文档库 最新最全的文档下载
当前位置:文档库 › 常用汇编指令表

常用汇编指令表

常用汇编指令表
常用汇编指令表

1. 通用数据传送指令.

MOV 传送字或字节.

MOVSX 先符号扩展,再传送.

MOVZX 先零扩展,再传送.

PUSH 把字压入堆栈.

POP 把字弹出堆栈.

PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈.

POPA 把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈.

PUSHAD 把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈.

POPAD 把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次弹出堆栈.

BSWAP 交换32位寄存器里字节的顺序

XCHG 交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数) CMPXCHG 比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX ) XADD 先交换再累加.( 结果在第一个操作数里)

XLAT 字节查表转换.

—— BX 指向一张256 字节的表的起点, AL 为表的索引值(0-255,即

0-FFH); 返回AL 为查表结果. ( [BX+AL]->AL )

2. 输入输出端口传送指令.

IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} )

OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器)

输入输出端口由立即方式指定时, 其范围是0-255; 由寄存器DX 指定时,

其范围是0-65535.

3. 目的地址传送指令.

LEA 装入有效地址.

例: LEA DX,string ;把偏移地址存到DX.

LDS 传送目标指针,把指针内容装入DS.

例: LDS SI,string ;把段地址:偏移地址存到DS:SI.

LES 传送目标指针,把指针内容装入ES.

例: LES DI,string ;把段地址:偏移地址存到ES:DI.

LFS 传送目标指针,把指针内容装入FS.

例: LFS DI,string ;把段地址:偏移地址存到FS:DI.

LGS 传送目标指针,把指针内容装入GS.

例: LGS DI,string ;把段地址:偏移地址存到GS:DI.

LSS 传送目标指针,把指针内容装入SS.

例: LSS DI,string ;把段地址:偏移地址存到SS:DI.

4. 标志传送指令.

LAHF 标志寄存器传送,把标志装入AH.

SAHF 标志寄存器传送,把AH内容装入标志寄存器. PUSHF 标志入栈.

POPF 标志出栈.

PUSHD 32位标志入栈.

POPD 32位标志出栈.

二、算术运算指令—————————————————————————ADD 加法.

ADC 带进位加法.

INC 加1.

AAA 加法的ASCII码调整.

DAA 加法的十进制调整.

SUB 减法.

SBB 带借位减法.

DEC 减1.

NEC 求反(以0 减之).

CMP 比较.(两操作数作减法,仅修改标志位,不回送结果). AAS 减法的ASCII码调整.

DAS 减法的十进制调整.

MUL 无符号乘法.

IMUL 整数乘法.

以上两条,结果回送AH和AL(字节运算),或DX和AX(字运算), AAM 乘法的ASCII码调整.

DIV 无符号除法.

IDIV 整数除法.

以上两条,结果回送:

商回送AL,余数回送AH, (字节运算);

或商回送AX,余数回送DX, (字运算).

AAD 除法的ASCII码调整.

CBW 字节转换为字. (把AL中字节的符号扩展到AH中去) CWD 字转换为双字. (把AX中的字的符号扩展到DX中去) CWDE 字转换为双字. (把AX中的字符号扩展到EAX中去) CDQ 双字扩展. (把EAX中的字的符号扩展到EDX中去)

三、逻辑运算指令—————————————————————————AND 与运算.

OR 或运算.

XOR 异或运算.

NOT 取反.

TEST 测试.(两操作数作与运算,仅修改标志位,不回送结果). SHL 逻辑左移.

SAL 算术左移.(=SHL)

SHR 逻辑右移.

SAR 算术右移.(=SHR)

ROL 循环左移.

ROR 循环右移.

RCL 通过进位的循环左移.

RCR 通过进位的循环右移.

以上八种移位指令,其移位次数可达255次.

移位一次时, 可直接用操作码. 如SHL AX,1.

移位>1次时, 则由寄存器CL给出移位次数.

如MOV CL,04

SHL AX,CL

四、串指令—————————————————————————

DS:SI 源串段寄存器:源串变址.

ES:DI 目标串段寄存器:目标串变址.

CX 重复次数计数器.

AL/AX 扫描值.

D标志0表示重复操作中SI和DI应自动增量; 1表示应自动减量.

Z标志用来控制扫描或比较操作的结束.

MOVS 串传送.

( MOVSB 传送字符. MOVSW 传送字. MOVSD 传送双字. ) CMPS 串比较.

( CMPSB 比较字符. CMPSW 比较字. )

SCAS 串扫描.

把AL或AX的内容与目标串作比较,比较结果反映在标志位.

LODS 装入串.

把源串中的元素(字或字节)逐一装入AL或AX中.

( LODSB 传送字符. LODSW 传送字. LODSD 传送双字. )

STOS 保存串.

是LODS的逆过程.

REP 当CX/ECX<>0时重复.

REPE/REPZ 当ZF=1或比较结果相等,且CX/ECX<>0时重复. REPNE/REPNZ 当ZF=0或比较结果不相等,且CX/ECX<>0时重复. REPC 当CF=1且CX/ECX<>0时重复.

REPNC 当CF=0且CX/ECX<>0时重复.

五、程序转移指令—————————————————————————1>无条件转移指令(长转移)

JMP 无条件转移指令

CALL 过程调用

RET/RETF过程返回.

2>条件转移指令(短转移,-128到+127的距离内)

( 当且仅当(SF XOR OF)=1时,OP1

JA/JNBE 不小于或不等于时转移.

JAE/JNB 大于或等于转移.

JB/JNAE 小于转移.

JBE/JNA 小于或等于转移.

以上四条,测试无符号整数运算的结果(标志C和Z).

JG/JNLE 大于转移.

JGE/JNL 大于或等于转移.

JL/JNGE 小于转移.

JLE/JNG 小于或等于转移.

以上四条,测试带符号整数运算的结果(标志S,O和Z). JE/JZ 等于转移.

JNE/JNZ 不等于时转移.

JC 有进位时转移.

JNC 无进位时转移.

JNO 不溢出时转移.

JNP/JPO 奇偶性为奇数时转移.

JNS 符号位为"0" 时转移.

JO 溢出转移.

JP/JPE 奇偶性为偶数时转移.

JS 符号位为"1" 时转移.

3>循环控制指令(短转移)

LOOP CX不为零时循环.

LOOPE/LOOPZ CX不为零且标志Z=1时循环.

LOOPNE/LOOPNZ CX不为零且标志Z=0时循环.

JCXZ CX为零时转移.

JECXZ ECX为零时转移.

4>中断指令

INT 中断指令

INTO 溢出中断

IRET 中断返回

5>处理器控制指令

HLT 处理器暂停, 直到出现中断或复位信号才继续.

WAIT 当芯片引线TEST为高电平时使CPU进入等待状态. ESC 转换到外处理器.

LOCK 封锁总线.

NOP 空操作.

STC 置进位标志位.

CLC 清进位标志位.

CMC 进位标志取反.

STD 置方向标志位.

CLD 清方向标志位.

STI 置中断允许位.

CLI 清中断允许位.

六、伪指令—————————————————————————DW 定义字(2字节).

PROC 定义过程.

ENDP 过程结束.

SEGMENT 定义段. ASSUME 建立段寄存器寻址. ENDS 段结束.

END 程序结束.

(完整word版)汇编语言常用指令大全,推荐文档

MOV指令为双操作数指令,两个操作数中必须有一个是寄存器. MOV DST , SRC // Byte / Word 执行操作: dst = src 1.目的数可以是通用寄存器, 存储单元和段寄存器(但不允许用CS段寄存器). 2.立即数不能直接送段寄存器 3.不允许在两个存储单元直接传送数据 4.不允许在两个段寄存器间直接传送信息 PUSH入栈指令及POP出栈指令: 堆栈操作是以“后进先出”的方式进行数据操作. PUSH SRC //Word 入栈的操作数除不允许用立即数外,可以为通用寄存器,段寄存器(全部)和存储器. 入栈时高位字节先入栈,低位字节后入栈. POP DST //Word 出栈操作数除不允许用立即数和CS段寄存器外, 可以为通用寄存器,段寄存器和存储器. 执行POP SS指令后,堆栈区在存储区的位置要改变. 执行POP SP 指令后,栈顶的位置要改变. XCHG(eXCHanG)交换指令: 将两操作数值交换. XCHG OPR1, OPR2 //Byte/Word 执行操作: Tmp=OPR1 OPR1=OPR2 OPR2=Tmp 1.必须有一个操作数是在寄存器中 2.不能与段寄存器交换数据 3.存储器与存储器之间不能交换数据. XLAT(TRANSLATE)换码指令: 把一种代码转换为另一种代码. XLAT (OPR 可选) //Byte 执行操作: AL=(BX+AL) 指令执行时只使用预先已存入BX中的表格首地址,执行后,AL中内容则是所要转换的代码. LEA(Load Effective Address) 有效地址传送寄存器指令 LEA REG , SRC //指令把源操作数SRC的有效地址送到指定的寄存器中. 执行操作: REG = EAsrc 注: SRC只能是各种寻址方式的存储器操作数,REG只能是16位寄存器 MOV BX , OFFSET OPER_ONE 等价于LEA BX , OPER_ONE MOV SP , [BX] //将BX间接寻址的相继的二个存储单元的内容送入SP中 LEA SP , [BX] //将BX的内容作为存储器有效地址送入SP中 LDS(Load DS with pointer)指针送寄存器和DS指令 LDS REG , SRC //常指定SI寄存器。 执行操作: REG=(SRC), DS=(SRC+2) //将SRC指出的前二个存储单元的内容送入指令中指定的寄存器中,后二个存储单元送入DS段寄存器中。

汇编语言入门

汇编语言入门教程 对初学者而言,汇编的许多命令太复杂,往往学习很长时间也写不出一个漂漂亮亮的程序,以致妨碍了我们学习汇编的兴趣,不少人就此放弃。所以我个人看法学汇编,不一定要写程序,写程序确实不是汇编的强项,大家不妨玩玩DEBUG,有时CRACK出一个小软件比完成一个程序更有成就感(就像学电脑先玩游戏一样)。某些高深的指令事实上只对有经验的汇编程序员有用,对我们而言,太过高深了。为了使学习汇编语言有个好的开始,你必须要先排除那些华丽复杂的命令,将注意力集中在最重要的几个指令上(CMP LOOP MOV JNZ……)。但是想在啰里吧嗦的教科书中完成上述目标,谈何容易,所以本人整理了这篇超浓缩(用WINZIP、WINRAR…依次压迫,嘿嘿!)教程。大言不惭的说,看通本文,你完全可以“不经意”间在前辈或是后生卖弄一下DEBUG,很有成就感的,试试看!那么――这个接下来呢?――Here we go!(阅读时看不懂不要紧,下文必有分解) 因为汇编是通过CPU和内存跟硬件对话的,所以我们不得不先了解一下CPU和内存:(关于数的进制问题在此不提) CPU是可以执行电脑所有算术╱逻辑运算与基本I/O 控制功能的一块芯片。一种汇编语言只能用于特定的CPU。也就是说,不同的CPU其汇编语言的指令语法亦不相同。个人电脑由1981年推出至今,其CPU发展过程为:8086→80286→80386→80486→PENTIUM →……,还有AMD、CYRIX等旁支。后面兼容前面CPU的功能,只不过多了些指令(如多能奔腾的MMX指令集)、增大了寄存器(如386的32位EAX)、增多了寄存器(如486的FS)。为确保汇编程序可以适用于各种机型,所以推荐使用8086汇编语言,其兼容性最佳。本文所提均为8086汇编语言。寄存器(Register)是CPU内部的元件,所以在寄存器之间的数据传送非常快。用途:1.可将寄存器内的数据执行算术及逻辑运算。2.存于寄存器内的地址可用来指向内存的某个位置,即寻址。3.可以用来读写数据到电脑的周边设备。8086 有8个8位数据寄存器,这些8位寄存器可分别组成16位寄存器:AH&AL=AX:累加寄存器,常用于运算;BH&BL=BX:基址寄存器,常用于地址索引;CH&CL=CX:计数寄存器,常用于计数;DH&DL=DX:数据寄存器,常用于数据传递。为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:CS(Code Segment):代码段寄存器;DS(Data Segment):数据段寄存器;SS(Stack Segment):堆栈段寄存器;ES(Extra Segment):附加段寄存器。当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器CS,DS,SS 来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。所以,程序和其数据组合起来的大小,限制在DS 所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。除了前面所提的寄存器外,还有一些特殊功能的寄存器:IP(Intruction Pointer):指令指针寄存器,与CS配合使用,可跟踪程序的执行过程;SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置。BP(Base Pointer):基址指针寄存器,可用作SS 的一个相对基址位置;SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针;DI(Destination Index):目的变址寄存器,可用来存放相对于ES 段之目的变址指针。还有一个标志寄存器FR(Flag Register),有九个有意义的标志,将在下文用到时详细说明。 内存是电脑运作中的关键部分,也是电脑在工作中储存信息的地方。内存组织有许多可存放

汇编语言指令表

汇编语言指令表文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

伪指令 1、定位伪指令 ORG m 2、定义字节伪指令 DB X1,X2,X3,…,Xn 3、字定义伪指令 DW Y1,Y2,Y3,…,Yn 4、汇编结束伪指令 END 寻址方式 MCS-51单片机有五种寻址方式: 1、寄存器寻址 2、寄存器间接寻址 3、直接寻址 4、立即数寻址 5、基寄存器加变址寄存器间接寻址 6、相对寻址 7、位寻址 数据传送指令 一、以累加器A为目的操作数的指令(4条) MOV A,Rn ;(Rn)→A n=0~7 MOV A,direct ;( direct )→A MOV A,@Ri ;((Ri))→A i=0~1 MOV A,#data ; data →A 二、以Rn为目的操作数的指令(3条) MOV Rn ,A;(A)→ Rn MOV Rn ,direct;( direct )→ Rn MOV Rn ,#data; data → Rn 三、以直接寻址的单元为目的操作数的指令(5条) MOV direct,A;(A)→direct MOV direct,Rn;(Rn)→direct MOV direct,direct ;(源direct)→目的direct MOV direct,@Ri;((Ri))→direct MOV direct,#data; data→direct 四、以寄存器间接寻址的单元为目的操作数的指令(3条) MOV @Ri,A;(A)→(Ri) MOV @Ri,direct;(direct)→(Ri) MOV @Ri,#data; data→(Ri) 五、十六位数据传送指令(1条) MOV DPTR,#data16;dataH→DPH,dataL →DPL

STM 常用汇编指令

在嵌入式开发中,汇编程序常常用于非常关键的地方,比如系统启动时初始化,进出中断时的环境保护,恢复等对性能有要求的地方。 ARM指令集可以分为六大类,分别为数据处理指令、Load/Store指令、跳转指令、程序状态寄存器处理指令、协处理器指令和异常产生指令。 ARM指令使用的基本格式如下: 〈opcode〉{〈cond〉}{S}〈Rd〉,〈Rn〉{,〈operand2〉} opcode操作码;指令助记符,如LDR、STR等。 cond可选的条件码;执行条件,如EQ、NE等。 S可选后缀;若指定“S”,则根据指令执行结果更新CPSR中的条件码。 Rd目标寄存器。 Rn存放第1操作数的寄存器。 operand2第2个操作数 arm的寻址方式如下: 立即寻址 寄存器寻址 寄存器间接寻址 基址加偏址寻址 堆栈寻址 块拷贝寻址 相对寻址 这里不作详细描述,可以查阅相关文档。 数据处理指令 Load/Store指令 程序状态寄存器与通用寄存器之间的传送指令 转移指令 异常中断指令 协处理器指令 在S3C2410、S3C2440的数据手册中对各种汇编指令有详细的描述;这里只对较常见的作写介绍。 1、相对跳转指令:b、bl 这两条指令的不同之处在于bl指令除了跳转之外,还将返回地址(bl的下一条指令的地址)保存在lr寄存器中。 这两条指令的可跳转范围是当前指令前后32M。 b funa .... funa: b funb ....

funb: .... 2、数据传送指令mov,地址读取伪指令ldr mov指令可以把一个寄存器的值赋给另外一个寄存器,或者把一个常数赋给寄存器。 mov r1,r2 mov r1,#1024 mov传送的常数必须能用立即数来表示。当不能用立即数表示时,可以用ldr命令来赋值。ldr是伪命令,不是真实存在的指令,编译器会把它扩展成真正的指令;如果该常数能用“立即数”来表示,则使用mov指令,否则编译时将该常数保存在某个位置,使用内存读取指令把它读出来。 ldr r1,=1024 3、内存访问指令ldr、str、ldm、stm ldr既可以指低至读取伪指令,也可以是内存访问指令。当他的第二个参数前面有'='时标伪指令,否则表内存访问指令。 ldr指令从内存中读取数据到寄存器,str指令把寄存器的指存储到内存中,他们的操作数都是32位的。 ldr r1,[r2,#4] ldr r1,[r2] ldr r1,[r2],#4 str r1,[r2,#4] str r1,[r2] str r1,[r2],#4 寄存器传送指令可以用一条指令将16个可见寄存器(R0~R15)的任意子集合(或全部)存储到存储器或从存储器中读取数据到该寄存器集合中。与单寄存器存取指令相比,多寄存器数据存取可用的寻址模式更加有限。多寄存器存取指令的汇编格式如下: LDM/STM{}Rn{!}, 4、加减指令add、sub add r1,r2,#1 sub r1,r2,#1 5、程序状态寄存器的访问指令msr,mrs ARM指令中有两条指令,用于在状态寄存器和通用寄存器之间传送数据。修改状态寄存器一般是通过“读取-修改-写回”三个步骤的操作来实现的。这两条指令分别是: 状态寄存器到通用寄存器的传送指令(MRS) 通用寄存器到状态寄存器的传送指令(MSR) 其汇编格式如下: MRS{}Rd,CPSR|SPSR 其汇编格式如下:

(完整word版)汇编语言指令集合-吐血整理,推荐文档

8086/8088指令系统记忆表 数据寄存器分为: AH&AL=AX(accumulator):累加寄存器,常用于运算;在乘除等指令中指定用来存放操作数,另外,所有的I/O指令都使用这一寄存器与外界设备传送数据. BH&BL=BX(base):基址寄存器,常用于地址索引; CH&CL=CX(count):计数寄存器,常用于计数;常用于保存计算值,如在移位指令,循环(loop)和串处理指令中用作隐含的计数器. DH&DL=DX(data):数据寄存器,常用于数据传递。他们的特点是,这4个16位的寄存器可以分为高8位: AH, BH, CH, DH.以及低八位:AL,BL,CL,DL。这2组8位寄存器可以分别寻址,并单独使用。 另一组是指针寄存器和变址寄存器,包括: SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置; BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置; SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针; DI(Destination Index):目的变址寄存器,可用来存放相对于ES 段之目的变址指针。 指令指针IP(Instruction Pointer) 标志寄存器FR(Flag Register) OF(overflow flag) DF(direction flag) CF(carrier flag) PF(parity flag) AF(auxiliary flag) ZF(zero flag) SF(sign flag) IF(interrupt flag) TF(trap flag) 段寄存器(Segment Register) 为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址: CS(Code Segment):代码段寄存器; DS(Data Segment):数据段寄存器; SS(Stack Segment):堆栈段寄存器;

PIC16系列_单片机常用伪指令(汇编)

PIC 单片机端口电平变化中断使用必须注意的问题 PICC18使用说明 PIC 单片机常用伪指令 PIC单片机2009-02-19 11:16:40 阅读8 评论0 字号:大中小订阅 3.2.3 MPASM 的伪指令 我们在第一章中已经详细介绍了中档PIC 单片机的35 条指令,源程序的编写主要就是用这些基本的指令实现你的控制任务。但为了增加源程序的可读性和可维护性,我们引入了伪指令的概念。伪指令本身不会产生可执行的汇编指令,但它们可以帮组“管理”你编写的程序,其实用性和必要性绝不亚于35 条正真的汇编指令。我们在此着重介绍最常用的几种 伪指令。 #include 或include #include 伪指令的作用是把另外一个文件的内容全部包含复制到本伪指令所在的位置。 被包含复制的文件可以是任何形式的文本文件,当然文件中的内容和语法结构必须是MPASM 能够识别的。最经常被“include”的是针对PIC 单片机内部特殊功能寄存器定义的包含头文件,在MPLAB 安装后它们全部放在路径“ C:\Program Files\MPLAB IDE\MCHIP_Tools”下,每一个型号的PIC 单片机都有一个对应的预定义包含头文件,扩展名是“.inc”。除了一些符号预定义文件,你也可以把现有的其它程序文件作为一个代码模块直接“包含”进来作为自己程序的一部分。见例3-01。 #include ;把预定义的PIC16F877A 寄存器符号包含到此处 #include ”math.asm” ;把现有的程序文件包含进来作为自己代码的一部分 例3-01 请注意被包含文件的引用方式。一种是<>尖括号引用,这种引用意味着让编译器去默认的路径下寻找该文件,MPASM 默认的寄存器预定义文件存放路径即为上面提及的MPLAB 安装后的目录;另一种是””双引号引用,这种引用方式的意思是指示编译器从引号中指定的全程文件路径下寻找该文件。例3-01 中”math.asm”没有指定路径,即意味着在当前项目路径下寻找math.asm 文件。如果编译器找不到被包含的文件,将会有错误信息告 知。 请在你的源程序中尽量用MPLAB 标准头文件定义的寄存器符号。一来这些被定义的寄存器符号和芯片数据手册上的描述一一对应,理解起来即直观又容易;二来如果用你自己定义符号就缺乏一个大家能一起交流的标准平台,其他人要解读你的代码时将费时费力。故例3-01 中的首行#include 包含引用伪指令可以说是PIC 单片机程序编写时的标准必备。

PIC8位单片机汇编语言常用指令的识读

PIC8位单片机汇编语言常用指令的识读(上) 各大类单片机的指令系统是没有通用性的,它是由单片机生产厂家规定的,所以用户必须遵循厂家规定的标准,才能达到应用单片机的目的。 PIC 8位单片机共有三个级别,有相对应的指令集。基本级PIC系列芯片共有指令33条,每条指令是12位字长;中级PIC系列芯片共有指令35条,每条指令是14位字长;高级PIC 系列芯片共有指令58条,每条指令是16位字长。其指令向下兼容。 在这里笔者介绍PIC 8位单片机汇编语言指令的组成及指令中符号的功能,以供初学者阅读相关书籍和资料时快速入门。 一、PIC汇编语言指令格式 PIC系列微控制器汇编语言指令与MCS-51系列单片机汇编语言一样,每条汇编语言指令由4个部分组成,其书写格式如下: 标号操作码助记符操作数1,操作数2;注释 指令格式说明如下:指令的4个部分之间由空格作隔离符,空格可以是1格或多格,以保证交叉汇编时,PC机能识别指令。 1 标号与MCS-51系列单片机功能相同,标号代表指令的符号地址。在程序汇编时,已赋以指令存储器地址的具体数值。汇编语言中采用符号地址(即标号)是便于查看、修改,尤其是便于指令转移地址的表示。标号是指令格式中的可选项,只有在被其它语句引用时才需派上标号。在无标号的情况下,指令助记符前面必须保留一个或一个以上的空格再写指令助记符。指令助记符不能占用标号的位置,否则该助记符会被汇编程序作标号误处理。 书写标号时,规定第一字符必须是字母或半角下划线“—”,它后面可以跟英文和数字字符、冒号(:)制符表等,并可任意组合。再有标号不能用操作码助记符和寄存器的代号表示。标号也可以单独占一行。 2 操作码助记符该字段是指令的必选项。该项可以是指令助记符,也可以由伪指令及宏命令组成,其作用是在交叉汇编时,“指令操作码助记符”与“操作码表”进行逐一比较,找出其相应的机器码一一代之。 3 操作数由操作数的数据值或以符号表示的数据或地址值组成。若操作数有两个,则两个操作数之间用逗号(,)分开。当操作数是常数时,常数可以是二进制、八进制、十进制或十六进制数。还可以是被定义过的标号、字符串和ASCⅡ码等。具体表示时,规定在二进制数前冠以字母“B”,例如B10011100;八进制数前冠以字母“O”,例如O257;十进制数前冠以字母“D”,例如D122;十六进制数前冠以“H”,例如H2F。在这里PIC 8位单片机默认进制是十六进制,在十六进制数之前加上Ox,如H2F可以写成Ox2F。 指令的操作数项也是可选项。 PIC系列与MCS-51系列8位单片机一样,存在寻址方法,即操作数的来源或去向问题。因PIC系列微控制器采用了精简指令集(RISC)结构体系,其寻址方式和指令都既少而又简单。其寻址方式根据操作数来源的不同,可分为立即数寻址、直接寻址、寄存器间接寻址和位寻址四种。所以PIC系列单片机指令中的操作数常常出现有关寄存器符号。有关的寻址实例,均可在本文的后面找到。 4 注释用来对程序作些说明,便于人们阅读程序。注释开始之前用分号(;)与其它部分相隔。当汇编程序检测到分号时,其后面的字符不再处理。值得注意:在用到子程序时应说明程序的入口条件、出口条件以及该程序应完成的功能和作用。 二、清零指令(共4条) 1 寄存器清零指令 实例:CLRW;寄存器W被清零 说明:该条指令很简单,其中W为PIC单片机的工作寄存器,相当于MCS-51系列单片机中的累加器A,CLR是英语Clear的缩写字母。 2 看门狗定时器清零指令。 实例:CLRWDT;看门狗定时器清零(若已赋值,同时清预分频器)

一些常用的汇编语言指令

汇编语言常用指令 大家在做免杀或者破解软件的时候经常要用到汇编指令,本人整理出了常用的 希望对大家有帮助! 数据传送指令 MOV:寄存器之间传送注意,源和目的不能同时是段寄存器;代码段寄存器CS不能作为目的;指令指针IP不能作为源和目的。立即数不能直接传送段寄存器。源和目的操作数类型要一致;除了串操作指令外,源和目的不能同时是存储器操作数。 XCHG交换指令:操作数可以是通用寄存器和存储单元,但不包括段寄存器,也不能同时是存储单元,还不能有立即数。 LEA 16位寄存器存储器操作数传送有效地址指令:必须是一个16位寄存器和存储器操作数。 LDS 16位寄存器存储器操作数传送存储器操作数32位地址,它的16位偏移地址送16位寄存器,16位段基值送入DS中。 LES :同上,只是16位段基址送ES中。 堆栈操作指令 PUSH 操作数,操作数不能使用立即数, POP 操作数,操作数不能是CS和立即数 标志操作指令 LAHF:把标志寄存器低8位,符号SF,零ZF,辅助进位AF,奇偶PF,进位CF传送到AH 指定的位。不影响标志位。 SAHF:与上相反,把AH中的标志位传送回标志寄存器。 PUSHF:把标志寄存器内容压入栈顶。 POPF:把栈顶的一个字节传送到标志寄存器中。 CLC:进位位清零。 STC:进位位为1。 CMC:进位位取反。 CLD:使方向标志DF为零,在执行串操作中,使地址按递增方式变化。 STD:DF为1。 CLI:清中断允许标志IF。Cpu不相应来自外部装置的可屏蔽中断。 STI:IF为1。 加减运算指令

注意:对于此类运算只有通用寄存器和存储单元可以存放运算结果。如果参与运算的操作数有两个,最多只能有一个存储器操作数并且它们的类型必须一致。 ADD。 ADC:把进位CF中的数值加上去。 INC:加1指令 SUB。 SBB:把进位CF中数值减去。 DEC:减1指令。 NEG 操作数:取补指令,即用0减去操作数再送回操作数。 CMP:比较指令,完成操作数1减去操作数2,结果不送操作数1,但影响标志位。可根据ZF(零)是否被置1判断相等;如果两者是无符号数,可根据CF判断大小;如果两者是有符号数,要根据SF和OF判断大小。 乘除运算指令 MUL 操作数:无符号数乘法指令。操作数不能是立即数。操作数是字节与AL中的无符号数相乘,16位结果送AX中。若字节,则与AX乘,结果高16送DX,低16送AX。如乘积高半部分不为零,则CF、OF为1,否则为0。所以CF和OF表示AH或DX中含有结果的有效数。IMUL 操作数:有符号数乘法指令。基本与MUL相同。 DIV 操作数:被除数是在AX(除数8位)或者DX和AX(除数16位),操作数不能是立即数。如果除数是0,或者在8(16)位除数时商超过8(16)位,则认为是溢出,引起0号中断。IDIV:有符号除法指令,当除数为0,活着商太大,太小(字节超过127,-127字超过32767,-32767)时,引起0号中断。 符号扩展指令 CBW,CWD:把AL中的符号扩展到寄存器AH中,不影响各标志位。CWD则把AX中的符号扩展到DX,同样不影响标志位。注意:在无符号数除之前,不宜用这两条指令,一般采用XOR 清高8位或高16位。 逻辑运算指令与位移指令 注意:只能有一个存储器操作数;只有通用寄存器或存储器操作数可作为目的操作数,用于存放结果;操作数的类型必须一致。 NOT:取反,不影响标志位。 AND 操作数1 操作数2:操作结果送错作数1,标志CF(进位)、OF(溢出)清0,PF(奇偶)ZF(0标志) SF(符号)反映运算结果,AF(辅助进位)未定义。自己与自己AND值不变,她主要用于将操作数中与1相与的位保持不变,与0相与清0。(都为1时为1)OR 操作数1 操作数2:自己与自己OR值不变,CF(进位)、OF(溢出)清0,PF(奇偶)ZF(0标志)SF(符号)反映运算结果,AF(辅助进位)未定义。她使用于将若干位置1:

8086汇编指令表

8086汇编指令表

MOV MOV DST,SRC DST≠CS、IP和imm 不影响 标志位 MOV [9AF0H],AL MOVS MOVS mem, mem MOVSB/W 不影响 标志位 字符串传送ES:DI←(DS:SI) SI←(SI)(+/-)1 DI←(DI)(+/-)1 MOVS ES:BYTE PTR[DI], DS:[SI] MUL MUL r/m8 设置CF OF S Z A P无法预 测 无符号乘法:AX←AL*r/m8 MUL CL MUL r/m16 无符号乘法:DX:AX←AX*r/m16 MUL CX NEG NEG reg/mem CF OF SF ZF AF PF 求补:取反加一 0-(DST) NEG CL NOP NOP 不影响空操作NOP NOT NOT reg/mem 不影响按位取反NOT CL OR 同AND PF SF ZF CF=OF=0 逻辑或 OR AL,0FH (不变\置1) OUT OUT imm8,AL/AX/EAX 不影响 标志位 将AL/AX/EAX输出到imm8指定端 口 OUT 0FFH,AL OUT DX,AL/AX/EAX 将AL/AX/EAX输出到DX指定的端口OUT DX,AL POP POP DST DST!=imm & CS 不影响 标志位 DST←((SP)+1,(SP)) SP←(SP)+2 POP WORD Ptr [87EAH] POPF POPF 设置所有标志位从堆栈中弹出16位标志寄存器POPF PUSH PUSH SRC 8086 SRC!=imm 不影响 标志位 SP<--(SP)-2 ((SP)+1,(SP))←(SRC) [SP循 环] PUSH WORD Ptr [87EAH] PUSHF PUSHF 不影响压栈16位标志寄存器PUSHF RCL 同SHL 同ROL 带进位循环左移 RCL AL,1 RCR 同SHL 同ROL 带进位循环右移 RCR AL,1 ROL 同SHL 移一位后符号位 改变则OF=1 循环左移: ROL AL,1 ROR 同SHL 同ROL 循环右移: ROR AL,1 REP REP String operation 不影响 标志位 CX=0则终止---CX←(CX)-1 ---串操作---SI/DI增量 REPZ REPE REPE String operation AF CF OF PF SF ZF CX=0||ZF=0则终止 ---CX←(CX)-1 ---串比较---SI/DI增量 REPNZ REPNE REPNE String operation AF CF OF PF SF ZF CX=0||ZF=1则终止--- CX←(CX)-1 ---串比较---SI/DI增量 RET RET 恢复压栈标志位 POP IP[CS] 子过程返回(Near)/(Far) RET RET imm16 子过程返回后SP←(SP)+imm16 RET 08

汇编指令

?应用 注册 用户名密码 ?HOHO ?照片PK ?分享 ?投票 ?测试 ?礼物 ?开心部落 ?汽车工厂 ?七彩鱼 更多?网页游戏 分享 ?热门分享 ?最新分享 ?好友的分享 ?我的分享 如何分享?问题反馈 shxc_3的分享 分享 PIC常用汇编指令 PIC常用汇编指令 常用指令 1.寄存器加1指令:INCF 【格式】INCF F,d 【功能】寄存器F加1

【说明】 (1)INCF是Increment F的缩写; (2)在PIC系列8位单片机中,常用符号F代表片内的各种寄存器和F的序号地址;(3)d=0时,结果存入W;d=1时,结果存入F。 【实例】INCF PORTC,1 ;将PORTC加1 2.寄存器减1指令:DECF 【格式】DECF F,d 【功能】寄存器F减1 【说明】 (1)DECF是Decrement F的缩写; (2)d=0时,结果存入W;d=1时,结果存入F。 【实例】ENCODER EQU 0X21 …… DECF ENCODER,1 ;将ENCODER减1 3.寄存器清零指令:CLRF 【格式】CLRF F 【功能】寄存器清零 【说明】 (1)CLRF是Clear F的缩写; (2)F寄存器被清为全0,使状态位Z=1。 【实例】CLRF TRISC ;对TRISC 清零 4.W清零指令:CLRW 【格式】CLRW

【功能】寄存器W清零 【说明】 (1)CLRW是Clear W的缩写; (2)W为PIC单片机的工作寄存器; (3)W寄存器被清为全0,使状态位Z=1。 【实例】CLRW ;W=00H 5.F寄存器传送指令:MOVF 【格式】MOVF F,d 【功能】将F寄存器内容传送到F或W 【说明】 (1)MOVF是Move F的缩写; (2)当d=1时,传到F本身;当d=0时,传到W; (3)影响状态位Z 【实例】MOVF PORTB,0 ;PORTB口内容送W MOVWF PORTA;W内容即PORTB口内容送PORTA 6.W寄存器传送指令:MOVWF 【格式】MOVWF F 【功能】W寄存器传送 【说明】 (1)MOVWF是Move W to F的缩写; (2)将W寄存器内容传到F,W内容不变; (3)不影响状态位。

常用汇编指令表

1. 通用数据传送指令. MOV 传送字或字节. MOVSX 先符号扩展,再传送. MOVZX 先零扩展,再传送. PUSH 把字压入堆栈. POP 把字弹出堆栈. PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈. POPA 把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈. PUSHAD 把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈. POPAD 把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次弹出堆栈. BSWAP 交换32位寄存器里字节的顺序 XCHG 交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数) CMPXCHG 比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX ) XADD 先交换再累加.( 结果在第一个操作数里) XLAT 字节查表转换. —— BX 指向一张256 字节的表的起点, AL 为表的索引值(0-255,即 0-FFH); 返回AL 为查表结果. ( [BX+AL]->AL ) 2. 输入输出端口传送指令. IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} ) OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器) 输入输出端口由立即方式指定时, 其范围是0-255; 由寄存器DX 指定时, 其范围是0-65535. 3. 目的地址传送指令. LEA 装入有效地址. 例: LEA DX,string ;把偏移地址存到DX. LDS 传送目标指针,把指针内容装入DS. 例: LDS SI,string ;把段地址:偏移地址存到DS:SI. LES 传送目标指针,把指针内容装入ES. 例: LES DI,string ;把段地址:偏移地址存到ES:DI.

常用51单片机汇编指令

常用单片机汇编指令: 1 .MOV A,Rn寄存器内容送入累加器 2 .MOV A,direct 直接地址单元中的数据送入累加器 3 .MOV A,@Ri (i=0,1) 间接RAM中的数据送入累加器 4 .MOV A,#data 立即数送入累加器 5 .MOV Rn,A累加器内容送入寄存器 6 .MOV Rn,direct 直接地址单元中的数据送入寄存器 7 .MOV Rn,#data 立即数送入寄存器 8 .MOV direct,A 累加器内容送入直接地址单元 9 .MOV direct,Rn 寄存器内容送入直接地址单元 10. MOV direct,direct 直接地址单元中的数据送入另一个 直接地址单元 11 .MOV direct,@Ri (i=0,1) 间接RAM中的数据送入直接地址单元 12 MOV direct,#data 立即数送入直接地址单元 13 .MOV @Ri,A (i=0,1) 累加器内容送间接RAM单元 14 .MOV@Ri,direct (i=0,1)直接地址单元数据送入间接RAM 单元 15 .MOV @Ri,#data (i=0,1) 立即数送入间接RAM单元 16 .MOV DPTR,#data16 16 位立即数送入地址寄存器 17 .MOVC A,@A+DPTR以DPTR^基地址变址寻址单元中的数 据送入累加器

18 .MOVC A,@A+PC以PC为基地址变址寻址单元中的数据送入累加器 19 .MOVX A,@Ri (i=0,1) 外部RAM(8位地址)送入累加器 20 .MOVX A,@DPTR外部RAM(16位地址)送入累加器 21 .MOVX @Ri,A (i=0,1) 累计器送外部RAM(8位地址) 22 .MOVX @DPTR,A累计器送外部RAM( 16位地址) 23 .PUSH direct 直接地址单元中的数据压入堆栈 24 .POP direct 弹栈送直接地址单元 25 .XCH A,Rn 寄存器与累加器交换 26 .XCH A,direct 直接地址单元与累加器交换 27 .XCH A,@Ri (i=0,1) 间接RAM与累加器交换 28 .XCHD A,@Ri (i=0,1) 间接RAM的低半字节与累加器交换算术操作类指令: 1. ADD A,Rn 寄存器内容加到累加器 2 .ADD A,direct 直接地址单元的内容加到累加器 3 A.DD A,@Ri (i=0,1) 间接ROM的内容加到累加器 4 .ADD A,#data 立即数加到累加器 5 .ADDC A,Rn寄存器内容带进位加到累加器 6 .ADDC A,direct 直接地址单元的内容带进位加到累加器 7 .ADDC A,@Ri(i=0,1) 间接ROM的内容带进位加到累加器 8 .ADDC A,#data 立即数带进位加到累加器

汇编语言的各条指令

常用命令 数据传送指令 一通用数据传送指令 MOV指令为双操作数指令,两个操作数中不能全为内存操作数 格式:MOV DST,SRC 执行操作:dst = src 注:1.目的数可以是通用寄存器,存储单元和段寄存器(但不允许用CS段寄存器). 2.立即数不能直接送段寄存器 3.不允许在两个存储单元直接传送数据 4.不允许在两个段寄存器间直接传送信息 PUSH入栈指令及POP出栈指令: 堆栈操作是以“后进先出”的方式进行数据操作。 格式:PUSH SRC //Word 执行操作:(SP)<-(SP)-2 ((SP)+1,(SP))<-(SRC) 注:1.入栈的操作数除不允许用立即数外,可以为通用寄存器,段寄存器(全部)和存储器。

2.入栈时高位字节先入栈,低位字节后入栈。 格式:POP DST //Word 执行操作:(DST)<-((SP+1),(SP)) (SP)<-(SP)+2 注:1.出栈操作数除不允许用立即数和CS段寄存器外,可以为通用寄存器,段寄存器和存储器。 2.执行POP SS指令后,堆栈区在存储区的位置要改变。 3.执行POP SP 指令后,栈顶的位置要改变。 XCHG(eXCHanG)交换指令: 将两操作数值交换。 格式:XCHG OPR1,OPR2 //Byte/Word 执行的操作:(OPR1)<-->(OPR2) 注:1.必须有一个操作数是在寄存器中 2.不能与段寄存器交换数据 存储器与存储器之间不能交换数据。 二累加器专用传送指令 IN输入指令 长格式为:IN AL,PORT(字节) IN AX,PORT(字) 执行的操作:(AL)<-(PORT)(字节)

汇编指令大全

ORG 0000H NOP ;空操作指令 AJMP L0003 ;绝对转移指令 L0003: LJMP L0006 ;长调用指令 L0006: RR A ;累加器A内容右移(先置A为88H) INC A ; 累加器A 内容加1 INC 01H ;直接地址(字节01H)内容加1 INC @R0 ; R0的内容(为地址) 的内容即间接RAM加1 ;(设R0=02H,02H=03H,单步执行后02H=04H) INC @R1 ; R1的内容(为地址) 的内容即间接RAM加1 ;(设R1=02H,02H=03H,单步执行后02H=04H) INC R0 ; R0的内容加1 (设R0为00H,单步执行后查R0内容为多少) INC R1 ; R1的内容加1(设R1为01H,单步执行后查R1内容为多少) INC R2 ; R2的内容加1 (设R2为02H,单步执行后查R2内容为多少) INC R3 ; R3的内容加1(设R3为03H,单步执行后查R3内容为多少) INC R4 ; R4的内容加1(设R4为04H,单步执行后查R4内容为多少) INC R5 ; R5的内容加1(设R5为05H,单步执行后查R5内容为多少) INC R6 ; R6的内容加1(设R6为06H,单步执行后查R6内容为多少) INC R7 ; R7的内容加1(设R7为07H,单步执行后查R7内容为多少) JBC 20H,L0017; 如果位(如20H,即24H的0位)为1,则转移并清0该位L0017: ACALL S0019 ;绝对调用 S0019: LCALL S001C ;长调用 S001C: RRC A ;累加器A的内容带进位位右移(设A=11H,C=0 ;单步执行后查A和C内容为多少) DEC A ;A的内容减1 DEC 01H ;直接地址(01H)内容减1 DEC @R0 ;R0间址减1,即R0的内容为地址,该地址的内容减1 DEC @R1 ; R1间址减1 DEC R0 ; R0内容减1 DEC R1 ; R1内容减1 DEC R2 ; R2内容减1 DEC R3 ; R3内容减1 DEC R4 ; R4内容减1 DEC R5 ; R5内容减1 DEC R6 ; R6内容减1 DEC R7 ; R7内容减1 JB 20H,L002D;如果位(20H,即24H的0位)为1则转移 L002D: AJMP L0017 ;绝对转移 RET ;子程序返回指令 RL A ;A左移 ADD A,#01H ;A的内容与立即数(01H)相加 ADD A,01H ; A的内容与直接地址(01H内容)相加 ADD A,@R0 ; A的内容与寄存器R0的间址内容相加 ADD A,@R1 ; A的内容与寄存器R1的间址内容相加

反汇编语言常用指令

内容目录 计算机寄存器分类简介 计算机寄存器常用指令 一、常用指令 二、算术运算指令 三、逻辑运算指令 四、串指令 五、程序跳转指令 ------------------------------------------ 计算机寄存器分类简介: 32位CPU所含有的寄存器有: 4个数据寄存器(EAX、EBX、ECX和EDX) 2个变址和指针寄存器(ESI和EDI) 2个指针寄存器(ESP和EBP) 6个段寄存器(ES、CS、SS、DS、FS和GS) 1个指令指针寄存器(EIP) 1个标志寄存器(EFlags) 1、数据寄存器 数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器的时间。 32位CPU有4个32位的通用寄存器EAX、EBX、ECX和EDX。 对低16位数据的存取,不会影响高16位的数据。 这些低16位寄存器分别命名为:AX、BX、CX和DX,它和先前的CPU中的寄存器相一致。 4个16位寄存器又可分割成8个独立的8位寄存器(AX:AH-AL、BX:BH-BL、CX:CH-CL、DX:DH-DL),每个寄存器都有自己的名称,可独立存取。 程序员可利用数据寄存器的这种“可分可合”的特性,灵活地处理字/字节的信息。 寄存器EAX通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。可用于乘、除、输入/输出等操作,使用频率很高; 寄存器EBX称为基地址寄存器(Base Register)。它可作为存储器指针来使用; 寄存器ECX称为计数寄存器(Count Register)。 在循环和字符串操作时,要用它来控制循环次数;在位操作中,当移多位时,要用CL来指明移位的位数;寄存器EDX称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数参与运算,也可用于存放I/O的端口地址。 在16位CPU中,AX、BX、CX和DX不能作为基址和变址寄存器来存放存储单元的地址, 在32位CPU中,其32位寄存器EAX、EBX、ECX和EDX不仅可传送数据、暂存数据保存算术逻辑运算结果, 而且也可作为指针寄存器,所以,这些32位寄存器更具有通用性。 2、变址寄存器 32位CPU有2个32位通用寄存器ESI和EDI。 其低16位对应先前CPU中的SI和DI,对低16位数据的存取,不影响高16位的数据。 寄存器ESI、EDI、SI和DI称为变址寄存器(Index Register),它们主要用于存放存储单元在段内的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。 变址寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。 它们可作一般的存储器指针使用。在字符串操作指令的执行过程中,对它们有特定的要求,而且还具有特殊的功能。 3、指针寄存器

汇编语言常见指令

?PTR?操作符:强制类型转换 MOV BYTE PTR [BX], 20H ;1B立即数20H送DS:[BX] MOV WORD PTR [BX], 20H ;立即数20H送DS:[BX], ;00H送DS:[BX+1] 2.LEA(Load Effective Address) 设:变量X的偏移地址为1020H , (BP)=0020H 执行指令后: LEA DX, X LEA BX, [BP] ; 执行后, (DX) = 1020H ; 执行后, (BX) = 0020H 3.地址传送指令LDS,LES LDS REG16, MEM ; 从存储器取出4B,送入REG16和DS LES REG16, MEM ; 从存储器取出4B,送入REG16和ES 4.符号扩展指令CBW,CWD CBW ;将AL寄存器内容符号位扩展到AH CWD ;将AX寄存器内容符号位扩展到DX 设:(AX)= 8060H,(DX)=1234H 执行下列指令后 CBW ;(AX)= 0060H 设:(AX)= 8060H,(DX)=1234H 执行下列指令后 CWD ;(DX)= 0FFFFH,(AX)= 8060H 5.交换指令XCHG 例如,(AX)= 5678H 执行下面指令后 XCHG AH, AL ;(AX)= 7856H 6.换码指令XLAT XLAT ;AL←DS: [BX+AL] 表格的首地址事先存放在内存逻辑地址DS: BX中, AL的内容是相对于表格的位移量, 把对应内存的内容取出放在AL寄存器。 7.逻辑运算符 SHR(右移) SHL(左移) AND(与) OR(或) XOR(异或)

相关文档