文档库 最新最全的文档下载
当前位置:文档库 › 数列的通项公式与前n项和的关系

数列的通项公式与前n项和的关系

数列的通项公式与前n项和的关系
数列的通项公式与前n项和的关系

1.(11辽宁T17)

已知等差数列{a n }满足a 2=0,a 6+a 8=-10

(I )求数列{a n }的通项公式;

(II )求数列??????-12n n a 的前n 项和. 【测量目标】等差数列的通项,数列的通项公式{}n a 与前n 项和n S 的关系.

【难易程度】容易

【试题解析】(I )设等差数列{}n a 的公差为d ,由已知条件可得110,21210,

a d a d +=??+=-? 解得11,1.a d =??=-?

故数列{}n a 的通项公式为2.n a n =-(步骤1) (II )设数列1{}2n n a -的前n 项和为n S ,即211,22

n n n a a S a -=+++L 故11S =(步骤2) 12.2242

n n n S a a a =+++L 所以,当1n >时, 1211111222211121()2422

121(1)22

n n

n n n n n

n n n n S a a a a a S a n n -------=+++--=-+++--=---L L =

.2n

n (步骤3) 所以1.2n n n S -= 综上,数列11{

}.22

n n n n a n n S --=的前项和(步骤4)

2.(10上海T20)

已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,n +∈N .

(1)证明:{}1n a -是等比数列;

(2)求数列{}n S 的通项公式,并求出n 为何值时,n S 取得最小值,并说明理由.

【测量目标】数列的通项公式n a 与前n 项和n S 的关系.

【试题解析】(1)当1n =时,114a =-;当2n …时,11551n n n n n a S S a a --=-=-++,()15116

n n a a -∴-=-,(步骤1) 又11150a -=-≠Q ,∴数列{}1n a -是等比数列;(步骤2)

(2)由(1)知:151156n n a -??-=- ???

g ,得151156n n a -??=- ???g ,(步骤3) 从而()1575906n n S n n -+??=+-∈ ???N g ;

(步骤4) 解不等式1n n S S +<,得15265n -??< ???,56

2log 114.925n >+≈,(步骤5) ∴当15n …时,数列{}n S 单调递增;

(步骤6) 同理可得,当15n ?时,数列{}n S 单调递减;

故当15n =时,n S 取得最小值.(步骤7)

3.(09辽宁T14)

等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = .

【测量目标】数列的通项公式{}n a 与前n 项和n S 的关系.

【难易程度】中等 【参考答案】13

【试题解析】∵11(1)2n S na n n d =+

-∴5131510,33S a d S a d =+=+. ∴5311114653060(1515)154515(3)15S S a d a d a d a d a -=+-+=+=+=. ∵53655,S S -=故413

a =

. 4.(09全国II T19)

设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+

(I )设12n n n b a a +=-,证明数列{}n b 是等比数列 ; (II )求数列{}n a 的通项公式.

【测量目标】数列的通项公式n a 与数列的前n 项和n S 的关系.

【试题解析】(I )由11,a =及142n n S a +=+,有 12142,a a a +=+21121325,23a a b a a =+=∴=-=(步骤1) 由142n n S a +=+, ① 则当2n …时,有142n n S a -=+ ② ①-②得111144,22(2)n n n n n n n a a a a a a a +-+-=-∴-=-(步骤2) 又12n n n b a a +=-Q ,12n n b b -∴=,(步骤3) {}n b ∴是首项13b =,公比为2的等比数列.(步骤4)

(II )由(I )可得11232n n n n b a a -+=-=g ,113224

n n n n a a ++∴-=(步骤5) ∴数列{

}2

n n a 是首项为12,公差为34的等比数列.(步骤6) ∴1331(1)22444n n a n n =+-=-,2(31)2n n a n -=-g (步骤7)

数列通项公式、前n项和求法总结

一?数列通项公式求法总结: 1?定义法一一直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例].等差数列{%}是递增数列,前n项和为S”,且也,%5成等比数列,S5=a;.求数列{%}的通项公式. 变式练习: 1.等差数列{陽}中,吗=4,如=2為,求匕}的通项公式 2.在等比数列{%}中<2-4 =2,且2勺为3纠和他的等差中项,求数列}的首项、公比及前"项和. 2 ?公式法 求数列{a…}的通项①可用公式= 5,................ ""求解。 ①-昭......... n>2 特征:已知数列的前"项和s“与%的关系 例2?已知下列两数列{色}的前n项和S“的公式,求{?}的通项公式。

变式练习: 1.已知数列{%}的前n项和为且S产2n2+m n GN*,数列{"}满足山=41。审化+3, n^N*.求色,b「 2.已知数列{?}的前门项和S”= —丄“2+如(2皿),且久的最大值为8,试确泄常数k并求0”。2 3.已知数列仏}的前"项和$“=伫卩,心".求数列仏}的通项公式。 2 3 ?由递推式求数列通项法 类型1特征:递推公式为如="”+/(") 对策:把原递推公式转化为a n+1-a…= f(n),利用累加法求解。例3.已知数列{?… }满足a{=~, % = a n + -J—,求 a”。 2 ir +n

变式练习: 1.已知数列{色}满足a^=a n+2n + \9 q=l,求数列{色}的通项公式。 2?已知数列:? =皿 =5 +漆通项公式 类型2特征:递推公式为勺屮=/(〃)? 对策:把原递推公式转化为组 = /(〃),利用累乘法求解。例4.已知数列仏}满足=-, a n^=—a n9求% 3 ” + 1 变式练习: 1?已知数列{%}中,q=2, a n¥l=3n a n9求通项公式?。

数列通项公式的求法(较全)

常见数列通项公式的求法 公式: 1、 定义法 若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或 11-=n n q a a 中即可. 例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式. 练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何* n N ∈都有 1234127 ,0,,,,6954 n n n c a b c c c c =-====分别求出此三个数列的通项公式.

2、 累加法 形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,() 11n n a a f n --=-, () 122n n a a f n ---=-, ()322a a f -=, () 211a a f -=, 以上()1n -个等式累加得 ()()()()11+221n a a f n f n f f -=--+ ++ 1n a a ∴=+()()()()1+221f n f n f f --+ ++ (3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项. ①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和; ③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.

数列的通项公式与前n项和的关系

数列的通项公式与前n 项和的关系 -CAL-FENGHAI.-(YICAI)-Company One1

1.(11辽宁T17) 已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式; (II )求数列??????-12n n a 的前n 项和. 【测量目标】等差数列的通项,数列的通项公式{}n a 与前n 项和n S 的关系. 【难易程度】容易 【试题解析】(I )设等差数列{}n a 的公差为d ,由已知条件可得11 0,21210,a d a d +=??+=-? 解得11,1. a d =??=-? 故数列{}n a 的通项公式为2.n a n =-(步骤1) (II )设数列1{ }2n n a -的前n 项和为n S ,即211,22 n n n a a S a -=+++故11S =(步骤2) 12.2242n n n S a a a =+++ 所以,当1n >时, 1211111222211121()2422 121(1)22 n n n n n n n n n n n S a a a a a S a n n -------=+++--=-+++--=--- = .2 n n (步骤3) 所以1.2n n n S -= 综上,数列11 { }.22n n n n a n n S --=的前项和(步骤4) 2.(10上海T20) 已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,n +∈N . (1)证明:{}1n a -是等比数列;

(2)求数列{}n S 的通项公式,并求出n 为何值时,n S 取得最小值,并说明理由. 【测量目标】数列的通项公式n a 与前n 项和n S 的关系. 【难易程度】中等 【试题解析】(1)当1n =时,114a =-;当2n 时,11551n n n n n a S S a a --=-=-++,()15116 n n a a -∴-=-,(步骤1) 又11150a -=-≠,∴数列{}1n a -是等比数列;(步骤2) (2)由(1)知:151156n n a -??-=- ??? ,得151156n n a -??=- ???,(步骤3) 从而()1575906n n S n n -+??=+-∈ ???N ;(步骤4) 解不等式1n n S S +<,得15265n -??< ???,562log 114.925n >+≈,(步骤5) ∴当15n 时,数列{}n S 单调递增;(步骤6) 同理可得,当15n 时,数列{}n S 单调递减; 故当15n =时,n S 取得最小值.(步骤7) 3.(09辽宁T14) 等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = . 【测量目标】数列的通项公式{}n a 与前n 项和n S 的关系. 【难易程度】中等 【参考答案】13 【试题解析】∵11(1)2 n S na n n d =+-∴5131510,33S a d S a d =+=+. ∴5311114653060(1515)154515(3)15S S a d a d a d a d a -=+-+=+=+=. ∵53655,S S -=故413 a = . 4.(09全国II T19) 设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+

数列前n项和的求和公式

数列求和的基本方法和技巧 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2) 1(2) (11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11) 1() 1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6 1 12++==∑=n n n k S n k n 5、 213)]1(2 1[+==∑=n n k S n k n [例1] 已知3 log 1 log 23-=x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. [例3] 求和:13 2)12(7531--+???++++=n n x n x x x S ………………………①

[例4] 求数列 ??????,22,,26,24,2232n n 前n 项的和. 三、倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 四、分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+???+++-n a a a n ,… [例7] 求数列{n(n+1)(2n+1)}的前n 项和.

数列通项公式方法大全很经典

1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。

求数列通项公式和前n项和的常用方法(含高考题精选)

求数列通项公式和前n 项和的常用方法 一、求数列通项公式的常用方法 1.公式法:等差数列或等比数列的通项公式。 2.归纳法:由数列前几项猜测出数列的通项公式,再用数学归纳法证明其正确性。 3.累乘法:利用3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥型如: 1()n n a g n a += 4.构造新数列: 类型1累加法 )(1n f a a n n +=+ 类型2 累乘法 n n a n f a )(1=+ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。解法(待定系数法):把原递 推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,转化为等比数列求解。 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ) 。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 解法:先在原递推公式两边同除以1 +n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 1 1+=+再待定系数法解决。 类型5 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:1.利用?? ?≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 2.升降标相减法 二、数列求和的常用方法 1.直接或转化等差、等比数列的求和公式求和 (1)等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 2.错位相减法 设数列{}n a 的等比数列,数列{}n b 是等差数列,则求数列{}n n b a 的前n 项和n S 。 3.裂项求和法 (1)1 1 1)1(1+- =+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n 等。4.分组求和法:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为 几个等差、等比或常见的数列,然后分别求和,再将其合并。 5.逆序相加法 把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广)

求前n项和公式的常用方法

求数列前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。 一.用倒序相加法求数列的前n项和 如果一个数列{a n},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。 例题1:设等差数列{a n},公差为d,求证:{a n}的前n项和S n=n(a1+a n)/2 解:S n=a1+a2+a3+...+a n① 倒序得:S n=a n+a n-1+a n-2+…+a1② ①+②得:2S n=(a1+a n)+(a2+a n-1)+(a3+a n-2)+…+(a n+a1) 又∵a1+a n=a2+a n-1=a3+a n-2=…=a n+a1 ∴2S n=n(a2+a n) S n=n(a1+a n)/2 点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+a n=a2+a n-1=a3+a n-2=…=a n+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。 二.用公式法求数列的前n项和 对等差数列、等比数列,求前n项和S n可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 例题2:求数列的前n项和S n 解: 点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。 三.用裂项相消法求数列的前n项和 裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。 例题3:求数列(n∈N*)的和

求数列通项公式常用的七种方法

创作编号:GB8878185555334563BT9125XW 创作者: 凤呜大王* 求数列通项公式常用的七种方法 一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式 ()d n a a n 11-+=或1 1-=n n q a a 进行求解. 例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式. 分析:设数列{}n a 的公差为d ,则?? ?-=+=+5411 1d a d a 解得???-==23 1d a ∴ ()5211+-=-+=n d n a a n 二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =( )( ) 32 321 ----n n =1 2 -n 而111-==s a 不适合上式,() () ???≥=-=∴-22111n n a n n 三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 3 1 1= +,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a 即 341=+n n a a ()2≥n 又1123 1 31a s a ==不适合上式 ∴ 数列{}n a 从第2项起是以 3 4 为公比的等比数列 ∴ 2 2 2343134--?? ? ??=? ? ? ??=n n n a a ()2≥n ∴()()??? ??≥?? ? ??==-23431112n n a n n 注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项. 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 可以用这种方法. 例4: ()12,011-+==+n a a a n n ,求通项n a 分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a ┅ 321-=--n a a n n ()2≥n 以上各式相加得()()2 11327531-=-+++++=-n n a a n ()2≥n 又01=a ,所以()2 1-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()2 1-=n a n ( ∈N n 五、累乘法:它与累加法类似 ,当数列{}n a 中有 ()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“律”的数时,就可以用这种方法. 例5:111,1 n n n a a a n -==- ()2,n n N *≥∈ 求通项n a 分析: 11 n n n a a n -= - ∴11n n a n a n -=- ()2,n n N * ≥∈

数列通项公式前n项和求法总结全

数列通项公式前n项和 求法总结全 YUKI was compiled on the morning of December 16, 2020

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数 列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比 及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12-=n s n 变式练习:

1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2+n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和21 2n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 变式练习: 1. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 2.已知数列: 求通项公式 类型2 特征:递推公式为 n n a n f a )(1=+ 对策:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法求解。 例4. 已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,求n a 。 变式练习:

等差数列前n项和公式》教学设计

《等差数列的前n项和公式》教学设计 职业技术学校刘老师 大纲分析: 高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列前n项和公式的推导及其简单应用。 教材分析: 数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习高等数学的必备的基础知识。 学生分析: 数列在整个高中阶段对于学生来说是难点,因为学生对于这部分仅有初中学的简单函数作为基础,所以新课的引入非常重要。 教学目标: 知识与技能目标: 掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。 过程与方法目标: 培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。 情感、态度与价值观目标: 体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。 教学重点与难点: 等差数列前n项和公式是重点。 获得等差数列前n项和公式推导的思路是难点。 教学用具:ppt 整节课分为三个阶段: 问题呈现阶段 探究发现阶段 公式应用阶段 问题呈现1: 首先讲述世界七大奇迹之一泰姬陵的传说(泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,陵寝以宝石镶饰,图案之细致令人叫绝,成为世界七大奇迹之一。)传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你知道 这个图案一共花了多少宝石吗?也就是计算1+2+3+ (100) 紧接着讲述高斯算法:高斯,德国著名数学家,被誉为“数学王子”。 200多年前,高斯的算术教师提出了下面的问题:1+2+3+…+100=? 据说,当其他同学忙于把100个数逐项相加时, 10岁的高斯却用下面的方法迅速算出了正确答案: (1+100)+(2+99)+……+(50+51)=101×50=5050 【设计说明】了解历史,激发兴趣,提出问题,紧扣核心。 问题呈现2: 图案中,第1层到第21层一共有多少颗宝石?

数列通项公式和前n项和的常见解题方法

一、 观察法:已知数列的前几项,要求写出数列的一个通项公式 例1、求下列数列的一个通项公式。 ①1 3572,4,8,165101520 -- ②1,0,1,0 ③3,33,333,3333 ④11,103,1005,10007 二、定义法:主要应用于可定性为等差或等比数列的类型,可直接利用等差或等比数列的通项公式进行求解。例2、求下列数列的通项公式 ①已知数列{}a n 中() *112,3n n a a a n N +==+∈求通项公式。 ②已知{}a n 中a 13=-且n n a a 21=+求此数列的通项公式。 ③已知等比数列2,a ,a +4,…写出其通项a n 的表达式. ④已知数列{}n a 中,满足a 1=6,a 1+n +1=2(a n +1) (n ∈N + ),则数列{}n a 的通项公式 三、 递推关系式形如1()n n a a f n +=+ (其中()f n 不是常数函数) 此类问题要利用累加法, 利用公式121321()()()n n n a a a a a a a a -=+-+-+???+-来求解. 例.若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。 变式:(1)数列{a n }满足a 1=1且132(2),n n n a a n n a -=+-≥求 (2)数列{a n }满足a 1=1且11(2),2 n n n n a a n a -=+ ≥求 四、 递推关系式形如1()n n a a f n += (其中()f n 不是常数函数) 此类问题要利用累乘法,利用公式321121n n n a a a a a a a a -=??? 来求解. 例.在数列{}n a 中,11=a ,n n n a a 21=+(* N n ∈),求通项n a 。 变式:若1124,n n n a a a n ++==,求n a 五、 (构造数列法) 递推关系式形如 1n n a pa q +=+(,,1,0)q p p q ≠≠为常数且 此类问题可化为1()11n n q q a p a p p ++=+--,即数列{}1 n q a p +-是一个以p 为公比的等比数列. 例.已知数列{}n a 满足*111,21().n n a a a n N +==+∈求数列{}n a 的通项公式 变式:115,23n n n a a a a -==+且,求 六、利用前n 项和S n 求通项 利用{11,1 ,2n n a n n S S n a -=-≥= ,一定要验证首项。 例:已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)223n S n n =-。 (2)12-=n s n (2)若数列{a n }的前n 项和S n =32 a n -3,求{a n }的通项公式.

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

求数列通项公式的十种方法

求数列通项公式的十种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 1 1==为首项,以2 3 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 二、利用 { 1(2)1(1) n n S S n S n n a --≥== 例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解 : 22(1) 4 2 31a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--… …2分 当1,35811n T b ===--=-时 当2,62 6 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等 比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 2.(2006年全国卷I )设数列{}n a 的前n 项的和

等比数列前n项和公式

数列 等比数列前n项和公式 ■(2015甘肃省白银市会宁二中高考数学模拟,等比数列前n项和公式,选择题,理3)公比不为1等比数列{a n}的前n项和为S n,且-3a1,-a2,a3成等差数列,若a1=1,则S4=() A.-20 B.0 C.7 D.40 解析:设数列的公比为q(q≠1),则∵-3a1,-a2,a3成等差数列, ∴-3a1+a3=-2a2,∵a1=1,∴-3+q2+2q=0, ∵q≠1,∴q=-3.∴S4=1-3+9-27=-20.故选A. 答案:A ■(2015甘肃省兰州市七里河区一中数学模拟,等比数列前n项和公式,选择题,理11)已知函数y=x3在x=a k时的切线和x轴交于a k+1,若a1=1,则数列{a n}的前n项和为() A.n B. - C.3- D.3- - 解析:∵函数y=x3,∴y'=3x2,∴- - =3, 即 - =3, 化简,得3a k+1=2a k,即, 又∵a1=1,∴S n=- - =3- - ,故选D. 答案:D ■(2015甘肃省白银市会宁二中高考数学模拟,数列与不等式相结合问题,填空题,理16)已知数列{a n}的前n项和为S n,且S n+1=2a n,则使不等式+…+<5×2n+1成立的n的最大值为.解析:当n=1时,a1+1=2a1,解得a1=1. 当n≥2时,∵S n+1=2a n,S n-1+1=2a n-1, ∴a n=2(a n-a n-1),∴ - =2. ∴数列{a n}是以1为首项,2为公比的等比数列. ∴a n=2n-1,∴=4n-1. ∴+…+ =1+4+42+…+4n-1=- - (4n-1). ∴(4n-1)<5×2n+1. ∴2n(2n-30)<1,可知使得此不等式成立的n的最大值为4. 答案:4 专题2数列与函数相结合 问题 1

求数列通项公式的种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细) 总述:一.利用递推关系式求数列通项的7种方法: 累加法、 累乘法、 待定系数法、 倒数变换法、 由和求通项 定义法 (根据各班情况适当讲) 二。基本数列:等差数列、等比数列。等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 五.数列的本质是一个函数,其定义域是自然数集的一个函数。 一、累加法 1.适用于:1()n n a a f n +=+----------这是广义的等差数列累加法是最基本的二个方法之一。 例1已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 例2已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211122112211()()()()(231)(231)(231)(231)3 2(3333)(1)3 3(13)2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 解法二:13231n n n a a +=+?+两边除以13n +,得 11 121 3333 n n n n n a a +++=++, 则 111 21 3333n n n n n a a +++-=+ ,故 因此11 (13)2(1)211 3133133223 n n n n n a n n ---=++=+--?, 则21133.322 n n n a n =??+?- 练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 答案:12 +-n n 练习2.已知数列}{n a 满足31=a ,) 2()1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式. 答案:裂项求和 n a n 12- = 评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .

数列通项公式和前n项和求解方法全

数列通项公式的求法详解 一、 观察法(关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999, (2) ,1716 4,1093 ,542,21 1(3) ,52,21,32 ,1(4) ,5 4 ,43,32 ,21-- 答案:(1)110-=n n a (2);122++=n n n a n (3);12+=n a n (4)1 )1(1+? -=+n n a n n . 二、 公式法 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2 ,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),求数列{ a n }和{ b n }的通项公式。 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 答案:(D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

《等差数列前n项和公式》教学设计

《等差数列的前n项和》教学设计 一、设计理念 让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构,因为建构主义学习理论认为,学习是学生积极主动地建构知识的过程.在教学过程中,根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.同时根据我校的特点,为了促进成绩优秀学生的发展,还设计了选做题和探索题,进一步培养优秀生用函数观点分析、解决问题的能力,达到了分层教学的目的. 二、背景分析 本节课教学内容是高中课程标准实验教科书必修5(北师大)中第二章的第三节内容.本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用.等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法. 三、学情分析 1、学生已掌握的理论知识角度:学生已经学习了等差数列的定义及通项公式,掌握了等差数列的基本性质,有了一定的知识准备。 2、学生了解数列求和历史角度:大部分学生对高斯算法有比较清晰的认识,并且知道此算法原理,但在高斯算法中数列1,2,3,……,100只是一个特殊的等差数列,对于一般的等差数列的求和方法和公式学生还是一无所知。 3、学生的认知规律角度:本节课采取了循序渐进、层层深入的教学方式,以问题解答的形式,通过探索、讨论、分析、归纳而获得知识,为学生积极思考、自主探究搭

关于自然数数列前n项和公式证明

自然数平方与立方数列前n 项和公式证明 huangjianwxyx 以下公式,尤其是二、三公式的推导体现了递推消项数学思想。 一、证明:Sn=∑=n k k 1=1+2+3+…+n =(1+n)n/2 证:(略) 二、证明:Sn=∑=n k k 12=12+22+32+…+n2= [n(n +1)(2n +1)]/6 证: (n +1)3-n3=(n3+3n2+3n +1)-n3=3n2+3n +1,则: 23-13=3×12+3×1+1(n 从1开始) 33-23=3×22+3×2+1 43-33=3×32+3×3+1 53-43=3×42+3×4+1 63-53=3×52+3×5+1 … (n +1)3-n3=3×n2+3×n +1(至n 结束) 上面左右所有的式子分别相加,得: (n +1)3-13=3×[12+22+32+…+n2]+3×[1+2+3+…+n]+n ∴ (n +1)3-1=3Sn +3×[n(n +1)/2]+n ∴Sn=12+22+32+…+n2= [n(n +1)(2n +1)]/6 三、证明:Sn=∑=n k k 13=13+23+.....+n 3=n 2(n+1)2/4=[n(n+1)/2] 2 证: (n+1) 4-n 4=[(n+1)2+n 2][(n+1)2-n 2]=(2n 2+2n+1)(2n+1)=4n 3+6n 2+4n+1则: 24-14=4*13+6*12+4*1+1 (n 从1开始) 34-24=4*23+6*22+4*2+1 44-34=4*33+6*32+4*3+1 ... (n+1) 4-n 4=4*n 3+6*n 2+4*n+1(至n 结束) 上面左右所有的式子分别相加,得: (n+1) 4-1=4*(13+23+.....+n 3)+6*(12+22+32+…+n2)+4*(1+2+3+...+n)+n ∴4*(13+23+.....+n 3)= (n+1) 4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]2 ∴Sn=13+23+.....+n 3=[n(n+1)/2] 2

相关文档
相关文档 最新文档