文档库 最新最全的文档下载
当前位置:文档库 › 六年级数学求阴影面积与周长

六年级数学求阴影面积与周长

六年级数学求阴影面积与周长
六年级数学求阴影面积与周长

六年级数学求阴影面积与周长例1.正方形面积是7平方厘米,求阴影部分的面积。(单位:厘米)

解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,

所以阴影部分的面积为:7-=7-×7=1.505平方厘米

例2.求图中阴影部分的面积。(单位:厘米)

解:最基本的方法之一。用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例3.求阴影部分的面积。(单位:厘米)

解:同上,正方形面积减去圆面积,

16-π()=16-4π

=3.44平方厘米

例5.求阴影部分的面积。(单位:厘米)

解:这是一个用最常用的方法解最常见的题,为方便起见,

我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米

另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)

π-π()=100.48平方厘米

(注:这和两个圆是否相交、交的情况如何无关)

例7.求阴影部分的面积。(单位:厘米)

解:正方形面积可用(对角线长×对角线长÷2,求)

正方形面积为:5×5÷2=12.5

所以阴影面积为:π÷4-12.5=7.125平方厘米

(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)

例8.求阴影部分的面积。(单位:厘米)

解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米

例9.求阴影部分的面积。(单位:厘米)

解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,

所以阴影部分面积为:2×3=6平方厘米

例10.求阴影部分的面积。(单位:厘米)

解:同上,平移左右两部分至中间部分,则合成一个长方形,

所以阴影部分面积为2×1=2平方厘米

(注: 8、9、10三题是简单割、补或平移)

例11.求阴影部分的面积。(单位:厘米)

解:这种图形称为环形,可以用两个同心圆的面积差或差的一部分来求。

(π-π)×=×3.14=3.66平方厘米

例12.求阴影部分的面积。(单位:厘米)

解:三个部分拼成一个半圆面积.

π()÷2=14.13平方厘米

例13.求阴影部分的面积。(单位:厘米)

解: 连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半.

所以阴影部分面积为:8×8÷2=32平方厘米

例14.求阴影部分的面积。(单位:厘米)

解:梯形面积减去圆面积,

(4+10)×4-π=28-4π=15.44平方厘米 .

例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。

分析: 此题比上面的题有一定难度,这是"叶形"的一个半.

解: 设三角形的直角边长为r,则=12,=6

圆面积为:π÷2=3π。圆内三角形的面积为12÷2=6,

阴影部分面积为:(3π-6)×=5.13平方厘米

例16.求阴影部分的面积。(单位:厘米)

解:[π+π-π]

=π(116-36)=40π=125.6平方厘米

例17.图中圆的半径为5厘米,求阴影部分的面积。(单位:厘米)

解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两个小直

角三角形AED、BCD面积和。

所以阴影部分面积为:5×5÷2+5×10÷2=37.5平方厘米

例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。

解:阴影部分的周长为三个扇形弧,拼在一起为一个半圆弧,

所以圆弧周长为:2×3.14×3÷2=9.42厘米

例19.正方形边长为2厘米,求阴影部分的面积。

解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个矩形。

所以面积为:1×2=2平方厘米

例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。

解:设小圆半径为r,4=36, r=3,大圆半径为R,=2=18,

将阴影部分通过转动移在一起构成半个圆环,

所以面积为:π(-)÷2=4.5π=14.13平方厘米

例21.图中四个圆的半径都是1厘米,求阴影部分的面积。

解:把中间部分分成四等分,分别放在上面圆的四个角上,补成一个正方形,边长为2厘米,所以面积为:2×2=4平方厘米

例22.如图,正方形边长为8厘米,求阴影部分的面积。

解法一: 将左边上面一块移至右边上面,补上空白,则左边为一三角形,右边一个半圆.

阴影部分为一个三角形和一个半圆面积之和. π()÷2+4×4=8π+16=41.12平方厘米解法二: 补上两个空白为一个完整的圆.

所以阴影部分面积为一个圆减去一个叶形,叶形面积为:π()÷2-4×4=8π-16

所以阴影部分的面积为:π()-8π+16=41.12平方厘米

例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?

解:面积为4个圆减去8个叶形,叶形面积为:π-1×1=π-1

所以阴影部分的面积为:4π-8(π-1)=8平方厘米

例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?

分析:连接角上四个小圆的圆心构成一个正方形,各个小圆被切去个圆,

这四个部分正好合成3个整圆,而正方形中的空白部分合成两个小圆.

解:阴影部分为大正方形面积与一个小圆面积之和.

为:4×4+π=19.1416平方厘米

例25.如图,四个扇形的半径相等,求阴影部分的面积。(单位:厘米)

分析:四个空白部分可以拼成一个以2为半径的圆.

所以阴影部分的面积为梯形面积减去圆的面积,

4×(4+7)÷2-π=22-4π=9.44平方厘米

例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积。解: 将三角形CEB以B为圆心,逆时针转动90度,到三角形ABD位置,阴影部分成为三角形ACB面积减

去个小圆面积,

为: 5×5÷2-π÷4=12.25-3.14=9.36平方厘米

例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。

解: 因为2==4,所以=2

以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,

π-2×2÷4+[π÷4-2]

=π-1+(π-1)

=π-2=1.14平方厘米

例28.求阴影部分的面积。(单位:厘米)

解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积,

三角形ABD的面积为:5×5÷2=12.5

弓形面积为:[π÷2-5×5]÷2=7.125

所以阴影面积为:12.5+7.125=19.625平方厘米

解法二:右上面空白部分为小正方形面积减去小圆面积,其值为:5×5-π=25-π

阴影面积为三角形ADC减去空白部分面积,为:10×5÷2-(25-π)=π=19.625平方厘米

例29.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,半径为BC的圆,∠CBD=,问:阴影部分甲比乙面积小多少?

解: 甲、乙两个部分同补上空白部分的三角形后合成一个扇形BCD,一个成为三角形ABC,

此两部分差即为:π×-×4×6=5π-12=3.7平方厘米

例30.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米。求BC的长度。

解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则

40X÷2-π÷2=28

所以40X-400π=56 则X=32.8厘米

例31.如图是一个正方形和半圆所组成的图形,其中P为半圆周的中点,Q为正方形一边上的中点,求阴影部分的面积。

解:连PD、PC转换为两个三角形和两个弓形,

两三角形面积为:△APD面积+△QPC面积=(5×10+5×5)=37.5

两弓形PC、PD面积为:π-5×5

所以阴影部分的面积为:37.5+π-25=51.75平方厘米

例32.如图,大正方形的边长为6厘米,小正方形的边长为4厘米。求阴影部分的面积。

解:三角形DCE的面积为:×4×10=20平方厘米

梯形ABCD的面积为:(4+6)×4=20平方厘米从而知道它们面积相等,则三角形

ADF面积等于三角形EBF面积,阴影部分可补成圆ABE的面积,其面积为:

π÷4=9π=28.26平方厘米

例33.求阴影部分的面积。(单位:厘米)

解:用大圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为

(π+π)-6

=×13π-6

=4.205平方厘米

例34.求阴影部分的面积。(单位:厘米)

解:两个弓形面积为:π-3×4÷2=π-6

阴影部分为两个半圆面积减去两个弓形面积,结果为

π+π-(π-6)=π(4+-)+6=6平方厘米

例35.如图,三角形OAB是等腰三角形,OBC是扇形,OB=5厘米,求阴影部分的面积。解:将两个同样的图形拼在一起成为圆减等腰直角三角形

[π÷4-×5×5]÷2

=(π-)÷2=3.5625平方厘米

2014小学六年级数学求阴影面积与周长附答案

小学六年级数学求阴影面积与周长例1.求阴影部分的面积。(单位:厘米) 解:这是最基本的方法:圆面积减去等腰直角三角形的面积, ×-2×1=1.14(平方厘米) 例2.正方形面积是7平方厘米,求阴影部分的面积。(单位:厘米) 解:这也是一种最基本的方法用正方形的面积减去圆的面积。 设圆的半径为r,因为正方形的面积为7平方厘米,所以=7, 所以阴影部分的面积为:7-=7-×7=1.505平方厘米 例3.求图中阴影部分的面积。(单位:厘米) 解:最基本的方法之一。用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。 例4.求阴影部分的面积。(单位:厘米) 解:同上,正方形面积减去圆面积, 16-π()=16-4π =3.44平方厘米 例5.求阴影部分的面积。(单位:厘米)

解:这是一个用最常用的方法解最常见的题,为方便起见, 我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形, π()×2-16=8π-16=9.12平方厘米 另外:此题还可以看成是1题中阴影部分的8倍。 例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分) π-π()=100.48平方厘米 (注:这和两个圆是否相交、交的情况如何无关) 例7.求阴影部分的面积。(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求) 正方形面积为:5×5÷2=12.5 所以阴影面积为:π÷4-12.5=7.125平方厘米 (注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。(单位:厘米) 解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米 例9.求阴影部分的面积。(单位:厘米) 解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形, 所以阴影部分面积为:2×3=6平方厘米

小学六年级数学上册(人教版)——圆与求阴影部分面积

小学六年级数学上册(人教版) ——圆与求阴影部分面积 例1.求阴影部分的面积。 (单位:厘米) 例2.正方形面积是7平方厘米,求阴影部分的面积。 (单位:厘米) 例3.求图中阴影部分的面积。(单位:厘米) 例4.求阴影部分的面积。(单位:厘米) 例5.求阴影部分的面积。(单位:厘米) 例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍, 问:空白部分甲比乙的面积多多少 厘米? 例7.求阴影部分的面积。(单位:厘米)例8.求阴影部分的面积。(单位:厘 米)

例9.求阴影部分的面积。(单位:厘米)例10.求阴影部分的面积。(单位:厘米) 例11.求阴影部分的面积。(单位:厘米)例12.求阴影部分的面积。(单位: 厘米) 例13.求阴影部分的面积。(单位:厘米)例14.求阴影部分的面积。(单位:厘米) 例15.已知直角三角形面积是12平方厘米,求阴影部分的面 积。 例16.求阴影部分的面积。(单位:厘米) 例17.图中圆的半径为5厘米,求阴影部分的面积。(单位:厘米)例18.如图,在边长为6厘米的等边三角形中挖去三个同样的 扇形,求阴影部分的周长。

例19.正方形边长为2厘米,求阴影部分的面积。例20.如图,正方形ABCD的面积是 36平方厘米,求阴影部分的面积。 例21.图中四个圆的半径都是1厘米,求阴影部分的面积。例22.如图,正方形边长为8厘米,求阴影部分的面积。 例23.图中的4个圆的圆心是正方形的4个顶点,,它们的 公共点是该正方形的中心,如果每个圆的半径都是1厘米, 那么阴影部分的面积是多少? 例24.如图,有8个半径为1厘米的小圆,用他们的圆周的 一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。如 果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘 米? 例25.如图,四个扇形的半径相等,求阴影部分的面积。(单例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5

小学六年级数学求阴影部分面积

小学六年级数学求阴影部分面积 计算图19-1中阴影部分面积是多少平方厘米?(圆的半径r=10厘米,∏取3.14) 分析:要计算图19-1中阴影部分的面积,关键在于处理图中空白部分的面积。 利用割补进行转化,把空白部分转移到圆的边缘。如图19-2所示,这样阴影部分面积就可以转化为 4 1圆面积加上两个正方形的面积来计算。 解 ∏×102×41+102×2=25∏+200=78.5+200=278.5 图19-3大小两圆相交部分面积是大圆面积的154,是小圆面积的5 3,量得小圆的半径是5厘米,问大圆的半径是多少厘米? 分析:因为已知阴影部分与大圆,小圆的面积比,所以可以先求出两圆面积的比,继而求出它们的半径比。, 解 设阴影部分的面积为1.则小圆面积是 415,小圆面积是3 5。于是: 大圆面积:小圆面积=415:35=49=(23)2 5×23=7.5厘米 如图19-4,正方形面积是8平方厘米。求阴影部分的面积是多少平方厘米? 分析:这道题按常规思路是:要求阴影部分的面积,用正方形的面积减去一个四分之一圆的面积。因此,只要知道圆的半径,问题就得到解决了。但是,从题中的已知条件知道,圆的半径是不可能求出的,问题难以得解。这时,就必须改变解题思路,重新审题和分析图形,从图中不难看到,正方形的边长等于圆的半径,进而可以推出a ×a=r ×r=8平方厘米。所以,在求四分之一圆的面积时,就不必按常规的方法,去求解圆的半径,而直接用8平方厘米代替r ×r 的面积,四分之一圆的面积是3.14×8× 41=6.28平方厘米,则阴影部分的面积就是8-3.14×8×4 1=1.72平方厘米。 如图19-7,求空白部分的面积是正方形面积的几分之几?

小学六年级数学-阴影部分面积例题(含答案)

阴影部分面积专题 求如图阴影部分的面积.(单位:厘米) 如图,求阴影部分的面积.(单位:厘米) 3.计算如图阴影部分的面积.(单位:厘米) 4.求出如图阴影部分的面积:单位:厘米. 5.求如图阴影部分的面积.(单位:厘米)

6.求如图阴影部分面积.(单位:厘米) 7.计算如图中阴影部分的面积.单位:厘米. 8.求阴影部分的面积.单位:厘米. 9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)

10.求阴影部分的面积.(单位:厘米) 11.求下图阴影部分的面积.(单位:厘米) 12.求阴影部分图形的面积.(单位:厘米) 13.计算阴影部分面积(单位:厘米).

14.求阴影部分的面积.(单位:厘米) 15.求下图阴影部分的面积:(单位:厘米) 16.求阴影部分面积(单位:厘米). 17.(2012?长泰县)求阴影部分的面积.(单位:厘米)

☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆参考答案与试题解析 1.求如图阴影部分的面积.(单位:厘米) 考点组合图形的面积;梯形的面积;圆、圆环的面积. 分析阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答. 解答 解:(4+6)×4÷2÷2﹣3.14×÷2, =10﹣3.14×4÷2, =10﹣6.28, =3.72(平方厘米); 答:阴影部分的面积是3.72平方厘米. 点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用. 2.如图,求阴影部分的面积.(单位:厘米) 考点组合图形的面积. 分析根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米). 解答解:扇形的半径是:

六年级数学求阴影面积与周长

六年级数学求阴影面积与周长例1.正方形面积是7平方厘米,求阴影部分的面积。(单位:厘米) 解:这也是一种最基本的方法用正方形的面积减去圆的面积。 设圆的半径为r,因为正方形的面积为7平方厘米,所以=7, 所以阴影部分的面积为:7-=7-×7=1.505平方厘米 例2.求图中阴影部分的面积。(单位:厘米) 解:最基本的方法之一。用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。 例3.求阴影部分的面积。(单位:厘米) 解:同上,正方形面积减去圆面积, 16-π()=16-4π =3.44平方厘米 例5.求阴影部分的面积。(单位:厘米) 解:这是一个用最常用的方法解最常见的题,为方便起见, 我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米 另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分) π-π()=100.48平方厘米 (注:这和两个圆是否相交、交的情况如何无关) 例7.求阴影部分的面积。(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求) 正方形面积为:5×5÷2=12.5 所以阴影面积为:π÷4-12.5=7.125平方厘米 (注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。(单位:厘米) 解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米 例9.求阴影部分的面积。(单位:厘米) 解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形, 所以阴影部分面积为:2×3=6平方厘米 例10.求阴影部分的面积。(单位:厘米) 解:同上,平移左右两部分至中间部分,则合成一个长方形, 所以阴影部分面积为2×1=2平方厘米 (注: 8、9、10三题是简单割、补或平移)

六年级数学求阴影部分的面积含答案

包含与排除和旋转对称 课前预习 铅球比赛场地 有人参加过铅球比赛么?有谁知道铅球的比赛场地是什么样子的?如何才能画一个标准的铅球比赛场地呢? 铅球的比赛场地是一个扇形的比赛场地,上面有环形的尺度,下面介绍一种铅球比赛场地的画法。 在学校运动会、小型比赛及体育教学中,铅球场地往往都被安排在远离径赛场地的“偏僻角落里”。其一,是为了安全;其二,是为了保护塑胶场地;其三,是铅球比赛需要土质场地或草皮。铅球场地的传统画法是:先用测绳测量,再用标枪沿测绳划出痕迹,后用白灰浇出白线。而往往“偏僻角落里”的场地质地较差,高洼不平,杂草丛生,即使勉强画上白线,也模糊不清、参差不齐、宽窄不一。况且在比赛过程中,人为踩踏,器械砸击、风吹雨淋,使角度线、远度线和延长线变得更加模糊,裁判员需经常描画,给裁判工作带来诸多不便。本人在实际教学、裁判工作中摸索出一种用白布条(或白塑料编织材料)代替白灰绘制比赛场地的方法。 第一:材料与制作 用白布裁剪、缝制成宽5厘米、厚3—4层的白布条,长度可根据比赛的组别,及实际情况而定,可剪短,可接长。 第二:具体画法 把白布条沿用测绳已测量好的角度线、远度线和延长线拉直且相吻合,用长铁钉钉地固定两端,再沿白布条的两边缘每隔1—2米用铁钉交错钉牢,用醒目的颜色在白布条上注明远度数字。 第三:延用 此法可延用于其他田赛项目的比赛场地、以及径赛项目的起点、终点和弯直道交接线的绘制。 第四:备用 比赛完毕后,将铁钉拔出,白布条捆扎、收藏好以备下次再用。 瞧,用这法绘制比赛场地,既经济实用,避免重复测画场地,又能及时、公正、准确地测定学生和运动员的练习和比赛成绩。您不妨一试。 知识框架

小学六年级数学求阴影部分面积(圆)

计算图19-1中阴影部分面积是多少平方厘米?(圆的半径r=10厘米,∏取3.14) 分析:要计算图19-1中阴影部分的面积,关键在于处理图中空白部分的面积。 利用割补进行转化,把空白部分转移到圆的边缘。如图19-2所示,这样阴影部分面积就可以转化为 4 1圆面积加上两个正方形的面积来计算。 解 ∏×102×41+102×2=25∏+200=78.5+200=278.5 图19-3大小两圆相交部分面积是大圆面积的154,是小圆面积的5 3,量得小圆的半径是5厘米,问大圆的半径是多少厘米? 分析:因为已知阴影部分与大圆,小圆的面积比,所以可以先求出两圆面积的比,继而求出它们的半径比。, 解 设阴影部分的面积为1.则小圆面积是 415,小圆面积是3 5。于是: 大圆面积:小圆面积=415:35=49=(23)2 5×23=7.5厘米 如图19-4,正方形面积是8平方厘米。求阴影部分的面积是多少平方厘米? 分析:这道题按常规思路是:要求阴影部分的面积,用正方形的面积减去一个四分之一圆的面积。因此,只要知道圆的半径,问题就得到解决了。但是,从题中的已知条件知道,圆的半径是不可能求出的,问题难以得解。这时,就必须改变解题思路,重新审题和分析图形,从图中不难看到,正方形的边长等于圆的半径,进而可以推出a ×a=r ×r=8平方厘米。所以,在求四分之一圆的面积时,就不必按常规的方法,去求解圆的半径,而直接用8平方厘米代替r ×r 的面积,四分之一圆的面积是3.14×8× 41=6.28平方厘米,则阴影部分的面积就是8-3.14×8×4 1=1.72平方厘米。 如图19-7,求空白部分的面积是正方形面积的几分之几? 分析:因为圆和正方形它们的对称性,可以先画出两条辅助线帮助分析,即将正方形分成4个全等的小正方形。先看上面的两个小正方形,从圆中可知,A=B ,C=D 。故有A+D=B+C 。这样,可以得到阴影部分的面积与空白部分的面积是正方形面积的二分之一。

小学六年级数学求阴影面积与周长

求阴影面积的常用方法 计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形或平移旋转或割补。现介绍几种常用的方法。 一、转化法 此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。 例1. 如图1,点C 、D 是以AB 为直径的半圆O 上的三等分点,AB=12,则图中由弦AC 、 AD 和CD ⌒ 围成的阴影部分图形的面积为_________。 分析:连结CD 、OC 、OD ,如图2。易证AB//CD ,则??ACD OCD 和的面积相等,所以图中阴影部分的面积就等于扇形OCD 的面积。易得∠=?COD 60,故S S O C D 阴影扇形==?=606360 62 ππ。 二、和差法 有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。 例2. 如图3是一个商标的设计图案,AB=2BC=8,ADE ⌒ 为 1 4 圆,求阴影部分面积。 分析:经观察图3可以分解出以下规则图形:矩形ABCD 、扇形ADE 、Rt EBC ?。所以, S S S S ADE ABCD Rt EBC 阴影扇形矩形=+-=?+?-??=+?9043604812 412482ππ。 三、重叠法

就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。这类题阴影一般是由几个图形叠加而成。要准确认清其结构,理顺图形间的大小关系。 例3. 如图4,正方形的边长为a ,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。 解:因为4个半圆覆盖了正方形,而且阴影部分重叠了两次,所以阴影部分的面积等于4个半圆的面积和与正方形面积的差。故22 2)12 ()2 (2a a a S -=-?=π π阴影。 四、补形法 将不规则图形补成特殊图形,利用特殊图形的面积求出原不规则图形的面积。 例4. 如图5,在四边形ABCD 中,AB=2,CD=1,∠=?∠=∠=A B D 60,90?,求四边形ABCD 所在阴影部分的面积。 解:延长BC 、AD ,交于点E ,因为∠=?∠=?A B 6090,,所以∠=?E 30,又 ∠=?==E D C CE CD DE 9023,所以,,易求得BE =23,所以 S S S AB BE CD DE ABE CDE 阴影=-= ?-?= ??121233 2 。 五、拼接法 例5. 如图6,在一块长为a 、宽为b 的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽都是c 个单位),求阴影部分草地的面积。 解:(1)将“小路”沿着左右两个边界“剪去”;(2)将左侧的草地向右平移c 个单位;(3)得到一个新的矩形(如图7)。由于新矩形的纵向宽仍然为b ,水平方向的长变成了()a c -,所以草地的面积为b a c ab bc ()-=-。

相关文档
相关文档 最新文档