离合器有4对磁极,6级离合器有6对磁极,级数越多,电磁吸引力越大。但是级数多离合器的结构就复杂,有时还受到尺寸的影响不能把离合器做的很大。因此目前电磁离合器多采用4对磁极。

汽车空调压缩机项目可研报告

汽车空调压缩机项目 可研报告 规划设计/投资分析/实施方案

汽车空调压缩机项目可研报告 汽车空调压缩机是汽车空调制冷系统的心脏,是制冷剂能够在系统内循环的动力源。我国汽车产业快速发展,已经成为国民经济的重要支柱产业。2017年,我国汽车行业产量为2902万辆,同比增长3.2%;销量为2888万辆,同比增长3.0%。我国汽车行业产销量已经连续九年位居全球第一,整体发展态势良好。在汽车市场蓬勃发展的情况下,我国汽车零部件产业也随之稳步提升,汽车空调压缩机行业迎来发展机遇。我国是全球最大的汽车产销国,同时也是全球主要的汽车空调压缩机生产地之一。2011-2017年间,我国汽车空调压缩机产量逐年稳定增长,2016年产量为3123万台,同比增长9.1%,2017年产量达到3404万台左右。随着我国汽车制造能力不断提升,汽车空调压缩机行业技术水平也随之不断进步。 该汽车空调压缩机项目计划总投资18381.94万元,其中:固定资产投资12219.49万元,占项目总投资的66.48%;流动资金6162.45万元,占项目总投资的33.52%。 达产年营业收入42773.00万元,总成本费用33182.25万元,税金及附加359.43万元,利润总额9590.75万元,利税总额11273.04万元,税后净利润7193.06万元,达产年纳税总额4079.98万元;达产年投资利润

率52.17%,投资利税率61.33%,投资回报率39.13%,全部投资回收期 4.06年,提供就业职位644个。 认真贯彻执行“三高、三少”的原则。“三高”即:高起点、高水平、高投资回报率;“三少”即:少占地、少能耗、少排放。 ......

汽车空调案例分析[1]

案例分析 一、28五十铃空调开机后,离合器打滑。 一辆2.8五十铃(NKR)系列 故障现象:在开空调时,压缩机电磁离合器一直吸不上,打滑,停车后检查压缩机皮带松紧度,正常。然后起动发动机,打开空调(此款五十铃,不起动发动机,鼓风机及空调不工作)此时怠速在900r/min左右,用数字万用表测量压缩机电磁线圈,电压12V电流3.3-3.5A 之间正常。 故障分析与排除:可以断定,电磁线圈无故障,故障是电磁离合器。因为引起离合器打滑的原因是电磁线圈吸力不够,压缩机松紧度,离合器压板与皮带轮之间间隙调整不对,压板与离合器皮带轮之间的间隙应为0.4-0.8mm之间,而用专用塞尺测量其间隙明显偏大,因此车压缩机安装于发动机上部,停机后,用工具很快将压缩机压板拆下,而此时不需要排空制冷剂,拆下压板后,发现其后部三个垫片,其中一个厚度过厚,用千分尺一量,其中一厚度在0.8mm以上,而另外两个为正规的0.1mm,0.3mm,很明显此垫片为以后装配,因间隙不对导致电磁线圈对压板产生吸力不够,压缩机打滑。重新更换垫片,按要求装好,打开空调,故障排除。 二、桑塔纳开空调后制冷效果不佳。 故障现象:普通桑塔纳,LX型,打开空调后,在怠速下出现啪嗒声,同时空调制冷效果不佳,接上歧管压力表,开启空调,怠速在900r/min以上,压力表显示低压侧压力高,而高压侧的压力则低。 故障分析与排除:此种情况出现在空调皮带不打滑的情况下,只有压缩机损坏,此时用于手感检查,压缩机外壳高低压侧温差不大,而我们现在要确定压缩机损坏只有用泵吸性能检测法检测。 当我们用手钳夹住高压管时,高压侧压力在1360kpa左右,压力明显过低,这说明压缩机已经坏掉,需要修理或更换压缩机。更换压缩机后空调系统一切正常,噪音消失,制冷效果正常。 三、丰田轿车空调开机后有噪音 故障现象:有一2.8皇冠轿车,在起步时或路上加速时,会引起压缩机“吱吱”的噪音,空调关闭后,噪音消除。 故障分析与排除:因此断定噪音为空调系统所致,而造成空调噪音过大的可能有多种:第一种为皮带张力过大,或离合器松旷或制冷剂灌充过量或皮带轮安装不当。发动机停机后,打开机仓盖检查,发现压缩机皮带过于松驰,重新调整后,试车,故障排除。 四、捷达轿车传动带不平衡引发故障 故障现象:一辆捷达轿车,在开空调时,发动机噪音大,经检查为皮带张力过大,重新调整后,用了没几天,皮带张力又过大。 故障分析与排除:上述现象为皮带固定不住或皮带磨损,后更换新皮带,以为故障排除,不久,噪音又出现,停车后,打开机仓盖,用目测法检查,空调皮带磨损严重,拆下后发现皮带只磨一边,经仔细检查,原是压缩机皮带轮与发动机皮带轮不在一条线上,发动机运转时,皮带会偏向一边造成皮带磨损,因在开空调时,压缩机电磁离合器吸合,压缩机开始工作,皮带受力增大,噪音增大。 调整压缩机安装位置,让压缩机皮带轮与发动机皮带轮在同一平面上,更换皮带,路试故障排除。 五、尼桑轿车制冷效果不稳 故障现象:在怠速时空调不制冷,而在高速或中速时制冷效果不稳定

汽车空调系统的结构及原理

汽车空调系统的结构及原理 汽车安装空调系统的目的是为了调节车内空气的温度,湿度,改善车内空气的流动,并且提高空气的清洁度。汽车空调系统主要由以下几部分组成: (1)制冷装置(系统):对车内空气或由外部进入车内的新鲜空气进行冷却或除湿,使车内空气变得凉爽舒适。 (2)暖风装置:主要用于取暖,对车内空气或由外部进入车内的新鲜空气进行加热,达到取暖除湿的目的。 (3)通风装置:将外部新鲜空气吸入车内,起通风和换气作用。同时通风对防止风窗玻璃起雾也起着良好作用。 (4)加湿装置:在空气湿度较低的时候,对车内空气加湿,以提高车内空气的相对湿度。 (5)空气净化装置:除去车内空气的尘埃,臭味,烟气及有毒气体,使车内空气变得清洁。 (6)电控系统:将机械和电子部分结合,实现人对空调控制的智能化,简单化。 本文主要介绍制冷装置和暖风装置的结构及原理。 制冷装置(系统): 基本组成: 现代汽车空调普遍采用的是蒸汽压缩式制冷系统。如下图所示,通常由压缩机,冷凝器,节流装置,储液干燥器,蒸发器以及相应的连接管等组成。

制冷原理: 如上图所示。汽车空调压缩机由发动机驱动旋转。由压缩机排出的高温高压制冷剂蒸气,

通过高压软管进入空调的冷凝器。由于高温高压的制冷剂蒸气温度高于车外的空气温度,因此借助冷凝器风扇使冷凝器中制冷剂蒸气的热量被车外空气带走,使高温高压的制冷剂蒸气冷凝成为较高温度的高压液体,通过高压软管流入干燥储液器,经干燥和过滤后,流过膨胀阀。在膨胀阀的节流作用下,制冷剂变成低温低压的液体而进入汽车空调的蒸发器,在定压下汽化并吸收蒸发器管外空气中的热量,使流经蒸发器的车内循环空气的温度降低成为冷气,通过鼓风机送入车内,降低车内的空气温度。汽化后的制冷剂蒸气,由压缩机吸入进行压缩,又变成高温高压的制冷剂气体,通过高压软管压入汽车空调的冷凝器,完成了汽车空调的一个制冷循环。此循环周而复始地进行,就可以使车内的温度维持在舒适的状态。 制冷循环的四个过程: 蒸气压缩制冷循环如下图所示,制冷系统通过制冷剂的气液两相转换时所形成的吸热和放热过程实现制冷。围绕制冷剂的气液转换,制冷工作循环可归纳为压缩,放热,节流和吸热四个过程。 (1)压缩过程:压缩机将从蒸发器中吸入的低压中温制冷剂蒸气进行压缩,使之成为高温高压的蒸气并送入冷凝器。压缩过程使制冷剂蒸气达到了液化所需的压力和温度。 (2)放热过程:高温高压的气态制冷剂在冷凝器中冷凝并与车外空气进行热交换(放热),转变为高温高压液态制冷剂。这一过程使制冷剂中的热量得以释放并通过冷凝器传递给了车外的空气。 (3)节流过程:从冷凝器流出的高压液态制冷剂经储液干燥器除湿,过滤后流经膨胀阀,由膨胀阀节流降压后送入蒸发器。节流过程降低了制冷剂的压力和温度,并产生部分气态制冷剂,以确保制冷剂在蒸发器中能完全汽化。 (4)吸热过程:低温低压的液态制冷剂在蒸发器中汽化,并与车内空气进行热交换(吸热),变成低压中温气态制冷剂。在蒸发器中吸收了热量的制冷剂蒸气被压缩机吸走,使蒸发器中的制冷剂的汽化吸热过程得以持续进行。

2 汽车空调制冷系统的结构和工作原理

2 汽车空调制冷系统的结构和工作原理 2.1 汽车空调制冷系统的组成 汽车空调制冷系统多种多样,但其基本结构相差不大。一般空调系统由下面几部分组成:压缩机、冷凝器、干燥过滤器、膨胀阀、蒸发器、鼓风机等几部分组成,如图所示。 压缩机是空调制冷系统的心脏,它是使制冷剂R134a在系统内循环的动力源。它的作用是使R134a由低温低压气体被压缩为高温高压气体。没有它,系统不仅不制冷而且还失去了运行的动力。压缩机的动力大部分来自于汽车发动机,现今的纯电动汽车一般来自动力电池。 冷凝器的作用是将压缩机排出的高温高压制冷剂蒸气进行冷却,并使其凝结为液体,凝结时所放出的热量被排至大气中。它经常被安装在车头,与冷却系统的散热器一起,共同享受来自前方的空气冷却,加速其散热速度。 储液干燥器实际上是一个储存制冷剂及吸收制冷剂水分、杂质的装置。一方面,它相当于汽车的油箱,为由于泄漏制冷剂而多出的空间补充制冷剂。另一方面,它又像空气滤清器那样,过滤掉制冷剂中掺杂的杂质。储液干燥器中还装有一定的硅胶物质,起到吸收水分的作用。

蒸发器的作用与冷凝器正好相反,它是制冷剂由液态变成气态(即蒸发)吸收热量的场所。车内湿热空气通过蒸发器时,蒸发器内液态雾状制冷剂吸收流经蒸发器的湿热空气热量,蒸发而使空气冷却,湿气凝结成露水沿导流管排出车外,冷干空气经风机作用循环于车内,最终体现了汽车空调制冷的作用。蒸发器和冷凝器合称汽车空调换热器。 膨胀阀的作用是降低进入蒸发器内的制冷剂的压力,控制进入蒸发器内的制冷剂的流量。压力降低,温度同时降低,制冷剂雾化成液态微粒,制冷剂易于吸热而蒸发膨胀。控制进入蒸发器内的制冷剂的流量可以防止因制冷剂流量过大使蒸发器温度过低而结冰,也可以防止因制冷剂流量过小使蒸发器过热而使空调系统制冷度不足。 出自:汽车空调系统的组成与原理,凌晨,《汽车电器》,2009(5) 2.2 汽车空调制冷系统的工作原理 汽车空调制冷系统原理可以理解如下,如图所示。 启动空调,压缩机在发动机带动下工作,制冷剂在系统中循环流动,不断重复液化、汽化两个主要过程:1)蒸发降低压力,液体变为气态,同时吸收车厢内热量;2)加压冷凝,气态变为液态,向车厢外放出热量。 工作过程如下: 1)压缩机将气态制冷剂压缩成高温高压的制冷剂气体后排出压缩机;

机械毕业设计1182平动转子式汽车空调压缩机设计

摘要 21世纪,随着全球经济的发展,汽车业得到了蓬勃发展。作为小型汽车使用的空调,由于受到空间尺寸的苛刻限制,以及发动机功率相对较小,因此非常注意压缩机 的效率、外形尺寸以及功耗等的影响。针对传统压缩机存在的一些不足,本设计研究 了一种平动转子式压缩机,该压缩机的最大特点是转子采用平动转动的运转方式,因 此主要运动件之间的相对速度较小,故其摩擦损失很小。本设计主要完成以下方面的 工作: (1)简单介绍了汽车空调制冷系统的构成和工作原理,阐述了汽车空调压缩机的 发展历程,并对其特殊要求进行了说明,进而重点介绍了现有的滑片式和涡旋式这两 种两种类型压缩机的结构形式与特点。 (2)重点详细介绍了平动转子式压缩机的设计思想,工作原理,并进行总体设计。(3)对平动转子式压缩机的几个重要零件如气缸、转子、转轴、平动滑片、转轴 轴承座和后端盖进行了结构设计,并在工艺和选材上进行了详细的分析。 (4)对平动转子式压缩机的吸排气系统和润滑系统进行了系统的设计和分析。 (5)对平动转子式压缩机进行了热力学方面的分析与计算,并推导了平动转子和 滑片的运动学和动力学公式,同时还对转子进行了动平衡方面的分析。 与传统滑片式压缩机相比,本设计中的压缩机的主要运动副如转子与气缸、转子 与端盖、滑片与缸孔之间的相对运动速度要小很多,因此它具有较少的摩擦和磨损。 同时他还与涡旋压缩机的平动机构有机融合在一起,取其之长,因此等效制冷能力比 现存的压缩机高。而且结构紧凑、外形尺寸小、重量轻,特别适宜小型汽车使用。 在设计过程中运用了AutoCAD,Pro/E及Word,不但把所学的专业知识联系起来,而且还提高了计算机应用能力,拓宽了知识面。 关键词汽车空调;压缩机;平动转子;结构设计

汽车空调压缩机设计-开题报告

毕业设计(论文)开题报告 一、课题的意义目的 汽车空调由五个要素组成,即温度、湿度、气流、洁净度和辐射。由于空调一定要有空气流动,一般由风机完成。风机的噪音及空气通过风道而产生的噪音使人感到不舒服,因而减少风机噪音及气流噪音也成了空调的任务。 调节温度是空调的主要任务。汽车空调首先是有暖气设备,其结构比较简单,轿车和中小型汽车一般以发动机冷却水作为暖风的热源;而大型客车或严寒地区的车辆则常采用独立式加热器,夏季的降温则由制冷装置完成。 普通车辆一般没有调节湿度的功能;高级车辆采用了冷暖合一的再加热式空调器,可以适量地对车内空气进行去湿处理,即靠制冷设备(蒸发器的冷却、去湿)去除空气中的绝对含湿量,再靠采暖设备降低空气的相对湿度。 汽车的空气调节装置主要用来实现对车内空气的换气、加热、冷却和除湿。同时,空调装置还起到净化空气的作用。汽车安装了空调装置,可以给驾驶员创造良好的工作环境。冬季使用暖风装置,可使车室内空气温度适中,驾驶员不必穿着笨重的衣物,也不会因手脚过冷而影响驾驶。夏季气温较高,驾驶员长时同行车容易疲劳、困倦,使用冷风装置可使车内温度、湿度适宜,改善司机的工作条件。安装空调装置已成为衡量汽车功能是否完备和豪华的重要标志。 汽车空调应用广泛,汽车空调压缩机三维造型能简便明了的展现汽车空调压缩机的结构。如今在毕业设计中设计的汽车空调压缩机三维设计也有其相应的现实意义。首先,毕业设计中所获得的一些解决问题的方法和经验可以在以后的工作中运用,服务于社会。其次,所做的汽车空调压缩机三维零件造型还可以用于学校的教学,由于是自己制作出来的,不仅节约了经费,而且日后的改动都可以自己解决,免除了后顾之忧,体现了“学以致用”的专业特色。对于我们而言,本次毕业设计无疑是对自己专业知识的巩固,通过汽车空调压缩机三维设计锻炼了制作设计测绘能力,理论联系了实际,增强了找工作的自信心。 二、任务分析 1.利用三维软件独立完成基于汽车空调压缩机三维造型建模及其零件造型。 2.要求造型准确清晰,能反应空调压缩机的内部结构。 三、设计方案

3汽车空调压缩机及电磁离合器

实 习 教 案 编号: SHJD—508—11 专业工种:汽车空调构造与维修指导教师:徐哲 2014-2015 学年度第二学期用

教案首页 编号:SHJD-508-11 版本号:A/O 流水号: 授课日期 班级 课题:项目一空调压缩机及电磁离合器 教学目的要求:掌握压缩机的功能及结构,空调压缩机的工作原理 教学重点、难点: 1、空调压缩机的检修2、电磁离合器的检修 授课方法:讲授法演示法 教学参考及教具(含多媒体教学设备):科鲁兹轿车一辆,开口扳手,梅花扳手,套管扳手,钳子,锤子等。 授课执行情况及分析: 板书设计或授课提纲 项目一空调压缩机及电磁离合器 (一)安全与环保教育 (二)汽车空调压缩机的功能与分类 (三)电磁离合器 (四)实训 (五)小结

教学程序 讲解示范(课题分析与工艺过程)一、安全与环保教育 1.遵守安全操作规程和安全制度 2.坚持文明操作,严谨违反操作规程 3.坚决杜绝一切野蛮操作规程 4.合理选用并正确使用各种工具 5.对精密量具要正确使用,做到轻拿轻放,用过之后注意防锈并放入用器具内,不 可乱丢乱放 6.注意防火安全,防止易燃物失火 二、汽车空调压缩机的功能与分类 1.功能 空调压缩机是空调制冷系统的心脏,其作用是维持制冷剂在制冷系统中的循环流动,吸入来自蒸发器的低温低压气态制冷剂,压缩成高温高压状态并送往冷凝器。 2.分类 (1)按运动形式的不同,空调压缩机可分为往复活塞式和旋转式两大类。 往复活塞式压缩机包括曲轴连杆式和轴向活塞式。轴向活塞式压缩机有摆盘式和斜盘式两种。 旋转式压缩机可分为旋转叶片式(简称旋叶式)、转子式、螺杆式及涡旋式四种。 (2)按压缩机工作时工作容量是否变化可分为定排量式和变排量式。 定排量空调压缩机的排气量随发动机转速的提高而提高,它不能根据制冷负荷的大小自动改变排气量,对发动机的油耗影响比较大。它的控制一般通过采集蒸发器出口的温度信号,当温度达到设定值时,空调压缩机电磁离合器分离,压缩机停止工作;当温度升高后,电磁离合器接合,压缩机再次工作。定排量空调压缩机也受空调制冷系统压力的控制,当管路内压力过高或过低时,空调压缩机也将停止工作。 变排量空调压缩机可根据制冷负荷的大小自动改变输气量,使空调系统的运行更加经济。 ◇曲轴连杆式空调压缩机的认知 曲轴连杆式压缩机是第1代空调压缩机,目前大多应用在客车中大排量空调制冷系统中。1.结构原理 压缩机的结构与发动机相似,由曲轴、连杆驱动活塞往复运动,一般采用双缸结构,如图2-1所示。每缸上方均装有进排气阀片,结构示意图如2-2所示。

汽车空调压缩机项目初步方案

汽车空调压缩机项目 初步方案 投资分析/实施方案

摘要 该汽车空调压缩机项目计划总投资20677.71万元,其中:固定资产投资13769.78万元,占项目总投资的66.59%;流动资金6907.93万元,占项目总投资的33.41%。 达产年营业收入47267.00万元,总成本费用36611.74万元,税金及附加403.49万元,利润总额10655.26万元,利税总额12528.44万元,税后净利润7991.44万元,达产年纳税总额4537.00万元;达产年投资利润率51.53%,投资利税率60.59%,投资回报率38.65%,全部投资回收期 4.09年,提供就业职位712个。 报告根据我国相关行业市场需求的变化趋势,分析投资项目项目产品的发展前景,论证项目产品的国内外市场需求并确定项目的目标市场、价格定位,以此分析市场风险,确定风险防范措施等。 汽车空调压缩机是汽车空调制冷系统的心脏,是制冷剂能够在系统内循环的动力源。我国汽车产业快速发展,已经成为国民经济的重要支柱产业。2017年,我国汽车行业产量为2902万辆,同比增长3.2%;销量为2888万辆,同比增长3.0%。我国汽车行业产销量已经连续九年位居全球第一,整体发展态势良好。在汽车市场蓬勃发展的情况下,我国汽车零部件产业也随之稳步提升,汽车空调压缩机行业迎来发展机遇。我国是全球最大的汽车产销国,同时也是全球主要的汽车空调压缩机生产地之一。2011-2017年间,我国汽车空调压缩机产量逐年稳定增长,2016年产量为3123

万台,同比增长9.1%,2017年产量达到3404万台左右。随着我国汽车制造能力不断提升,汽车空调压缩机行业技术水平也随之不断进步。 报告主要内容:基本情况、背景、必要性分析、项目市场调研、产品规划分析、选址评价、土建工程设计、项目工艺分析、项目环境影响情况说明、项目安全规范管理、项目风险评价分析、节能分析、实施进度、项目投资方案分析、经济效益评估、评价结论等。

相关文档
相关文档 最新文档