文档库 最新最全的文档下载
当前位置:文档库 › 【CN110020639A】视频特征提取方法及相关设备【专利】

【CN110020639A】视频特征提取方法及相关设备【专利】

【CN110020639A】视频特征提取方法及相关设备【专利】
【CN110020639A】视频特征提取方法及相关设备【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910312917.8

(22)申请日 2019.04.18

(71)申请人 北京奇艺世纪科技有限公司

地址 100080 北京市海淀区北一街2号爱奇

艺创新大厦10、11层

(72)发明人 晋瑞锦 张云桃 

(74)专利代理机构 北京集佳知识产权代理有限

公司 11227

代理人 钱娜 王宝筠

(51)Int.Cl.

G06K 9/00(2006.01)

G06N 3/04(2006.01)

(54)发明名称视频特征提取方法及相关设备(57)摘要本发明提供了一种视频特征提取方法及相关设备,本方案可以对多帧目标视频图像进行时域及空域上的卷积处理,得到第一预设数量通道的第一视频特征,然后对第一预设数量通道的第一视频特征进行分组,并使用不同尺寸的卷积核对各个分组的第一视频特征进行时域上的卷积处理,得到每个分组各自对应的第二预设数量通道的第二视频特征,再对第二视频特征进行空域上的卷积处理,以得到第三预设数量通道的第三视频特征。本方案中,3D卷积神经网络可以将输入的多帧视频图像进行通道分离处理,不同通道在时域上进行不同尺度的卷积处理,分组的方式可以有效地减少网络参数,从而提高视频特征的提取效率,进而使得该网络模型的实际应用效果

更佳。权利要求书3页 说明书11页 附图3页CN 110020639 A 2019.07.16

C N 110020639

A

权 利 要 求 书1/3页CN 110020639 A

1.一种视频特征提取方法,其特征在于,所述方法适用于3D卷积神经网络,包括:

获得多帧目标视频图像;

对所述多帧目标视频图像进行时域及空域上的卷积处理,得到第一预设数量通道的第一视频特征;

对所述第一预设数量通道的第一视频特征进行分组,并使用不同尺寸的卷积核对各个分组的第一视频特征进行时域上的卷积处理,得到每个分组各自对应的第二预设数量通道的第二视频特征;

对所述第二视频特征进行空域上的卷积处理,以得到第三预设数量通道的第三视频特征。

2.根据权利要求1所述的视频特征提取方法,其特征在于,所述对所述第二视频特征进行空域上的卷积处理,以得到第三预设数量通道的第三视频特征,包括:合并每个分组各自的第二预设数量通道的第二视频特征,以得到一组包括第三预设数量通道的第二视频特征;

分别对一组中的每个通道的第二视频特征进行空域上的卷积处理,以得到第三预设数量通道的第三视频特征。

3.根据权利要求1所述的视频特征提取方法,其特征在于,还包括:

对所述第三预设数量通道的第三视频特征进行分组,并使用不同尺寸的卷积核对各个分组的第三视频特征进行时域上的卷积处理,得到每个分组各自对应的第四预设数量通道的第四视频特征。

4.根据权利要求3所述的视频特征提取方法,其特征在于,还包括:

合并每个分组各自的第四预设数量通道的第四视频特征,以得到一组包括第五预设数量通道的第四视频特征;

将所述第一视频特征进行升维处理,以得到第五预设数量的第五视频特征,并将第五预设数量的所述第四视频特征与第五预设数量的所述第五视频特征分别对应相加,以得到第五预设数量的第六视频特征。

5.根据权利要求1所述的视频特征提取方法,其特征在于,所述获得多帧目标视频图像,包括:

获得多帧原始视频图像;

对所述多帧原始视频图像中的至少一帧原始视频图像进行分辨率调整,以得到符合3D 卷积神经网络的分辨率要求的目标视频图像。

6.根据权利要求1所述的视频特征提取方法,其特征在于,所述获得多帧目标视频图像,包括:

获得多帧原始视频图像;

按照预设的帧间隔长度,从所述多帧原始视频图像中间隔抽取原始视频图像,以得到目标视频图像。

7.一种视频特征提取装置,其特征在于,适用于3D卷积神经网络,所述装置包括:

视频图像获得单元,用于获得多帧目标视频图像;

普通卷积处理单元,用于对所述多帧目标视频图像进行时域及空域上的卷积处理,得到第一预设数量通道的第一视频特征;

2

视频与图像处理-文字特征提取

图像文本提取算法研究 摘要: 根据图像中文字与背景区城的形态特征,提出了一种基于形态运算和连通域标记的复杂背景图像文档提取算法。实验结果表明,即使在图像分辨率不高以及文字布局较复杂的情况下,该算法仍然较快较准确地提取出复杂背景图像中的文字。关键词: Ostu,二值化,形态学,连通域 1 引言 近年来,随着计算机和网络技术的发展,网页上的数字化图像和视频呈现爆炸式增长。而随着移动数码摄像设备的普及,用户也可以方便地使用移动设备拍摄自然场景中的数字化图像。同时,传统的图书馆为了满足用户对多媒体内容的查询需求,也开始收藏图像和音视频等内容。多样的信息给人们的生产和生活带来了巨大便利的同时,也使如何能让用户准确迅速地找到自己所需的多媒体内容成为日益突出和紧迫的需求,因而也需要有效的方法来组织和检索这些多媒体内容。 以往的文档分析与识别领域,主要着眼于对一些布局较有规律的二值文档进行字符/图形分割与识别。目前,随着WWW页面中图片的大量使用,以及图像、视频数据库的广泛应用,使得图像成为另一种重要的信息载体。Loprest指出,互联网上相当一部分文字是嵌入在图像中的,而且其中大部分文字并没有在HTML页面的其他地方重复出现[1]。Wong则认为视频图像中的文字可为我们提供关于该视频产品的丰富语义信息图。不幸的是,目前大多数的搜索引擎都无法直接对嵌人在图像中的文字内容进行检索。因此,如何在复杂的图像背景下快速、准确地分割与提取文字将具有广泛的应用前景和研究价值。文献[1]~文献[6]分别在Web图像及视频图像的文字分割领域进行了相关研究。 经大量观察后我们发现,WWW图片、Video图像及杂志封面图片一般具有以下特点: (1)图像中包含色彩较为丰富的文字与背景; (2)图像背景可能由一些具有较多灰度变化的复杂图案构成; (3)图像中文字的分辨率一般不高,这是由于在生成文字时使用了图像处理软件中的反锯齿效果(Anti-Aliased)而造成的; (4)图像中文字布局的随意性较大,而且文字与背景的层次关系可能很复杂。 我们称这类图像为包含复杂背景及文字的图像。本文将讨论如何在这一类图像中提取文字。2 算法描述 本文设计用于实现文本的提取的方法,改方法主要分为三个步骤: 第一步:阈值分割,通过Ostu法计算图像的阈值,并对图像进行二值化,实现目标和背景的分离; 第二步:形态学处理,二值化的图像进行膨胀、腐蚀、开、闭运算,实现文字区域的连通,便于文字区域的提取; 第三步:连通域标记,处理后的图像的大部分连通区域是文字区域。利用连通域标记算法实现连通域的标记,再对每个连通域画矩形框从而实现文档的提取。 2.1 阈值分割 2.1.1 阈值分割方法 为了便于对文字的识别,我们需要将检测到的文字进行二值化。图像二值化的方法主要分为局部阈值二值化和全局阈值二值化两种[7],全局阈值二值化是整幅图像都用同一个阈值进行二值化的方法,其计算简单,但是适合背景简单,灰度直方图只有连个明显的波峰的图像。对于背景复杂、噪声严重或者图像光照分布不均时全局阈值二值化的效果就会很差,造成很多虚景或者造成目标的丢失[8]。局部阈值的方法是将图像分块,对每块使用不同的阈值进行二值化。局部阈值能很好的克服全局阈值所面临的问题,但是局部阈值计算相对较为复杂,对图像的分块方式不同会影响二值化的效果[9]。 图像阈值分割技术的关键在于如何选取阈值。根据其对像素的处理方式,主要分为三类: (1)全局阈值法:是指在二值化过程中只使用一个全局阈值T的方法。它将图像的每个像素的灰度值与T进行比较,若大于T,则取为前景色(白色);否则,取为背景色(黑色)。 设图像的灰度函数为f(x,y),则二值化算法的表达式: 255(,) (,) f x y T f x y > ? =? ?其他 (1)

【CN110020639A】视频特征提取方法及相关设备【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910312917.8 (22)申请日 2019.04.18 (71)申请人 北京奇艺世纪科技有限公司 地址 100080 北京市海淀区北一街2号爱奇 艺创新大厦10、11层 (72)发明人 晋瑞锦 张云桃  (74)专利代理机构 北京集佳知识产权代理有限 公司 11227 代理人 钱娜 王宝筠 (51)Int.Cl. G06K 9/00(2006.01) G06N 3/04(2006.01) (54)发明名称视频特征提取方法及相关设备(57)摘要本发明提供了一种视频特征提取方法及相关设备,本方案可以对多帧目标视频图像进行时域及空域上的卷积处理,得到第一预设数量通道的第一视频特征,然后对第一预设数量通道的第一视频特征进行分组,并使用不同尺寸的卷积核对各个分组的第一视频特征进行时域上的卷积处理,得到每个分组各自对应的第二预设数量通道的第二视频特征,再对第二视频特征进行空域上的卷积处理,以得到第三预设数量通道的第三视频特征。本方案中,3D卷积神经网络可以将输入的多帧视频图像进行通道分离处理,不同通道在时域上进行不同尺度的卷积处理,分组的方式可以有效地减少网络参数,从而提高视频特征的提取效率,进而使得该网络模型的实际应用效果 更佳。权利要求书3页 说明书11页 附图3页CN 110020639 A 2019.07.16 C N 110020639 A

权 利 要 求 书1/3页CN 110020639 A 1.一种视频特征提取方法,其特征在于,所述方法适用于3D卷积神经网络,包括: 获得多帧目标视频图像; 对所述多帧目标视频图像进行时域及空域上的卷积处理,得到第一预设数量通道的第一视频特征; 对所述第一预设数量通道的第一视频特征进行分组,并使用不同尺寸的卷积核对各个分组的第一视频特征进行时域上的卷积处理,得到每个分组各自对应的第二预设数量通道的第二视频特征; 对所述第二视频特征进行空域上的卷积处理,以得到第三预设数量通道的第三视频特征。 2.根据权利要求1所述的视频特征提取方法,其特征在于,所述对所述第二视频特征进行空域上的卷积处理,以得到第三预设数量通道的第三视频特征,包括:合并每个分组各自的第二预设数量通道的第二视频特征,以得到一组包括第三预设数量通道的第二视频特征; 分别对一组中的每个通道的第二视频特征进行空域上的卷积处理,以得到第三预设数量通道的第三视频特征。 3.根据权利要求1所述的视频特征提取方法,其特征在于,还包括: 对所述第三预设数量通道的第三视频特征进行分组,并使用不同尺寸的卷积核对各个分组的第三视频特征进行时域上的卷积处理,得到每个分组各自对应的第四预设数量通道的第四视频特征。 4.根据权利要求3所述的视频特征提取方法,其特征在于,还包括: 合并每个分组各自的第四预设数量通道的第四视频特征,以得到一组包括第五预设数量通道的第四视频特征; 将所述第一视频特征进行升维处理,以得到第五预设数量的第五视频特征,并将第五预设数量的所述第四视频特征与第五预设数量的所述第五视频特征分别对应相加,以得到第五预设数量的第六视频特征。 5.根据权利要求1所述的视频特征提取方法,其特征在于,所述获得多帧目标视频图像,包括: 获得多帧原始视频图像; 对所述多帧原始视频图像中的至少一帧原始视频图像进行分辨率调整,以得到符合3D 卷积神经网络的分辨率要求的目标视频图像。 6.根据权利要求1所述的视频特征提取方法,其特征在于,所述获得多帧目标视频图像,包括: 获得多帧原始视频图像; 按照预设的帧间隔长度,从所述多帧原始视频图像中间隔抽取原始视频图像,以得到目标视频图像。 7.一种视频特征提取装置,其特征在于,适用于3D卷积神经网络,所述装置包括: 视频图像获得单元,用于获得多帧目标视频图像; 普通卷积处理单元,用于对所述多帧目标视频图像进行时域及空域上的卷积处理,得到第一预设数量通道的第一视频特征; 2

模式识别特征选择与提取

模式识别特征选择与提取 中国矿业大学计算机科学与技术学院电子信息科学系 班级:信科11-1班,学号:08113545,姓名:褚钰博 联系方法(QQ或手机):390345438,e-mail:390345438@https://www.wendangku.net/doc/4f12339868.html, 日期:2014 年06月10日 摘要 实际问题中常常需要维数约简,如人脸识别、图像检索等。而特征选择和特征提取是两种最常用的维数约简方法。特征选择是从某些事物中提取出本质性的功能、应用、优势等,而特征提取是对特征空间进行变换,将原始特征空间映射到低维空间中。 本文是对主成分分析和线性判别分析。 关键词:特征选择,特征提取,主成分分析,线性判别分析 1.引言 模式识别的主要任务是利用从样本中提取的特征,并将样本划分为相应的模式类别,获得好的分类性能。而分类方法与分类器设计,都是在d(变量统一用斜体)维特征空间已经确定的前提下进行的。因此讨论的分类器设计问题是一个选择什么准则、使用什么方法,将已确定的d维特征空间划分成决策域的问题。对分类器设计方法的研究固然重要,但如何确定合适的特征空间是设计模式识别系统另一个十分重要,甚至更为关键的问题。如果所选用的特征空间能使同类物体分布具有紧致性,即各类样本能分布在该特征空间中彼此分割开的区域内,这就为分类器设计成功提供良好的基础。反之,如果不同类别的样本在该特征空间中混杂在一起,再好的设计方法也无法提高分类器的准确性。本文要讨论的问题就是特征空间如何设计的问题。 基于主成分分析的特征选择算法的思想是建立在这样的基础上的:主成分分析方法将原始特征通过线性变换映射到新的低维空间时,获得的主成分是去了新的物理意义,难以理解,并且主成分是所有原始特征的线性组合。所以将主成分分析与特征选择相结合,设计多种相似性度量准则,通过找到与主成分相关的关键特征或者删除冗余、不相关以及没有意义的特征,将主成分又重新映射到原始空间,来理解成主成分的实际意义。 基于线性判别分析的高维特征选择将单个特征的Fisher准则与其他特征选择算法相结合,分层消除不相关特征与冗余特征。不相关特征滤波器按照每个特征的Fisher评价值进行特征排序,来去除噪音和不相关特征。通过对高维数据特征关联性的分析,冗余特征滤波器选用冗余度量方法和基于相关性的快速过滤器算法。分别在不同情境下进行数据分类实验,验证其性能。

视频内容特征的提取

视频内容特征的提取 【摘要】本文是基于视频特征提取的技术研究,主要是对关键帧进行特征提取,得到一个尽可能充分反映关键帧内容的特征空间,作为视频聚类和检索的依据,着重研究了关键帧的视觉特征,包括颜色特征、纹理特征、形状特征等静态特征和运动特征等。 【关键词】关键帧;特征;运动 0 引言 关键帧是视频的镜头表示帧。基于关键帧的特征检索是基于内容视频检索的重要一部分。虽然人们更倾向于使用语义特征进行视频查询,但由于语义特征很难做到自动提取,所以通常视频检索所采用的是较低层的关键帧的视觉特征,包括颜色特征、纹理特征、形状特征等静态特征,也包括反映镜头一定语义内容的运动特征等。 1 视频特征描述的要求 基于内容的视频检索实际上就是基于特征的检索。因此是视频检索的基础,也是难点所在。良好的特征应具有以下特点: 1)可区别性:对于不同的图像来说,其特征值应具有明显的差异,便于比较; 2)可靠性:对相似图像的特征值应比较相近,查询的结果是按特征值相似程度排列的图像集合; 3)独立性:所用的各个特征之间应彼此不相关; 4)特征维度低:检索复杂度随着特征数量和特征维数会迅速增长,不利于检索。 2 静态特征提取 2.1 提取颜色特征 色彩是物体表面的一种视觉特性,是人类视觉的重要组成部分。每种物体都有其特有的色彩特征,同一类物体往往有着相似的色彩特征。因此可以根据色彩特征来区分物体。而且颜色特征非常稳定,对于旋转、平移、尺度变化,甚至各种形变都不敏感,表现出相当强的鲁棒性。颜色内容一般包含两个方面,一个对应于全局颜色分布,一个对应于局部颜色信息。按照全局颜色分布来索引图像可以通过计算每种颜色的象素的个数并构造颜色灰度直方图来实现,这对检索具有

视频内容特征的提取-精选资料

视频内容特征的提取 0 引言 关键帧是视频的镜头表示帧。基于关键帧的特征检索是基于内容视频检索的重要一部分。虽然人们更倾向于使用语义特征进行视频查询,但由于语义特征很难做到自动提取,所以通常视频检索所采用的是较低层的关键帧的视觉特征,包括颜色特征、纹理特征、形状特征等静态特征,也包括反映镜头一定语义内容的运动特征等。 1 视频特征描述的要求 基于内容的视频检索实际上就是基于特征的检索。因此是视频检索的基础,也是难点所在。良好的特征应具有以下特点:1)可区别性:对于不同的图像来说,其特征值应具有明显的差异,便于比较; 2)可靠性:对相似图像的特征值应比较相近,查询的结果是按特征值相似程度排列的图像集合; 3)独立性:所用的各个特征之间应彼此不相关; 4)特征维度低:检索复杂度随着特征数量和特征维数会迅速增长,不利于检索。 2 静态特征提取 2.1 提取颜色特征 色彩是物体表面的一种视觉特性,是人类视觉的重要组成部

分。每种物体都有其特有的色彩特征,同一类物体往往有着相似的色彩特征。因此可以根据色彩特征来区分物体。而且颜色特征非常稳定,对于旋转、平移、尺度变化,甚至各种形变都不敏感,表现出相当强的鲁棒性。颜色内容一般包含两个方面,一个对应于全局颜色分布,一个对应于局部颜色信息。按照全局颜色分布来索引图像可以通过计算每种颜色的象素的个数并构造颜色灰 度直方图来实现,这对检索具有相似的总体颜色内容的图像是一个很好的途径。局部颜色信息是指局部相似的颜色区域,它考虑了颜色的分类与一些初级的几何特征。比如,颜色集是通过抽取空间局部颜色信息来提供颜色区域的有效索引。而颜色矩特征的数学依据是任何颜色的分布均可由它的矩来刻画,且大部分信息集中在低阶矩上。 2.2 提取纹理特征 纹理就是图像局部不规则而宏观有规律的特性。它是与物体表面材质有关的图像特征。目前也是基于内容检索系统中所采用的一个重要手段。纹理特征表达是Tamura等人在对人类对纹理的视觉感知的心理学研究的基础上提出的,在视觉上和心理上都是有意义的。纹理特征包括粗糙性(Coarseness)、规则性(Regularity)、线条相似性(Linelikeness)、凹凸性(Roughness)、方向性(Directionality)和对比度(Contrast)等,这些特征都可作为检索项。纹理特征可使用统计方法和结构方法进行分析。结构方法假定图像由较小的纹理基元排列而成,

指纹的特征提取与识别

指纹的特征提取与识别 摘要 随着社会的发展,计算机技术的进步,人们对身份认证技术提出了更高的要求。传统的身份认证方法存在的种种弊端让人们将目光投向了生物特征识别这个崭新的领域。而指纹识别技术凭借其独有的优势在众多生物特征识别技术中脱颖而出,得到了广泛的关注和应用。现今,自动指纹识别技术已经广泛地应用于公安、海关、银行、网络安全等需要进行身份识别和鉴定的领域。因此,进行指纹识别技术方面的研究,具有较高的现实意义和理论意义。 本文综合运用图像处理和模式识别的技术,对自动指纹识别系统的若干问题进行了探讨和研究,实现了指纹图像的预处理、特征提取和指纹匹配等算法,并在指纹分割、指纹增强这两个方面进行了改进和创新。 关键词:指纹识别,指纹分割,指纹增强,特征点提取,指纹匹配

第1章绪论 1.1 指纹识别系统的结构 本文主要是对指纹识别系统中图像处理方面的相关算法进行研究,本文的指纹识别系统的基本框架如图1-1所示。 图1-1指纹识别系统的基本结构 1.1.1指纹的预处理 由于各种原因的影响,指纹取像设备所获得的原始图像是一幅含有较多噪声的灰度图像,预处理的目的就是改善输入指纹图像的质量,增强脊和谷的对比度,将它变成一幅清晰的点线图,以便于进行特征提取。本文预处理过程主要步骤如下: 图1-2指纹预处理的基本结构 指纹分割是把指纹的背景区域从图像中分离出去,减少对指纹图像进行处理时的计算量;指纹增强的目的是对输入的噪音较多的灰度图像进行滤波,去除图像中的叉连、断点及模糊不清的部分,得到一幅较清晰的灰度图像;二值化就是把灰度指纹图像变成0-1取值的二值图像,这样就使图像的灰度层次由原来的256级(8-bits)降为2级(1-bits),从而大大减少了需要存储和处理的数据量。由于指纹的特征仅包含在纹线的形状结构中,所以为了提高处理速度和识别精度,应该在不破坏图像连通性的情况下去掉多余的信息,也就是进行图像的细化。细化是指删除指纹纹线的边缘像素,使之只有一个像素宽度。细化时应保持纹线的连接性、方向性以及特征点位置不变,还应保持纹线的中心基本不变。 1.1.2特征提取 由于指纹通常是用按压的方式得到的,按压位置和方向的不同、手指的状况以及皮肤的形变等都会导致指纹图像不理想。因此,采集到的指纹灰度图像不宜直接用来匹配,

特征选择与特征提取-Read

第五章 特征选择与特征提取 5.1 问题的提出 前面主要介绍的是各种分类器的设计方法,实际上我们已经完全可以解决模式识别的问题了。然而在实际应用中,在分类器设计之前,往往需要对抽取出的特征进行一下处理,争取尽量减小特征的维数。在实践中我们发现,特征的维数越大,分类器设计的难度也越大,一维特征的识别问题最容易解决,我们只要找到一个阈值t ,大于t 的为一类,小于t 的为一类。同时特征维数越大,要求的训练样本数量越多,例如在一维的情况下,10个训练样本就可以比较好的代表一个类别了,而在10维空间中,10个训练样本则是远远不够的。这一章中我们就来介绍一下减小特征维数的方法。 一般来说模式识别系统的输入是传感器对实物或过程进行测量所得到的一些数据,其中有一些数据直接可以作为特征,有一些数据经过处理之后可以作为特征,这样的一组特征一般称为原始特征。在原始特征中并不一定每个特征都是有用的,比如在识别苹果和橙子的系统中,我们可以抽取出的特征很多,(体积,重量,颜色,高度,宽度,最宽处高度),同样还有可能抽取出其它更多的特征。在这些特征中对分类有用的是(颜色,高度,最宽处高度),其它特征对识别意义不大,应该去除掉。这样的过程称为是特征选择,也可以称为是特征压缩。 特征选择可以描述成这样一个过程,原始特征为N 维特征()12,,,T N x x x =X ,从中 选择出M 个特征构成新的特征矢量( ) 11,, ,M T i i i Y x x x =,M N <。 同时,特征矢量的每一个分量并不一定是独立的,它们之间可能具有一定的相关性,比如说高度和最宽处的高度,高度值越大,最宽处的高度值也越大,它们之间具有相关性,我们可以通过一定的变换消除掉这种相关性,比如取一个比值:最宽处的高度/高度。这样的过程称为特征提取。 特征提取可以描述为这样一个过程,对特征矢量()12,, ,T N x x x =X 施行变换: ()i i y h =X ,1,2,,i M =,M N <,产生出降维的特征矢量()12,, ,T M Y y y y =。 在一个实际系统的设计过程中,特征的选择和提取过程一般都需要进行,首先进行特征选择,去除掉无关特征,这些特征实践上根本就不需要抽取出来,这部分传感器根本不需要安装,这样也可以减小系统的的成本。然后进行特征提取,降低特征的维数。然后利用降维之后的样本特征来设计分类器。 5.2 模式类别的可分性判据 在讨论特征选择和特征压缩之前,我们先要确定一个选择和提取的原则。对一个原始特

图像特征提取及识别过程

摘要 纹理特征是一种重要的视觉线索,是图像中普遍存在而又难以描述的特征。纹理分类与分割是图像处理领域一个经久不衰的热点研究领域,纹理特征提取作为纹理分类与分割的首要问题,一直是人们关注的焦点,各种纹理特征提取方法层出不穷。 本文在广泛文献调研的基础上,回顾了纹理特征提取方法的发展历程,分析了其研究现状,对纹理特征提取方法进行了较为全面的综述和分类,最后重点研究了基于灰度共生矩阵的图像纹理提取方法,研究如何有效地提取图像纹理特征来对图像进行描述,通过特征值来对图像进行识别。 灰度共生矩阵是一种简单有效的图像纹理特征描述方法,该方法的优势在于:它能利用了图像中像素相对位置的空间信息更加准确地描述图像的纹理,本文就是利用图像灰度共生矩阵的这一特性,从该矩阵中提取相应的统计参量作为纹理特征来实现对图像的识别。 关键字:灰度共生矩阵,纹理特征提取,图像识别

ABSTRACT Texture is a kind of important visual clues in images , it is widespread but cannot easy to be described . Texture classification and segmentation is a enduring popular research field in image processing area. Texture feature extraction has been the focus of attention,due to its priority to texture classification and image segmentation. all sorts of texture feature extraction methods has been emerged in endlessly. On the basis of extensive literature investigation, we review the texture feature extraction methods, analyze the development of the research status of the texture feature extraction methods and make a comprehensive review of its classification . Finally ,based on gray symbiotic matrix image problem extraction methods,we research how to effectively extract image texture feature described by the image characteristic value to image recognition. Graylevel co-occurrence matrix is a simple and effective image texture description method.This method's advantage is: it can use the image pixels relative positions of the spatial information more to accurately describe the texture image.This paper use the graylevel co-occurrence matrix of the properties to extract statistics from the matrix corresponding as texture feature parameters to realize image recognition. KEY WORDS: graylevel co-occurrence matrix, texture feature extraction, image recognition

文本分类中的特征提取和分类算法综述

文本分类中的特征提取和分类算法综述 摘要:文本分类是信息检索和过滤过程中的一项关键技术,其任务是对未知类别的文档进行自动处理,判别它们所属于的预定义类别集合中的类别。本文主要对文本分类中所涉及的特征选择和分类算法进行了论述,并通过实验的方法进行了深入的研究。 采用kNN和Naive Bayes分类算法对已有的经典征选择方法的性能作了测试,并将分类结果进行对比,使用查全率、查准率、F1值等多项评估指标对实验结果进行综合性评价分析.最终,揭示特征选择方法的选择对分类速度及分类精度的影响。 关键字:文本分类特征选择分类算法 A Review For Feature Selection And Classification Algorithm In Text Categorization Abstract:Text categorization is a key technology in the process of information retrieval and filtering,whose task is to process automatically the unknown categories of documents and distinguish the labels they belong to in the set of predefined categories. This paper mainly discuss the feature selection and classification algorithm in text categorization, and make deep research via experiment. kNN and Native Bayes classification algorithm have been applied to test the performance of classical feature detection methods, and the classification results based on classical feature detection methods have been made a comparison. The results have been made a comprehensive evaluation analysis by assessment indicators, such as precision, recall, F1. In the end, the influence feature selection methods have made on classification speed and accuracy have been revealed. Keywords:Text categorization Feature selection Classification algorithm

特征提取与选择 总结

第七章特征提取与选择_总结 7.6 特征选择中的直接挑选法 特征的选择除了我们前面学习的变换法外, 也可以在原坐标系中依据某些原则直接选择特征, 即我们这节课要学的直接挑选法。 7.6.1次优搜索法 (一)单独最优的特征选择 单独选优法的基本思路是计算各特征单独使用时的判据值并以递减排序,选取前d个分类效果最好的特征。一般地讲,即使各特征是统计独立的,这种方法选出的d个特征也不一定是最优的特征组合,只有可分性判据J是可分的,即 这种方法才能选出一组最优特征。 (二)增添特征法 该方法也称为顺序前进法(SFS)这是最简单的自下而上搜索方法,每次从未选入的特征中选择一个特征,使它与已选入的特征组合在一起时J值最大,直到选入特征数目达到指定的维数d为止。 设已选入了k个特征,它们记为X k,把未选入的n-k个特征x j(j=1,2,…,n-k)逐个与已选入的特征X k组合计算J 值,若: 则x1选入,下一步的特征组合为X k+1=X k+x1。开始时,k=0,X0=F,该过程一直进行到k=d为止。 该方法比“单独最优的特征选择法”要好,但其缺点也是明显的:即某特征一旦选入,即使后边的n-k特征中的某个从组合讲比它好,也无法把它剔除。 (三)剔减特征法 该方法也称为顺序后退法(SBS)。这是一种自上而下的搜索方法,从全部特征开始每次剔除一个特征,所剔除的特征应使尚保留的特征组合的值最大。 设已剔除了k个特征,剩下的特征组记为,将中的各特征x j (j=1,2,…,n-k)分别逐个剔除,并同时计算值,若: 则在这轮中x1应该剔除。

这里初值,过程直到k=n-d为止。 (四) 增l 减r 法(l-r 法) 为了克服前面方法(二)、(三)中的一旦某特征选入或剔除就不能再剔除或选入的缺点,可在选择过程中加入局部回溯,例如在第k步可先用方法(二)。,对已选入的k个特征再一个个地加入新的特征到k+1个特征,然后用方法(三) 一个个地剔除r个特征,称这种方法为l减r法(l-r法)。 7.6.2最优搜索法 (一)分支定界法(BAB算法) 寻求全局最优的特征选择的搜索过程可用一个树结构来描述,称其为搜索树或解树。总的搜索方案是沿着树自上而下、从右至左进行,由于树的每个节点代表一种特征组合,于是所有可能的组合都可以被考虑。利用可分性判据的单调性采用分支定界策略和值左小右大的树结构,使得在实际上并不计算某些特征组合而又不影响全局寻优。这种具有上述特点的快速搜索方法,称为分支定界算法。 6选2的特征选择问题 (a)搜索树 (b)搜索回溯示意图 树的每个节点表示一种特征组合,树的每一级各节点表示从其父节点的特征 组合中再去掉一个特征后的特征组合,其标号k表示去掉的特征是。由于每一级只舍弃一个特征,因此整个搜索树除根节点的0级外,还需要n-d级,即全树有n-d级。6个特征中选2个,故整个搜索树需4级,第n-d级是叶节点,有

人脸特征提取与识别参考

本科生毕业设计(论文)文献综述题目:人脸特征提取与识别 姓名: 学号: 学院: 专业: 年级:

指导教师:(签名)系主任(或教研室主任):(签章)

目录 1 前言 (1) 2 人脸特征提取与识别方法 (1) 2.1 基于几何特征的方法 (1) 2.2 基于特征脸的方法 (2) 2.3 局部特征分析LFA方法 (3) 2.4 基于弹性模型的方法 (4) 2.5 神经网络方法 (4) 2.6 其他方法 (5) 3 总结 (5) 致谢: (6) 参考文献: (6)

人脸特征提取与识别 1前言 近年来,Internet和多媒体技术飞速发展,多媒体(包括图像、视频等)数据规模急剧膨胀。为了快速、准确地找到感兴趣的图像或视频,人们提出了基于内容的图像检索(content-based image retrieval,简称CBIR)技术,研究让计算机对图像进行分类和检索的算法。CBIR涉及图像内容表示、相似性度量、高维索引技术等方面。[1]图像内容的表示是需要首先解决的问题。为了实现对图像内容的存取、访问和检索,MPEG-7提出了图像内容描述子的概念,例如颜色描述子、纹理描述子、形状描述子等。 图像颜色内容通常用颜色直方图来表示,纹理特征以纹理模式区分图像,形状特征用于包含特定形状对象的图像检索。颜色直方图(或称为颜色谱)因其简单、有效的性能而在大多数CBIR系统中得到应用,但是颜色直方图对纹理图像的检索效果不好。不同的纹理图像可能有非常相似的颜色直方图。 所谓图像纹理,它反映的是图像的一种局部结构化特征,具体表现为图像像素点某邻域内像素点灰度级或者颜色的某种变化,而且这种变化是空间统计相关的,它由纹理基元和基元的排列两个要素构成。纹理分析方法有统计方法、结构方法和基于模型的方法。 2人脸特征提取与识别方法 人脸识别本质上是三维塑性物体二维投影图像的匹配问题,它的困难体现在:(1)人脸塑性变形(如表情等)的不确定性;(2)人脸模式的多样性(如胡须、发型、眼镜、化妆等);(3)图像获取过程中的不确定性(如光照的强度、光源方向等)。识别人脸主要依靠人脸上的特征。也就是说依据那些在不同个体上存在的较大差异而对同一个人则比较稳定的度量。由于人脸变化复杂,因此特征表述和特征提取十分困难。 在对人脸图像进行特征提取和分类之前一般需要做几何归一化和灰度归一化。几何归一化是指根据人脸定位结果将图像中人脸变换到同一位置和同样大小,灰度归一化是指对图像进行光照补偿等处理,光照补偿能够一定程度地克服光照变化的影响而提高识别率。 2.1 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸干差万别,因此对这些部件的形状和结构关系的几何描述,可以作为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首

脑电信号特征提取及分类

脑电信号特征提取及分类

第 1 章绪论 1.1引言 大脑又称端脑,是脊椎动物脑的高级的主要部分,由左右两半球组成及连接两个半球的中间部分,即第三脑室前端的终板组成。它是控制运动、产生感觉及实现高级脑功能的高级神经中枢[1]。大脑是人的身体中高级神经活动中枢,控制着人体这个复杂而精密的系统,对人脑神经机制及高级功能进行多层次、多学科的综合研究已经成为当代脑科学发展的热点方向之一。 人的思维、语言、感知和运动能力都是通过大脑对人体器官和相应肌肉群的有效控制来实现的[2]。人的大脑由大约1011个互相连接的单元体组成,其中每个单元体有大约104个连接,这些单元体称做神经元。在生物学中,神经元是由三个部分组成:树突、轴突和细胞体。神经元的树突和其他神经元的轴突相连,连接部分称为突触。神经元之间的信号传递就是通过这些突触进行的。生物电信号的本质是离子跨膜流动而不是电子的流动。每有一个足够大的刺激去极化神经元细胞时,可以记录到一个持续1-2ERP的沿轴突波形传导的峰形电位-动作电位。动作电位上升到顶端后开始下降,产生一些小的超极化波动后恢复到静息电位(静息电位(Resting Potential,RP)是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差)。人的神经细胞的静息电位为-70mV(就是膜内比膜外电位低70mV)。这个变化过程的电位是局部电位。局部电位是神经系统分析整合信息的基础。细胞膜的电特性决定着神经元的电活动[3]。当神经元受到外界刺激时,神经细胞膜内外两侧的电位差被降低从而提高了膜的兴奋性,当兴奋性超过特定阈值时就会产生神经冲动或兴奋,神经冲动或兴奋通过突触传递给下一个神经元。由上述可知,膜电位是神经组织实现正常功能的基本条件,是兴奋产生的本质。膜电位使神经元能够接收刺激信号并将这一刺激信号沿神经束传递下去。在神经元内部,树突的外形就像树根一样发散,由很多细小的神经纤维丝组成,可以接收电信号,然后传递给细胞体。如果说树突是树根的话,那么细胞体就是树桩,对树突传递进来的信号进行处理,如果信号超过特定的阈值,细胞体就把信号继续传递给轴突。轴突的形状像树干,是一根细长的纤维体,它把细胞体传递过来的信号通过突触发送给相邻神经元的树突。突触的连接强度和神经元的排列方式都影响着神经组织的输出结果。而正是这种错综复杂的神经组织结构和复杂的信息处理机制,才使得人脑拥有高度的智慧。我们的大脑无时无刻不在产生着脑电波,对脑来说,脑细胞就像是脑内一个个“微小的发电站”。早在1857年,英国的青年生理科学工作者卡通(R.Caton)就在猴脑和兔脑上记录

第八讲 特征提取和特征选择(讲义)

第八讲特征提取和特征选择 一、基本概念 1、特征的生成 (1)原始特征的采集和转换 通过对原始特征的信号采集,获得样本的原始表达数据, 从原始数据中选择或计算出对分类任务有用的原始特征,并转换成可用 的形式 原始数据: 像素点RGB值矩阵 可用的原始特征: 轮廓特征 颜色特征 纹理特征 数学特征 (2)有效特征的生成 目的: 降低特征维数,减少信息冗余 提升特征的有效性 方法: 特征提取:提高特征对类别的分辨能力

特征选择:寻找对分类最重要的特征 2、 特征提取 通过某种变换,将原始特征从高维空间映射到低维空间。 A :X →Y ; A 为特征提取器,通常是某种正交变换。 最优特征提取:J(A*)=max J(A), J 是准则函数 3、 特征选择 从一组特征中挑选出一些最有效的特征,以达到降低特征空间维数的目的。 D d d i S y y y y F x x x S i d D <=∈→;,...,2,1,} ,......,,{:},......,,{:2121 原始特征集合S 中包含D 个特征,目标特征集合F 中包含d 个特征; 最优特征选择:J(F*)=max J(F), J 是准则函数 4、 准则函数的选取 (1) 准则函数的选取原则 分类正确率是最佳的特征提取和特征选择准则函数,但难以计算。 实用的类别可分性准则函数应满足以下要求: 与分类正确率有单调递增关系 当特征独立时具有可加性:∑==d k k ij d ij x J x x x J 1 )()...21,, ,( 具有标量测度特性:?? ? ??===≠>ji ij ij ij J J j i J j i J 时 ,当时 ,当00

文本特征提取以及分类结果分析

文本特征提取以及分类结果分析 一、目标: 提取文本中的关键信息,用于文本的自动分类。 二、要求: a)编写特征提取程序,从训练语料中根据IG,MI,CHI或CE等指标,分别提取文 本特征词集。 b)编写文本特征向量生成程序,根据得到的文本特征词集,生成任意文档的权值特征 向量。为其它设计分类器的同学提供训练文档和测试文档的特征向量集。 c)编写统计程序,对其它同学的分类结果进行统计和分析,包括准确率(Precision)和 找回率(Recall),以及综合指标(F-Measure=…)。 三、文本特征提取原理 文本特征提取是进行文本分类训练和识别的基础。其基本思路是基于向量空间面向(VSM――Vector Space Modal),即把一篇文本视为N为空间中的一个点。点的各维数据表示该文档的一个特征(数字化的特征)。而文档的特征一般采用关键词集,即根据一组预定义的关键词,以某种方法计算这些关键词在当前文档中的权重,然后用这些权重形成一个数字向量,这就是该文档的特征向量。 由上面的简介可知,这里有两个方面的问题:(1)如何定义“关键词集”(或称为“特征词集”);(2)如何就是某个关键词在一篇文本中的权重。 1.提取关键词集 首先,我们提取关键词的最终目的是为了对文本进行分类。一些词,如“的”,对应文本分类不可能有任何帮助;或者,“计算机”一词对进行“台独类”和“成人类”文章的分类也没有任何帮助。因此,关键词集是与分类目标相关的。从上面的例子可以想象,在提取关键词集中有两个步骤: d)筛选关键词的各种方法 根据词汇与预定义分类文本的相关程度来筛选关键词。使用一个训练文档集(其中各文档的分类已经由人工指定),通过计算其中词汇与文档分类的相关程度,选择相关程度高的词汇作为表达文档特征的关键词。 词汇与文档分类相关度的计算有多种方式。 1)词频(TF-Term Frequency): 该思路很简单:如果词汇w在Ci类文本中出现的频率很高,就用它作为一个关键词:

特征选择、特征提取MATLAB算法实现(模式识别)

6特征选择 6.1问题 对“threethreelarge.m”数据,采用任意一种特征选择算法,选择2个特征 6.2思路 采用简单特征选择法(simple feature selection approach),首先计算每一个特征的分类能力值,再选择出其中最大分类能力的l个特征。 6.3结果 eigs=8.92340.00000.0767 SelectedFeature=13 也就是说,选取x和z坐标作为特征。 6.4代码 %特征选择代码,见FSthrthrlrg.m文件 m1=[0,0,0];m2=[0,0,0];m3=[0,0,0];m=[0,0,0]; for i=1:200 m1(1)=m1(1)+(x1(i,1)-m1(1))/i; m1(2)=m1(2)+(x1(i,2)-m1(2))/i; m1(3)=m1(3)+(x1(i,3)-m1(3))/i; end; for i=1:190 m2(1)=m2(1)+(x2(i,1)-m2(1))/i; m2(2)=m2(2)+(x2(i,2)-m2(2))/i; m2(3)=m2(3)+(x2(i,3)-m2(3))/i; end; for i=1:210 m3(1)=m3(1)+(x3(i,1)-m3(1))/i; m3(2)=m3(2)+(x3(i,2)-m3(2))/i; m3(3)=m3(3)+(x3(i,3)-m3(3))/i; end; m(1)=(m1(1)+m2(1)+m3(1))/3; m(2)=(m1(2)+m2(2)+m3(2))/3; m(3)=(m1(3)+m2(3)+m3(3))/3; sw1=zeros(3,3);sw2=zeros(3,3);sw3=zeros(3,3);sw=zeros(3,3);sb=zeros(3,3); for i=1:200 sw1=sw1+([x1(i,1),x1(i,2),x1(i,3)]-m1)'*([x1(i,1),x1(i,2),x1(i,3)]-m1); end; for i=1:190 sw2=sw2+([x2(i,1),x2(i,2),x2(i,3)]-m2)'*([x2(i,1),x2(i,2),x2(i,3)]-m2); end; for i=1:210 sw3=sw3+([x3(i,1),x3(i,2),x3(i,3)]-m3)'*([x3(i,1),x3(i,2),x3(i,3)]-m3); end; N1=200;N2=190;N3=210;N=N1+N2+N3;

虹膜识别特征提取及鉴别

摘要 随着信息社会的快速发展,对安全的需求也日益增长。虹膜识别技术作为一种身份识别,以其很高的可靠性得到人们的重视。虹膜识别系统核心一般由图像采集、虹膜定位、归一化、特征提取及编码和训练识别五部分构成。本文介绍了目前虹膜识别的现状,简单阐述了一些经典的虹膜识别算法和技术,并完成识别系统。 在虹膜的定位阶段,首先对图像进行缩放,在不影响后续处理的情况下减小了处理的数据量,然后采用梯度加权的Canny算法进行边缘检测,再对边缘图像,采用圆Hough定位方法,分别定位了虹膜的外边界。接着采用Radon变换检测直线的方法分割上下眼睑,阈值法除去睫毛干扰。同时也研究了一些文献中分割眼睑和睫毛的方法。 归一化阶段,采用了文献中普遍使用的“Rubber-Sheet”模型,将虹膜归一化为64512 大小的矩形,以利于特征比对。 在虹膜的特征提取及编码阶段,基于信号处理中的空间/频域技术,采用一维Log Gabor滤波器提取虹膜的纹理信息,对滤波结果的实部和虚部分别进行相位量化和编码,同时也对噪声进行处理,获得相应的掩码。 训练识别阶段,采用海明距离度量虹膜之间的相似度,选取最小距离分类器和具有最小错误率的分类阈值形成组合的分类决策规则。整个识别系统主要在中科院V3.0虹膜数据库上进行了测试。 关键词:虹膜识别;虹膜定位;圆Hough变换;Log Gabor小波

ABSTRACT With the rapid growth of information technology, the demands of information security are ever-growing. As the technology of identification, iris recognition, for its high reliability, gets great attention. Iris recognition system consists of image capturing, iris location, iris normalization, feature extraction and coding and decision training. In this dissertation, the situation of iris recognition is presented. Some practical algorithms and technique are briefly introduced. A system of iris recognition is fulfilled. In iris location stage, image is zoomed to reduce the data volume with less influence on post processing. Afterword, the algorithm of Canny edge detection, with weighted gradient, is adopted. In the edge image, Circular Hough transform is applied to locate the inside and out boundary of iris. Then, linear Radon transform is put to use to detect the eyelids. Eyelashes are eliminated by threshold. In normalization stage, “rubber-sheet”model, in general us e, is used t-o unwrap iris image into a rectangle of the same s ize, for the comparison of characteristics. In feature extraction and coding stage. 1D Log Gabor filter s are used to filter the iris texture features in the space-frequen cy domain. Then, the real part and the image part is quantize d by phase encoding respectively. Besides, the processing of n

相关文档