文档库 最新最全的文档下载
当前位置:文档库 › 酶促反应动力学实验(精.选)

酶促反应动力学实验(精.选)

酶促反应动力学实验(精.选)
酶促反应动力学实验(精.选)

酶动力学综合实验

实验(一)——碱性磷酸酶值的测定

【目的要求】

1.了解底物浓度对酶促反应速度的影响

2.了解米氏方程、值的物理意义及双倒数作图求值的方法。【实验原理】

1、碱性磷酸酶:

碱性磷酸酶是广泛分布于人体各脏器器官中,其中以肝脏为最多。其次为肾脏、骨骼、肠和胎盘等组织。但它不是单一的酶,而是一组同功酶。本实验用的碱性磷酸酶是从大肠杆菌中提取的。

2、米氏方程:

在研究底物浓度与酶促反应速度的定量关系时,导出了酶促反应动力学的基本公式,即:

(1)

式中:v表示酶促反应速度,

表示酶促反应最大速度,

[S]表示底物浓度,

表示米氏常数。

3、值的测定主要采用图解法,有以下四种:

①双曲线作图法(图1-1,a)

根据公式(1),以v对[s]作图,此时1/2时的底物浓度[s]值即为值,以克分子浓度(M)表示。这种方法实际上很少采用,因为在实验条件下的底物浓度很难使酶达到饱和。实测一个近似值,因而1/2不精确。此外由于v对[S]的关系呈双曲线,实验数据要求较多,且不易绘制。

②作图法双倒数作图法(图1-1,b)

实际工作中,常将米氏方程(式(1))作数学变换,使之成为直线形式,测定要方便、精确得多。其中之一即取(1)式的倒数,变换为方程式:

(2)

以对作图,即为形式。此时斜率为,纵截距为。把直线外推与横轴相交,其截距相交,其截距即为—。

③作图法(略)

把(2)式等号两边乘以,得:

(3)

以v对作图,这时斜率为,纵截距为,横截距为。

④作图法(略)

把(2)式等号两边乘以[S],得:

(4)

以对[s]作图,这时斜率为,纵截距为。

(a)(b)

本实验主要以双倒数法,即作图法来测定碱性磷酸酶值。具体原理如下:

本实验以碱性磷酸酶为例,用磷酸苯二钠为其作用物,碱性磷酸酶能分解磷酸苯二钠产生酚和磷酸,在适宜条件下(10.0,和60℃),准确反应13分钟。在碱性条件下酚可与酚试剂生成蓝色化合物,以波长620比色。在一定条件下色泽深浅与光密度成正比。反应式如下:

然后以光密度直接表示不同底物浓度时的酶反应速度,即以光密度的倒数作纵坐标,以底物浓度的倒数作横坐标,按作图法来测定碱性磷酸酶值。

【仪器与试剂】

仪器:

1.恒温水浴

2.721型分光光度计

试剂:

1.酚试剂:称钨酸钠(W·2O)100g,钼酸钠(·2O)25g置1500磨口回流装置内,加蒸馏水700,85%磷酸50和浓硫酸100。充分混匀,使其溶解。小火加热,回流10h(烧瓶内加小玻璃珠数颗,以防溶液溢出),再加入硫酸锂(4)150g,蒸馏水50及液溴数滴。在通风橱中开口煮沸15,以除去多余的溴。冷却后定容至1000,过滤即成,此液应为鲜黄色,不带任何绿色。置棕瓶中,可在冰箱长期保存。若此贮存液使用过久,颜色由黄变绿,可加几滴液溴,煮沸几分钟,

恢复原色仍可继续使用。使用时用蒸馏水稀释一倍,最后酸度为1N。

2.2.5磷酸苯二钠基质液:称取625磷酸苯二钠(C6H542?2H2O),溶于1,000容量瓶中,加蒸馏水稀释至刻度,加数滴夜溴以防腐,置冰箱内可保存一年之久。

3.碱性缓冲液(10.0):称取无水碳酸钠 6.36g及碳酸氢钠

3.36g,溶解于蒸馏水中,并稀释至1,000.

4.碱性磷酸酶液:称取碱性磷酸酶1,加水3~4,冰箱内可保存五周左右。

【实验步骤】

取6支试管按下表加入试剂:

以6管为调零点,在620波长处比色。

【结果处理】

1 将各管光密度和底物浓度记入下表

2以1为纵坐标,1/[s]为横坐标,按作图,求出碱性磷酸酶的值。

【注意事项】

1)加入碱性磷酸酶的量要准确

2)保温时间要准确

准确保温的方法:从第一管加入酶液开始计时,每隔1分钟向下一只试管加酶液,直至加完,到准确13分钟立即向第一管加酚试剂,以终止其反应,并每隔1分钟向下一只试管加酚试剂,直至加完止,这样保证每管准确保温13分钟。

【思考题】

1)的意义及其影响因子

2)为什么酶促反应速度以初速度表示

3)为什么可直接代替V作图

4)分析自己的实验数据

实验(二)——温度对酶活性的影响

【实验目的】

了解温度对酶活性及酶促反应速度的影响,加深对酶特性的认识。

【实验原理】

每种酶都有其最适温度,高于或低于此温度酶的活性都降低。一般而言,若酶处于过高的温度环境中,会使酶活性永久丧失;而若处于极低温度的环境中只会使酶活性受到抑制,一旦温度适宜,酶又会全部或部分的恢复其活性。

【仪器与试剂】

仪器:

1.冰箱 2.恒温水浴锅 3.试管和试管架

4.吸量管及吸量管架 5.移液枪及枪头 6.胶头滴管

7.烧杯

试剂:

1.6.8的缓冲液:量取15.45的0.2M磷酸氢二钠和4.55的柠檬酸混合摇匀即可。

2.0.5%淀粉的0.5%氯化钠溶液:0.5g可溶性淀粉和0.5g氯化钠,溶于100蒸馏水(需加热)。

3.0.03175碘液

4.1M 溶液 5.1M 溶液 6.稀释100倍的唾液 7.冰水浴

【实验步骤】

1.制管和预温

由于本实验对恒温反应要求较高,故每个温度梯度使用两支试管,分别标记为A管和B管,同时欲温底物与酶。A管加入6.8的缓冲液和0.5%淀粉液;B管使用移液枪加入稀释100倍的唾液,相对应的两支试管置于设定的温度下预温5。

取12支洁净试管,参照下表加入试剂:

*6号管为对照组(比色时作为0号管),置于室温,且淀粉液用蒸馏水代替

2.混合A、B管

将1号A管试剂迅速加入温度对应的B管中(为了最大限度保证酶的量),此时为计时的起点(使用秒表),摇匀后放回对应温度继续水浴。注意:转移A管试剂前需将其摇匀。

3.时间控制

然后每隔1或2(时间自定)按上步操作依次把2、3、4、5、6号的A、B管混合,严格控制好时间。

4.中止反应

准确反应13,向1号管加入2滴1M 溶液,立即混匀,中止反应,按上一步的顺序和时间间隔依次对各管进行操作,并移至试管架。后再各用2滴1M 溶液中和每管。

5.显色

在每管中各加入2 0.03175碘液并混匀,观察现象。

6.比色

若不同温度梯度间现象差别不明显,则进行比色,通过光密度值来比较。

【结果处理】

记录现象(或比较吸光度值),做出合理分析。

【注意事项】

严格注意时间的控制及各物质的添加量。

【思考题】

如果某同学(没有严格按照教案步骤)做出的实验结果为唾液淀粉酶的最适温度为70度,请分析他得出这样的结果的可能原因。

实验(三)——对酶活性的影响

【实验目的】

了解对酶活性及酶促反应速度的影响,加深对酶特性的认识。【实验原理】

1对酶活性影响的机理:影响酶活性中心的某些必须基团的解离,而这些基团往往仅在某一解离状态时才最容易同底物结合或

具有最大催化活性;影响可解离基团的底物和辅酶的荷电状态,从而影响酶对他们的亲和力;还可以影响酶活性中心的空间构象,从而影响酶的活性。

2.本实验用唾液淀粉酶为材料来观察酶活性受的影响的情况。淀粉在该酶的催化作用下会随着时间的延长而出现不同程度的水解,从而得到各种糊精乃至麦芽糖,少量葡萄糖等水解产物。碘液与淀粉及其不同程度的水解产物反应呈现不同颜色,即淀粉(蓝色)、紫色糊精(紫色)、红色糊精(红色)、麦芽糖及少量葡萄糖(黄色)。

【仪器与试剂】

仪器:

1、冰箱

2、电炉

3、恒温水浴锅

4、试管架及试管

5、移液管架及移液管

试剂:

1、0.2M磷酸氢二钠溶液:称取35.61g含2个结晶水的磷酸氢二钠,用水定容至1L。

2、0.1M柠檬酸溶液:称取21.01g含一个结晶水的柠檬酸,用水定容至1L。

3、唾液淀粉酶:将唾液分别稀释10倍、50倍和100倍,得三种不同浓度的酶液、

4、0.5%淀粉的0.5%氯化钠溶液:0.5g可溶性淀粉和0.5g

氯化钠,溶于100蒸馏水(需加热)。

5、0.1%淀粉液:0.1g可溶性淀粉,加到100蒸馏水中,加热溶解。

6、碘液:15g碘化钾和12.7g碘,加少许水使碘完全溶解后,再用水稀释至200。

7、1%氯化钠溶液。

8、0.1%硫酸铜溶液。

【实验步骤】

(一)对酶活性的影响

1、缓冲溶液的配制

取六只洁净的三角烧瓶,按表1编号和加试剂:

配制

取六支洁净试管,编号后按表2操作:

表2 对酶活性的影响

【结果处理】

记录现象(或比较吸光度值),做出合理分析。

【注意事项】

充分摇匀,严格控制时间。

【思考题】

酶的最适值受哪些因素影响?

实验(四)——酶浓度对酶活性的影响

【实验目的】

了解酶浓度对酶活性及酶促反应速度的影响,加深对酶特性的认识。

【实验原理】

在适宜的条件下,若反应物浓度大大高于酶浓度时,反应速

度随酶浓度增加而增加,两者间成正比。但若反应底物浓度较低,而且酶的浓度足够高时,增加酶浓度,反应速度基本不变。

本实验采用唾液淀粉酶为例。加入不同浓度的酶,并比较在同一适当时间后,以碘检验淀粉的含量从而确认其反应程度。【仪器与试剂】

仪器:

1.恒温水浴锅

2.吸量管

3.试管与试管架

试剂:

1.含的0.5%淀粉液

2.7.0的缓冲液

3.分别稀释过10倍、50倍和100倍后的唾液

【实验步骤】

1.取3支洁净试管,按下表加入淀粉液,缓冲液,加毕放入37度恒温水浴锅中保温5分钟;

2.保温后,快速加入不同浓度的稀释唾液,摇匀,立即放入37度恒温水浴中,并计时。约3至4分钟后加入等量碘液一至两滴,立即摇匀后,记录各管的颜色。

【结果处理】

记录现象,做出合理分析。

【思考题】

实验(五)——离子对酶活性的影响

【实验目的】

了解离子对酶活性及酶促反应速度的影响,加深对酶特性的认识。

【实验原理】

酶的活性常常受某些物质的影响,有些物质能使酶的活性增加,称为酶的激活剂;有些物质能使酶的活性降低,称为酶的抑制剂。是唾液淀粉酶的激活剂。其它的阴离子,如、3-和对该酶也有激活作用,但较微弱。而2+对唾液淀粉酶具有抑制作用。激活剂和抑制剂影响酶活性的剂量是很少的,并且常具有特异性。

就本实验,低浓度可以增加酶活性,高浓度的或者低浓度的

2-等对酶活性没有影响。激2+则会抑制酶活性,同时低浓度的、

4

活剂的作用机制是多种多样的,可能是作为辅酶或辅基的一个组成部分,也可以直接作为酶活性中心的构成部分。

【仪器与试剂】

仪器:

1.恒温水浴锅

2.吸量管

3.试管与试管架

试剂:

1. 1溶液

2. 0.14溶液

3. 0.1%淀粉液

4. 100倍稀释唾液

5.碘液

【实验步骤】

取3支洁净的试管,编号后按下表操作:

【结果处理】

记录现象(或比较吸光度值),做出合理分析。【思考题】

为什么加入淀粉后有试管内颜色显现为红色?

(思考题可以总结起来出在最后面)最新文件仅供参考已改成word文本。方便更改

乙酸乙酯实验报告

乙酸乙酯皂化反应速率常数测定 实验日期: 提交报告日期: 带实验的老师 一、 引言 1. 实验目的 1.学习测定化学反应动力学参数的一种物理化学分析方法——电导法。 2.了解二级反应的特点,学习反应动力学参数的求解方法,加深理解反应动力学特征。 3.进一步认识电导测定的应用,熟练掌握电导率仪的使用方法。 2. 实验原理 反应速率与反应物浓度的二次方成正比的反应为二级反应,其速率方程式可以表示为 22dc - =k c dt (1) 将(1)积分可得动力学方程: c t 22c 0dc -=k dt c ?? (2) 20 11-=k t c c (3) 式中:0c 为反应物的初始浓度;c 为t 时刻反应物的浓度;2k 为二级反应的反应速率常数。将1/c 对t 作图应得到一条直线,直线的斜率即为2k 。 对于大多数反应,反应速率与温度的关系可以用阿累尼乌斯经验方程式来表示: a E ln k=lnA-RT (4) 式中:a E 为阿累尼乌斯活化能或反应活化能;A 为指前因子;k 为速率常数。 实验中若测得两个不同温度下的速率常数,就很容易得到 21T a 21T 12k E T -T ln =k R T T ?? ??? (5) 由(5)就可以求出活化能a E 。 乙酸乙酯皂化反应是一个典型的二级反应,

325325CH COOC H +NaOH CH COONa+C H OH → t=0时, 0c 0c 0 0 t=t 时, 0c -x 0c -x x x t=∞时, 0 0 0x c → 0x c → 设在时间t 内生成物的浓度为x ,则反应的动力学方程为 220dx =k (c -x)dt (6) 2001x k =t c (c -x) (7) 本实验使用电导法测量皂化反应进程中电导率随时间的变化。设0κ、t κ和κ∞分别代表时间为0、t 和∞(反应完毕)时溶液的电导率,则在稀溶液中有: 010=A c κ 20=A c κ∞ t 102=A (c -x)+A x κ 式中A 1和A 2是与温度、溶剂和电解质的性质有关的比例常数,由上面的三式可得 0t 00-x= -c -κκκκ∞ (8) 将(8)式代入(7)式得: 0t 20t -1k = t c -κκκκ∞ (9) 整理上式得到 t 20t 0=-k c (-)t+κκκκ∞ (10) 以t κ对t (-)t κκ∞作图可得一直线,直线的斜率为20-k c ,由此可以得到反应速率系数2k 。 溶液中的电导(对应于某一电导池)与电导率成正比,因此以电导代替电导率,(10)式也成立。本实验既可采用电导率仪,也可采用电导仪。 3实验操作 3.1 实验用品

系统动力学实验报告

系统动力学实验报告 姓名:徐键 班级:管科131班 学号:5504113023

学院:管理学院 一、背景:高塘乡德邦牧业有限公司是一家大型种猪养殖场,在高速发展的同时存在两个急需解决的问题:1、养殖场猪粪尿污染环境;2、高塘乡已建的300余口户用沼气池大部分因缺乏原料致使沼气池闲置,农户买化肥、农药种植粮食、蔬菜,农作物受到污染。 二、基于顶点赋权分析确定规划实现的管理对策:略 三、基于逐树入仿真技术建立仿真入树模型 建立流位流率系: {(年出栏L1(t)(头),年出栏变化量R1(t)(头/年)),(规模养殖利润L2(t)(万元),规模养殖利润年变化量R2(t)(万元/年)),(日均存栏L3(t(头),日均存栏年变化量R3(t)(头/年)),(年猪尿量L4(t)(t),猪尿年变化量R4(t)(t/年)),(场猪尿年产沼气量L5(t)(m^3),场猪尿产沼气年变化量R5(t)(m^3/年)),(年猪粪量L6(t)(t),猪粪年变化量(t)(t/年)),(户猪粪年产沼气量L7(t)(m^3),户猪粪产沼气年变化量L7(t)(m^3/年))}

据实际意义,将流位流率系分为两部分 第一部分——生产.销售.利润流位流率系 {(年出栏L1(t)(头),年出栏变化量R1(t)(头/年)),(规模养殖利润L2(t)(万元),规模养殖利润年变化量R2(t)(万元/年)),(日均存栏L3(t(头),日均存栏年变化量R3(t)(头/年))} 第二部分——生物质资源开发流位流率系 {(年猪尿量L4(t)(t),猪尿年变化量R4(t)(t/年)),(场猪尿年产沼气量L5(t)(m^3),场猪尿产沼气年变化量R5(t)(m^3/年)),(年猪粪量L6(t)(t),猪粪年变化量(t)(t/年)),(户猪粪年产沼气量L7(t)(m^3),户猪粪产沼气年变化量L7(t)(m^3/年))}第一部分——逐枝建树逐树仿真建立生产.销售.利润子模型 (一)年出栏年变化量R1(t)(头/年)仿真流率基本入树T1(t) 1.逐枝建立的R1(t)(头/年)前期流率基本入树T1(t)见图3.1 图3.1年出栏变化量R1(t)(头/年)前期流率基本入树T1(t) 2.建立年出栏变化量R1(t)(头/年)流率基本入树T1(t)各变量方程:略

酶促反应动力学实验

酶动力学综合实验 实验(一)——碱性磷酸酶Km值的测定 【目的要求】 1.了解底物浓度对酶促反应速度的影响 2.了解米氏方程、Km值的物理意义及双倒数作图求Km值的方法。 【实验原理】 1、碱性磷酸酶: 碱性磷酸酶是广泛分布于人体各脏器器官中,其中以肝脏为最多。其次为肾脏、骨骼、肠和胎盘等组织。但它不是单一的酶,而是一组同功酶。本实验用的碱性磷酸酶是从大肠杆菌中提取的。 2、米氏方程: Michaelis-Menten 在研究底物浓度与酶促反应速度的定量关系时,导出了酶促反应动力学的基本公式,即: 错误!未找到引用源。(1) 式中:v表示酶促反应速度, 错误!未找到引用源。表示酶促反应最大速度, [S]表示底物浓度, 错误!未找到引用源。表示米氏常数。 3、错误!未找到引用源。值的测定主要采用图解法,有以下四种: ①双曲线作图法(图1-1,a) 根据公式(1),以v对[s]作图,此时1/2错误!未找到引用源。时的底物浓度[s]值即为Km值,以克分子浓度(M)表示。这种方法实际上很少采用,因为在实验条件下的底物浓度很难使酶达到饱和。实测错误!未找到引用源。一个近似值,因而1/2错误!未找到引用源。不精确。此外由于v对[S]的关系呈双曲线,实验数据要求较多,且不易绘制。 ②Lineweaver- Burk作图法双倒数作图法(图1-1,b) 实际工作中,常将米氏方程(式(1))作数学变换,使之成为直线形式,测定要方便、精确得多。其中之一即取(1)式的倒数,变换为Lineweaver- Burk方程式:错误!未找到引用源。(2) 以错误!未找到引用源。对错误!未找到引用源。作图,即为y=ax+b形式。此时斜率为错误!未找到引用源。,纵截距为错误!未找到引用源。。把直线外推与横轴相交,其截距相交,其截距即为—错误!未找到引用源。。 ③Hofstee作图法(略) 把(2)式等号两边乘以错误!未找到引用源。,得: 错误!未找到引用源。(3) 以v对错误!未找到引用源。作图,这时斜率为错误!未找到引用源。,纵截距

生物化学(第三版)第九章 酶促反应动力学课后习题详细解答_ 复习重点

第九章酶促反应动力学 提要 酶促反应动力学是研究酶促反应的速率以及影响此速率各种因素的科学。它是以化学动力学为基础讨论底物浓度、抑制剂、pH、温度及激活剂等因素对酶反应速率的影响。化学动力学中在研究化学反应速率与反应无浓度的关系时,常分为一级反应、二级反应及零级反应。研究证明,酶催化过正的第一步是生成酶-底物中间产物,Michaelis-Menten该呢举中间产物学说的理论推导出酶反应动力学方程式,即Km、Vmax、kcat、kcat/Km。Km是酶的一个特征常数,以浓度为单位,Km有多种用途,通过直线作图法可以得到Km及Vmax。Kcat称为催化常数,又叫做转换数(TN值),它的单位为s-1,kcat值越大,表示酶的催化速率越高。kcat/Km常用来比较酶催化效率的参数。酶促反应除了单底物反应外,最常见的为双底物反应,按其动力学机制分为序列反应和乒乓反应,用动力学直线作图法可以区分。 酶促反应速率常受抑制剂影响,根据抑制剂与酶的作用方式及抑制作用是否可逆,将抑制作用分为可逆抑制作用及不可逆抑制作用。根据可逆抑制剂与底物的关系分为竞争性抑制、非竞争性抑制及反竞争性抑制3类,可以分别推导出抑制作用的动力学方程。竞争性抑制可以通过增加底物浓度而解除,其动力学常数Kˊm变大,Vmax不变;非竞争性抑制Km不变,Vˊmax变小;反竞争性抑制Kˊm及Vˊmax均变小。通过动力学作图可以区分这3种类型的可逆抑制作用。可逆抑制剂中最重要的是竞争性抑制,过度态底物类似物为强有力的竞争性抑制剂。不可逆抑制剂中,最有意义的为专一性Ks型及kcat型不可逆抑制剂。研究酶的抑制作用是研究酶的结构与功能、酶的催化机制、阐明代谢途径以及设计新药物的重要手段。 温度、pH及激活剂都会对酶促反应速率产生重要影响,酶反应有最适温度及最适pH,要选择合适的激活剂。在研究酶促反应速率及测定酶的活力时,都应选择酶的最适反应条件。 习题 1.当一酶促反应进行的速率为Vmax的80%时,在Km和[S]之间有何关系?[Km=0.25[S]] 解:根据米氏方程:V=Vmax[S]/(Km+[S])得: 0.8Vmax=Vmax[S]/(Km+[S]) Km=0.25[S] 2.过氧化氢酶的Km值为2.5×10-2 mol/L,当底物过氧化氢浓度为100mol/L时,求在此浓度下,过氧化氢酶被底物所饱和的百分数。[80%] 解:f ES=[S]/(Km+[S])=100×10-3/(2.5×10-2+100×10-3)=80% 3.由酶反应S→P测得如下数据: [S]/molL-1V/nmolL-1min-1 6.25×10-615.0 7.50×10-556.25 1.00×10-460.0 1.00×10-374.9 1.00×10-275.0 (1)计算Km及Vmax。[Km:2.5×10-5,Vmax:75 nmolL-1min-1] (2)当[S]= 5×10-5 mol/L时,酶催化反应的速率是多少?[50.0 nmolL-1min-1]

蔗糖转化反应动力学 实验报告

蔗糖转化反应动力学 姓名: 学号: 班级: 1 实验目的 1) 测定蔗糖水溶液在酸催化作用下的反应速率常数和半衰期。 2) 了解旋光度的概念,学习旋光度的测量方法及在化学反应动力学研究中的应用。 2 原理 蔗糖在水溶液中的转化反应为 此反应是一个二级反应,在纯水中反应速率极慢,通常需要在H + 的催化作用下进行。当蔗糖含量不大时,反应过程中水是大量存在的,尽管有部分水分子参加了反应,仍可认为整个反应过程中水的浓度是恒定的。H +是催化剂,其浓度也保持不变。则此蔗糖转化反应可以看作是准一级反应,反应速率为 蔗果葡蔗kc dt dc dt dc dt dc ===-=υ 式中:k 为蔗糖转化反应速率常数,c 蔗 为时间t 时蔗糖的浓度。 当t =0时, kt c c =蔗 蔗,0ln 当蔗蔗,02 1 c c = 时,相应的时间t 即为半衰期21t ,且 k k t 6931 .02ln 21= = 测定不同t 时的c 蔗可求得k 。在化学反应动力学研究中,要求能实时测定某反应物或生成物的浓度,且测量过程对反应过程没有干扰,本实验通过测量旋光度来代替反应物或生成物浓度的测量。 旋光性物质的旋光角 A m m αα= 式中:αm 为旋光性物质的质量旋光本领,与温度、溶剂、偏振光波长等有关;m 为旋光性物质在截面积为A 的线性偏振光束途径中的质量。由此式可得 Mlc Al nMl m m ααα== M 为旋光性物质的摩尔质量,l 为旋光管的长度。当温度、溶剂、偏振光波长、旋光物质与旋光管长度一定时,将上式改写为 Ac =α 式中A 为常数。当旋光管中同时存在多种旋光性物质时,总的旋光角等于各旋光性物质旋光角之和。 蔗糖、葡萄糖和果糖都具有旋光性,但旋光能力不同,因此,随着反应的

第九章 酶促反应动力学

第九章酶促反应动力学 一、是非判断题 1.酶促反应的初速度与底物浓度无关。() 2.当底物处于饱和水平时,酶促反应的速度与酶浓度成正比。() 3.某些酶的Km由于代谢产物存在而发生改变,而这些代谢产物在结构上与底物无关。()4.在非竞争性抑制剂存在下,加入足量的底物,酶促的反应能够达到正常Vmax。()5.碘乙酸因可与活性中心-SH以共价键结合而抑制巯基酶,而使糖酵解途径受阻。()6.从鼠脑分离的己糖激酶可以作用于葡萄糖(K m=6×10-6mol/L)或果糖(K m=2×10-3mol/L),则己糖激酶对果糖的亲和力更高。() 7.K m是酶的特征常数,只与酶的性质有关,与酶浓度无关。() 8.K m是酶的特征常数,在任何条件下,K m是常数。() 9.K m是酶的特征常数,只与酶的性质有关,与酶的底物无关。() 10.一种酶有几种底物就有几种K m值。() 11.当[S]>>K m时,V趋向于V max,此时只有通过增加[E]来增加V。() 12.酶的最适pH值是一个常数,每一种酶只有一个确定的最适pH值。() 13.酶的最适温度与酶的作用时间有关,作用时间长,则最适温度高,作用时间短,则最适温度低。() 14.金属离子作为酶的激活剂,有的可以相互取代,有的可以相互拮抗。() 15.增加不可逆抑制剂的浓度,可以实现酶活性的完全抑制。() 16.竞争性可逆抑制剂一定与酶的底物结合在酶的同一部位。() 答案 1.错。2.对。3.对。4.错。5.对。6.错。7.对。8.错。9.错。10.对。11.对。12.错。13.错。14.对。15.对。16.错。 二、填空题 1.影响酶促反应速度的因素有、、、、和。 2.丙二酸和戊二酸都是琥珀酸脱氢酶的抑制剂。 3.通常讨论酶促反应的反应速度时,指的是反应的速度,即时测得的反应速度。 4.pH值影响酶活力的原因可能有以下几方面:影响,影响,影响。5.温度对酶活力影响有以下两方面:一方面,另一方面。 6.酶促动力学的双倒数作图(Lineweaver-Burk作图法),得到的直线在横轴的截距为,纵轴上的截距为。 7.磺胺类药物可以抑制酶,从而抑制细菌生长繁殖。 答案 1.[E];[S];pH;T(温度);I(抑制剂);A(激活剂) 2.竞争性 3.初;底物消耗量<5%

9第九章 酶促反应动力学

第九章酶促反应动力学 (一)底物浓度对酶反应速率的影响 (1)OA段:反应底物浓度较低时v与[S]成正比,表现为一级反应, v = k[S]。 根据酶底物中间络合物学说,酶催化反应时,首先和底物结合生成中间复合物ES,然后再生成产物P,并释放出E。 E + S = ES →P + E OA段上,底物浓度小,酶未被底物饱和,有剩余酶,反应速率取决于ES浓度,与[S]呈线性关系,v正比于[S]。 (2)AB段:反应速度不再按正比升高,表现为混合级反应。此时酶渐渐为底物饱和,[E S]慢慢增加,v也慢慢增加,为分数级反应。 (3)BC段:反应速度趋于V max,为零级反应,酶促反应表现出饱和现象。此时底物过量[S]>[E], [E]已全部转为[E S]而恒定,因此反应速率也恒定,为最大反应速率,V max为[E]所决定。 非催化反应无此饱和现象。 酶与底物形成中间复合物已得到实验证实。 (二)酶促反应力学方程式 (1)米氏方程推导 1913年Michaelis和Menten提出并推导出表示[S]与v之间定量关系的米氏方程 V max[S] V = K m + [S] Km:米氏常数,物理意义为反应速率为最大速率V max一半时底物的浓度,单位与底物浓度同。 2.9 酶的抑制作用 失活作用:使酶蛋白变性而引起酶活力丧失。 抑制作用:酶的必需基团的化学性质改变而引起酶活力降低或丧失,但不引起酶蛋白变性。 引起抑制作用的物质称为抑制剂。研究酶的抑制剂,可以研究酶的结构与功能、酶催化机制,进行药物、农药的设计与筛选。 (一)抑制作用的类型: (1)不可逆抑制作用: 抑制剂与酶必需基团以共价键结合而引起酶活力丧失,不能用透析、超过滤等物理方法除去抑制剂而使酶复活,酶被化学修饰。 (2)可逆抑制作用: 抑制剂与酶以非共价键结合而使酶活力降低或丧失,能用物理方法除去抑制剂而使酶复活。 可逆抑制又分为三种类型。 1.竞争性抑制:抑制剂(I)和底物(S)竞争酶的结合部位,从而影响了底物与酶的正常结 合。 抑制剂结构大多与底物类似,许多底物过渡态类似物为抑制剂。抑制剂与酶活性部位结合形成EI复合物,抑制酶与底物的结合。竞争性抑制可以通过增加底物浓度而解除,如丙二酸或戊二酸对琥珀酸脱氢酶的抑制。 2.非竞争性抑制:底物和抑制剂同时和酶结合,两者无竞争作用。I与S结构无共同之处, 酶活性降低或被抑制,不能用增加底物浓度来解除抑制,如Leu是精氨酸酶非竞争性抑制剂。 3.反竞争性抑制:酶只有与底物结合后才能与抑制剂结合。常见于多底物反应中,如肼类化 合物抑制胃蛋白酶。 (二)可逆抑制作用和不可逆抑制作用动力学鉴别 加入一定量抑制剂,以v与酶浓度[E]作图。 加不可逆抑制剂使直线原点右移,斜率不变,加入酶使浓度大于不可逆抑制剂,才表现酶

分子动力学实验报告

分子动力学实验报告 实验名称平衡晶格常数和体弹模量 实验目的 1、学习Linux系统的指令 2、学习lammps脚本的形式和内容 实验原理 原子、离子或分子在三维空间做规则的排列,相同的部分具有直线周期平移的特点。为了描述晶体结构的周期性,人们提出了空间点阵的概念。为了说明点阵排列的规律和特点,可以在点阵中去除一个具有代表性的基本单元作为点阵的组成单元,称为晶胞。晶胞的大小一般是由晶格常数衡量的,它是表征晶体结构的一个重要基本参数。 在本次模拟实验中,给定Si集中典型立方晶体结构:fcc,bcc,sc,dc。根据 可判定dc结构是否能量最低,即是否最稳定 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。弹性模量是描述物质弹性的一个物理量,是一个总称,包括杨氏模量、剪切模量、体积模量等。在弹性变形范围内,物体的体应力与相应体应变之比的绝对值称为体弹模量。表达式为 B=? dP dV V 式中,P为体应力或物体受到的各向均匀的压强,dV V为体积的相对变化。对于立方晶胞,总能量可以表示为ε=ME,E为单个原子的结合能,M 为单位晶胞内的原子数。晶胞体积可以表示为V=a3,那么压强P为 P=?dε dV =? M 3a2 dE da 故体积模量可以表示为 根据实验第一部分算出的平衡晶格常数,以及能量与晶格间距的函数关系,可以求得对应晶格类型的体积模量。并与现有数据进行对比。 实验过程 (1)平衡晶格常数

将share文件夹中关于第一次实验的文件夹拷贝到本地,其中包含势函数文件和input文件。 $ cp□-r□share/md_1□. $ cd□md_1 $ cd□1_lattice 通过LAMMPS执行in.diamond文件,得到输出文件,包括体系能量和cfg文件,log文件。 $ lmp□-i□in.diamond 用gnuplot画图软件利用输出数据作图,得到晶格长度与体系能量的关系,能量最低处对应的晶格长度即是晶格常数。 Si为diamond晶格结构时晶格长度与体系能量关系图如图, 由图可得能量最小处对应取a0=5.43095。 Si为fcc晶格结构时晶格长度与体系能量关系图如图, a0=4.15。 改写后的sc、bcc脚本文件分别如图所示

造球、焙烧、还原反应动力学综合实验报告

造球、焙烧、还原反应动力学综合实验 摘要:本实验主要分为造球、生球焙烧、还原反应三个部分,全面的演示了炼铁的全过程。其中造球包括生球形成,生球抗压强度测定,生球落下强度测定。 关键词:铁矿粉造球生球焙烧球团还原反应 The experiment of pelletizing,Pellet roasting and reduction reaction Abstract:This experiment mainly have three parts,pelletizing, Pellet roasting and reduction reaction. It shows all the Process of Iron-making. the pelletizing contains Determination of compressive strength of green-ball, Determination of Falling strength of green-ball。 Key word: pelletizing Pellet roasting reduction reaction 正文: 一、造球实验 造球是细磨物料在造球设备中被水湿润,借助机械力的作用而滚动成球的过程。在工业生产中,湿料连续加到造球机中,母球在造球机中不断的滚动而被压密,引起毛细管形状和尺寸的改变,从而使过剩的毛细管被迁移到母球表面,潮湿的母球在滚动中很容易粘上一层润湿程度较低的湿料。再压密,表面再粘上一层湿料,如此反复多次,母球不断长大,一直到母球中的摩擦力比滚动时的机械压密

作用力大为止,如果要使母球继续长大,必须人为地使母球的表面过分湿润,即向母球表面喷水,母球长大应满足以下3个条件: (1)机械外力的作用,使滚动粘附料层和压密; (2)有润湿程度较低的物料,能粘附在过湿的母球表面; (3)母球表面必须有过湿层,必要时可通过喷水实现。 实验设备:造球机,重量计 生球要求:合适的生球抗压强度和生球落下强度 配料:95%以上的精矿粉,添加剂为膨润土及一些矿质元素等 实验生球直径:10~12mm 生球测试数据 二、生球焙烧实验 生球烧结的目的: 铁矿粉在一定的高温作用下,部分颗粒表面发生软化和熔化,产生一定量的液相,并与其他未熔矿石颗粒作用,冷却后,液相将矿粉颗粒粘结成块,达到人造富矿的目的。 生球烧结的目的: (1)为高炉提供冶金性能好的优质烧结矿; (2)除去矿石中的有害杂质; (3)可以扩大炼铁原料的来源。 实验设备:三段式电阻炉模拟焙烧机 球团矿的焙烧阶段: 干燥、焙烧、均热、冷却五个阶段

生物化学-生化知识点_酶促反应动力学 (9章)

§2.8 酶促反应动力学(9章 P351) 一一一底物浓度对酶反应速率的影响 用反应初速度v对底物浓度[S]作图得P355 图9-6。 曲线分以下几段: 一1一OA段:反应底物浓度较低时v与[S]成正比,表现为一级反应, v = k[S]。 根据酶底物中间络合物学说,酶催化反应时,首先和底物结合生成中间 复合物ES,然后再生成产物P,并释放出E。 E + S = ES → P + E OA段上,底物浓度小,酶未被底物饱和,有剩余酶,反应速率取决于ES浓 度,与[S]呈线性关系,v正比于[S]。 一2一AB段:反应速度不再按正比升高,表现为混合级反应。此时酶渐渐为底物饱和,[E S]慢慢增加,v也慢慢增加,为分数级反应。 一3一BC段:反应速度趋于V max,为零级反应,酶促反应表现出饱和现象。此时底物过量[S]>[E], [E]已全部转为[E S]而恒定,因此反应速率也恒定,为最大反应速率,V m 为[E]所决定。 ax 非催化反应无此饱和现象。 酶与底物形成中间复合物已得到实验证实。 一一一酶促反应力学方程式 一1一米氏方程推导 1913年Michaelis和Menten提出并推导出表示[S]与v之间定量关系的米氏方程 V max[S] V = K m + [S] Km:米氏常数,物理意义为反应速率为最大速率V max一半时底物的浓度, 单位与底物浓度同。 推导:酶促反应分两步进行。 k1 k3 E + S ES → P + E k2 v = k3 [ES] 一般k3为限速步骤 v = k3 [ES] … ① 1.[ES] 生成速率: d[ES]/dt = k1([E] - [ES]) [S] 2.[E S]分解速率:

实验报告总结(精选8篇)

《实验报告总结》 实验报告总结(一): 一个长学期的电路原理,让我学到了很多东西,从最开始的什么都不懂,到此刻的略懂一二。 在学习知识上面,开始的时候完全是老师讲什么就做什么,感觉速度还是比较快的,跟理论也没什么差距。但是之后就觉得越来越麻烦了。从最开始的误差分析,实验报告写了很多,但是真正掌握的确不多,到最后的回转器,负阻,感觉都是理论没有很好的跟上实践,很多状况下是在实验出现象以后在去想理论。在实验这门课中给我最大的感受就是,必须要先弄清楚原理,在做实验,这样又快又好。 在养成习惯方面,最开始的时候我做实验都是没有什么条理,想到哪里就做到哪里。比如说测量三相电,有很多种状况,有中线,无中线,三角形接线法还是Y形接线法,在这个实验中,如果选取恰当的顺序就能够减少很多接线,做实验就应要有良好的习惯,就应在做实验之前想好这个实验要求什么,有几个步骤,就应怎样安排才最合理,其实这也映射到做事情,不管做什么事情,就应都要想想目的和过程,这样才能高效的完成。电原实验开始的几周上课时间不是很固定,实验报告也累计了很多,第一次感觉有那么多实验报告要写,在交实验报告的前一天很多同学都通宵了的,这说明我们都没有合理的安排好自己的时间,我就应从这件事情中吸取教训,合理安排自己的时间,完成就应完成的学习任务。这学期做的一些实验都需要严谨的态度。在负阻的实验中,我和同组的同学连了两三次才把负阻链接好,又浪费时间,又没有效果,在这个实验中,有很多线,很容易插错,所以要个性仔细。 在最后的综合实验中,我更是受益匪浅。完整的做出了一个红外测量角度的仪器,虽然不是个性准确。我和我组员分工合作,各自完成自己的模块。我负责的是单片机,和数码显示电路。这两块都是比较简单的,但是数码显示个性需要细致,由于我自己是一个粗心的人,所以数码管我检查了很多遍,做了很多无用功。 总结:电路原理实验最后给我留下的是:严谨的学习态度。做什么事情都要认真,争取一次性做好,人生没有太多时间去浪费。 实验报告总结(二): 在分子生物学实验室为期两个月的实习使我受益匪浅,我不仅仅学习到了专业知识,更重要的是收获了经验与体会,这些使我一生受用不尽,记下来与大家共勉: 1.手脚勤快,热心帮忙他人。初来匝道,不管是不是自己的份内之事,都就应用心去完成,也许自己累点,但你会收获很多,无论是知识与经验还是别人的称赞与认可。 2.多学多问,学会他人技能。学问学问,无问不成学。知识和经验的收获能够说与勤学好问是成正比的,要记住知识总是垂青那些善于提问的人。 3.善于思考,真正消化知识。有知到识,永远不是那么简单的事,当你真正学会去思考时,他人的知识才能变成你自己的东西。 4.前人铺路,后人修路。墨守陈规永远不会有新的建树,前人的道路固然重要,但是学会另辟蹊径更为重要。

物理化学实验报告-乙酸乙酯皂化反应动力学

乙酸乙酯皂化反应动力学 一、实验目的 1)了解二级反应的特点。 2)用电导法测定乙酸乙酯皂化反应的速率常数。 3)由不同温度下的速率常数求反应的活化能。 二、实验原理 乙酸乙酯在碱性水溶液中的消解反应即皂化反应,其反应式为: +→+ 反应式是二级反应,反应速率与及的浓度成正比。用分别表示乙酸乙酯和氢氧化钠的初始浓度,表示在时间间隔内反应了的乙酸乙酯或氢 氧化钠的浓度。反应速率为: 为反应速率常数,当时,上式为: 反应开始时,反应物的浓度为,积分上式得: 在一定温度下,由实验测得不同时的值,由上式可计算出值。 改变实验温度,求得不同温度下的值,根据Arrhenius方程的不定积分式有:

以对作图,得一条直线,从直线斜率可求得。 若求得热力学温度时的反应速率常数,也可由Arrhenius方程的定积分式变化为下式求得值: 本实验通过测量溶液的电导率代替测量生成物浓度(或反应物浓度)。乙酸乙酯、乙醇是非电解质。在稀溶液中,非电解质电导率与浓度成正比,溶液的电导率是各离子电导之和。反应前后离子浓度不变,整个反应过程电导率的变化取决于与浓度的变化,溶液中的导电能力约为的五倍,随着反应的进行,浓度降低,的尝试升高,溶液导电能力明显下降。 一定温度下,在稀溶液中反应,为溶液在时的电导率,分别是与、电导率有关的比例常数,于是: ,; ,; ,; 由此得 即

即 而即 上式变形为: 以对作图为一直线,斜率为,由此可求出。三、仪器和试剂 恒温槽、电导率仪、电导电极、叉形电导池、秒表、碱式滴定管、10ml、25m移液 管、100mL,50ml容量瓶、乙酸乙酯(A.R.)、氢氧化钠溶液(0.04mol·) 四、实验步骤 1.准备溶液: 1)打开恒温槽,设置温度为25℃。将叉形电导池洗净、烘干。同时清洗两个100ml、一个50ml的容量瓶;

酶促反应动力学实验报告

酶促反应动力学实验报告 杨恩原 实验目的: 1.观察底物浓度对酶促反应速度的影响 2.观察抑制剂对酶促反应速度的影响 3.掌握用双倒数作图法测定碱性磷酸酶的Km值 实验原理: 一、底物浓度对酶促反应速度的影响 在温度、pH及酶浓度恒定的条件下,底物浓度对酶的催化作用有很大的影响。在一般情况下,当底物浓度很低时,酶促反应的速度(v)随底物浓度[S]的增加而迅速增加,但当底物浓度继续增加时,反应速度的增加率就比较小,当底物浓度增加到某种程度时反应速度达到一个极限值(即最大速度Vmax)。底物浓度和反应速度的这种关系可用米氏方程式来表示(Michaelis-Menten方程)即: 式中Vmax为最大反应速度,Km为米氏常数,[S]为底物浓度 当v=Vmax/2时,则Km=[S],Km是酶的特征性常数,测定Km是研究酶的一种重要方法。但是在一般情况下,根据实验结果绘制成的是直角双曲线,难以准确求得Km和Vmax。若将米氏方程变形为双倒数方程(Lineweaver-Burk方程),则此方程为直角方程,即: 以1/V和1/[S]分别为横坐标和纵坐标。将各点连线,在横轴截距为-1/Km,据此可算出Km值。

本实验以碱性磷酸酶为例,测定不同浓度底物时的酶活性,再根据1/v和1/[S]的倒数作图,计算出其Km值。 二、抑制剂对酶促反映的影响 凡能降低酶的活性,甚至使酶完全丧失活性的物质,成为酶的抑制剂。酶的特异性抑制剂大致上分为可逆性和不可逆性两类。可逆性抑制又可分为竞争性抑制和非竞争性抑制等。竞争性抑制剂的作用特点是使该酶的Km值增大,但对酶促反映的最大速度Vmax值无影响。非竞争性抑制剂的作用特点是不影响[S]与酶的结合,故其Km值不变,然而却能降低其最大速度Vmax。本实验选取Na2HPO4作为碱性磷酸酶的抑制物,确定其抑制作用属于哪种类型。 实验步骤: 实验一:底物浓度对酶促反应速度的影响 管号 试剂 1.取试管9支,将L基质液稀释成下列不同浓度:

分子模型实验报告

分子模型实验报告 篇一:分子模拟实验实验报告生物大分子 分子模拟实验作业——生物大分子 一、实验部分 12-3-1获得PDB号为“1HCK”的蛋白(human-cyclin-dependent kinase 2,i,e.,CKD2和ATP的结合晶体结构),并采用不同的模型观察其特点 ①分别用卡通模型和丝带模型显示生物大分子结构,并用球棍模型、棒状模型显示其中小分子、金属离子等。 参考文献: Analysis of CDK2 Active-Site Hydration: A Method to Design New Inhibitors Zdeneˇk Krˇ?′z PROTEINS: Structure, Function, and Bioinformatics 55:258–274 (XX) 12.2 分子对接 ①聚合物对接前效果图 ②聚合物对接后效果图 对接后实际距离和设置的最优值 12-3-2在样本文件中,创建冰的晶体结构,分别做温度为260K,273K,298K,373K下的分子动力学模拟(10 ps),观察晶体机构的变化情况,并做定性解释。

①不同温度下冰晶体结构图: 原始冰晶体结构图 由冰晶体在不同温度下的结构可见,随温度升高,冰晶体的各个水分子之间的距离不断增加,晶体结构趋向于分散无序状。 ②不同温度下,冰晶体分子动力学模拟图 ③不同温度下体系的总能量与势能 由曲线形状可见,经过分子动力学模拟之后,体系的能量降低,变得更加稳定。 由计算结果可见,体系的总能量和势能随温度的升高而增大。因为当温度升高时,分子的热运动加剧,使分子的伸缩、转动、振动势能增加从而使分子总能量增加,而体系的是能增加是因为非键相互作用尤其是分子间氢键相互作用减弱。 二、实验心得与体会 本次实验主要进行了生物大分子的模拟。生物大分子一般包含上千个原子,目前还不能应用量子化学从头计算方法模拟,常用的方法有QM/MM方法,和纯粹的分子动力学模型。 1.关于分子力学要求掌握四点内容:(1)分子力学中,离子间的相互作用势能函数是什么?(2)势函数中存在特定的参数,怎么给参数赋初值?(3)原子类型怎样确定?(4)力场有哪些?各自的适用范围是什么?下面详细解释:

物理化学实验报告讲义一级反应动力学—H2O2 催化分解速率系数的测定

实验31 一级反应动力学—H 2O 2催化分解速率系数的测定 预习要求 1. 本实验中使用什么物质作为催化剂;其使用时的注意事项。 2. 本实验反应过程中反应物浓度的变化的表示方法。 3. 反应速率系数的概念及影响因素。 实验目的 1.了解催化剂在催化反应中的作用特征。 2.测量H 2O 2催化分解反应的速率系数及表观活化能。 实验原理 对于反应: a A + b B = y Y + z Z 其反应速率与反应物的量浓度的关系可通过实验测定得到。多数反应的速率方程的形式为: υA = k A c A α c B β 若实验确定某反应物A 的消耗速率与反应物A 的浓度的一次方成正比,则该反应对A 为一级反应。其反应速率方程为: —d c A / d t = k A c A (3-19) 以过氧化氢分解反应为例,H 2O 2 → H 2O + ?O 2 实验证明过氧化氢分解反应的反应速率与H 2O 2(A )浓度的关系符合式(3-19)。将式(3-19)积分得: ln (c A / c A ,0)= -k A t (3-20) 式中:k A ——反应速率系数; c A ——反应时刻为t 时H 2O 2的浓度; c A,0——反应开始前H 2O 2的浓度。 在反应不同时刻测得H 2O 2的浓度,代入式(3-20)即可求出反应速率系数k A 。H 2O 2分解过程中有O 2放出。若保持生成O 2的温度、压力不变,可通过测量放出O 2的体积,经过代换得到溶液中H 2O 2的浓度。 设浓度为c A ,0的H 2O 2全部分解放出的氧气体积为V ∞,反应时刻t 时H 2O 2分解放出的氧气体积为V t ,则 c A ,0∝V ∞ ; c A ∝(V ∞ – V t ) 将以上关系式代入式(3-20)得: t k V V V t A ∞ ∞-=-ln (3-21) 或 V t k )V V (t ∞A ∞lg +2.303-=-lg (3-22) 以lg (V ∞-V t )对t 作图。如果得直线,则可验证过氧化氢分解反应为一级反应。由直线斜率可求得反应速率系数k A 。 按照阿仑尼乌斯方程: ??? ??--=T T R E k k a 121 211ln (3-23) 只要正确测量了两个温度下的速率系数,就可以利用式(3-23)计算反应的表观活化能。 H 2O 2分解反应的速率受H 2O 2的浓度,反应温度,pH ,催化剂种类及浓度等因素的影响。本实验选用Fe(NH 4)(SO 4)2 做催化剂,测得的速率系数与温度、Fe 3+离子浓度和溶

高分子物理实验报告

竭诚为您提供优质文档/双击可除高分子物理实验报告 篇一:高分子物理实验报告 高分子物理实验报告 实验名称: __________________________________________________ 学院:食品科学与工程 专业:包装工程 小组: 姓名: 学号: 任课老师:董同力嘎 指导教师:孙文秀 实验完成日期:20XX.12.17-20XX.01.04 一、实验项目综合训练方案 二、实验结果与总结 注明:(1)实验结果与总结用手写,其它用计算机打印,书写要整洁。

(2)必须进行误差分析。 篇二:高分子物理实验总结(加强版) 实验一熔体流动速率的测定 塑料熔体流动速率(mFR):是指在一定温度和负荷下,塑料熔体每10min通过标准口模的质量。实验原理:一定结构的塑料熔体,若所测得mFR愈大,表示该塑料熔体的平均分子量愈低,成型时流动性愈好。但此种仪器测得的流动性能指标是在低剪切速率下获得的,不存在广泛的应力-应变速率关系。因而不能用来研究塑料熔体粘度与温度,粘度与剪切速率的依赖关系,仅能比较相同结构聚合物分子量或熔体粘度的相对数值。 (1)为什么要分段取样?答:分段取样取平均值能使 实验结果更精确,且利于去除坏点,减小试验误差。 (2)哪些因素影响实验结果?举例说明。答:①标准 口模内径的选择不同的塑料应选择不同的口模内径,否则实验误差较大。②实验温度物料的形态与温度有关,不同的温度下,物料的熔体流动速率不同。③负荷不同负荷下,压力不同则影响样条质量。 实验二扫描电子显微镜观察物质表面微观结构 背散射电子 背散射电子是被固体样品中的原子核反弹回来的一部 分入射电子,其中包括弹性背散射电子和非弹性背散射电子。

高分子物理实验报告(精)

光学解偏振法测聚合物的结晶速度 一、实验目的 1、加深对聚合物的结晶动力学特征的认识。 2、了解光学解偏振法测定结晶速度的基本原理。 3、熟悉 JJY -3型结晶速度仪的操作。 4、掌握光学解偏振法测定等规聚丙烯结晶速度的实验技术。二、实验原理 熔融态结晶的聚合物大多数都呈现为球晶结构。通过电子显微镜观察球晶长大的过程时, 起始晶核先转变成一个小的微纤维, 在结晶的过程中, 它又以一些匀称的空间角度向外支化出微纤束, 当长得足够大时, 这些微纤束就构成球状结晶。电子衍射实验证明了球晶中分子链(c 轴总是垂直于球晶的半径方向,而 b 轴总是沿着球晶半径方向,如图 1所示,其中 a 、 b 、 e 轴表示单位晶胞在各方向上的取向。

分子链的取向排列使球晶在光学性质上是各向异性的, 都会发生双折射。光学解偏振法是根据聚合物结晶过程中伴随着双折射性质变化的原理, 即由置于正交偏光镜之间的聚合物熔体结晶时产生的解偏振光强度变化来确定结晶速度。 由实验测定等温结晶的解偏振光强-时间曲线 (图 2 ,从曲线可以看出,在达到样品的热平衡时间后, 首先是结晶速度很慢的诱导期, 在此期间没有透过光的解偏振发生, 而随着结晶开始, 解偏振光强的增强越来越快, 并以指数函数形式增大到某一数值后又逐渐减小, 直到趋近于一个平衡值。对于聚合物而言, 因链段松弛时间范围很宽, 结晶终止往往需要很长时间, 为了实验测量的方便,通常采用 1t 作为 表征聚合物结晶速度的参数, t 为半结晶期,可从图 2中直接求得,即令 2 1 0=--∞∞I I I I t 时 所对应的时间。 根据过冷熔体本体结晶的球状对称生长理论,阿夫拉米(Avrami 指出,聚合物结晶过程可用下面的方程式描述: 解偏振光强 时间 图 2 等温结晶的解偏振光强—时间曲线 n Kt e

蔗糖转化反应动力学实验报告

蔗糖转化反应动力学 姓名 学号 班级 实验日期 1 实验目的 (1) 测定蔗糖水溶液在酸催化作用下的反应速率常数和半衰期。 (2) 学习旋光度测量方法及在化学反应动力学研究中的应用。 2 实验原理 蔗糖溶液在酸性介质中可水解生成葡萄糖和果糖。反应如下: ()() 果糖葡萄糖612661262112212O H C O H C O H O H C H +→++ 水解反应中,水是大量的,虽然有部分水分子参加了反应,但与溶质浓度的改变相比可以认为它的浓度是恒定的,而且氢离子是催化剂,其浓度也保持不变,故反应速率只与蔗糖浓度有关,可视为一级反应,其速率方程为:kc dt dc =- 积分上式得:kt c c =0 ln 反应的半衰期与反应速率常数的关系式为:k k t 693 .02ln 2 1== 由积分式不难看出:只要测得不同反应时刻对应的反应物浓度,就可以lnc 对c 作图得 到一条直线,由直线斜率求得反应速率常数。然而,反应是在不断进行,要快速分析出不同时刻反应物的浓度是困难的。在本实验中,蔗糖及其水解产物都具有旋光性,即能够通过它们的偏振光的偏振面旋转一定的角度(该角度称为旋光度,常以α 符号表示),来量度其浓度。蔗糖是右旋的,水解混合物是左旋的,所以随水解反应的进行,反应体系的旋光度会由右旋逐渐转变为左旋,因此可以利用体系在反应过程中旋光度的改变来量度反应的进程。 当其它条件不变时,旋光度与物质浓度成正比,即AC =α 蔗糖是右旋物质,产物中葡萄糖也是右旋物质,果糖是左旋物质。因此当水解反应进行时,右旋角不断减小,当反应终了时,体系将经过零变成左旋。 设0α、t α和 α∞分别表示反应在起始时刻、t 时刻和无限长时体系的旋光度。反应在相同条件下进行,旋光度与浓度成正比,而且溶液的旋光度为各组成旋光度之和。 由AC =α可导出 )(00∞-=ααK C )(0∞-=ααt K C 由0 ln c kt c =可导出 0 ln t kt αααα∞∞-=- 以0ln()αα∞-对时间t 作图可得一条直线,由直线的斜率即可求得反应速率常数。

分子动力学模拟实验报告doc

分子动力学模拟实验报告 篇一:分子动力学实验报告 md2 分子动力学实验报告 ( XX 至 XX 学年第_2_学期) 班级:姓名:学号:实验名称:晶体点缺陷成绩: 一、实验目的 计算空位形成能和间隙原子形成能。探究形成的空位和间隙原子所在的位置 不同其形成能的变化。以及空位和间隙原子的浓度不同时其空位能和间隙原子形 成能的变化。 二、实验原理 点缺陷普遍存在于晶体材料中,它是晶体中最基本的结构缺陷,对材料的物 理和化学性质影响很大。 根据点缺陷相对于理想晶格位置可能出现的几种主要偏差状态,可将其命名 如下: (1)空位:正常节点位置上出现的原子空缺。 (2)间隙原子(离子):指原子(离子)进入正常格点位置之间的间隙位 (本文来自:小草范文网:分子动力学模拟实验报告)

置。 (3)杂质原子(离子):晶体组分意外的原子进入晶格中即为杂质,杂质 原子若取代晶体中正常格点位置上的原子(离子)即为置换原子(离子),也可 进入正常格点位置之间的间隙位置而成为填隙的杂质原子(离子)。 一般情况下,空位、间隙原子都是构成晶体的原子或离子偏离原有格点所形 成的热缺陷。在一定温度下,晶体中各原子的热振动状态和能量并不同,遵循麦 克斯韦分布规律。热振动的原子某一瞬间可能获得较大的能量,这些较高能量的 原子可以挣脱周围质点的作用而离开平衡位置,进入到晶格内的其他位置,于是 在原来的平衡格点位置上留下空位。根据原子进入晶格内的不同位置,可以将缺 陷分为弗伦克尔(Frenkel)缺陷和肖特基(Schottky)缺陷。 点缺陷都只有一个原子大小的尺度,因此不容易通过实验对其进行直接的观 察。而且实验方法研究缺陷时利用较多的还是缺陷对晶

相关文档