文档库 最新最全的文档下载
当前位置:文档库 › 多元函数的极值及其求法.pdf

多元函数的极值及其求法.pdf

多元函数的极值及其求法.pdf
多元函数的极值及其求法.pdf

第十一讲 二元函数的极值

要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。

问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,来讨论多元函数的极值问题.

一.二元函数的极值

定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点.

例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点)0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点.

例2.函数2

243y x z +=在点)0,0(处有极小值.

因为对任何),(y x 有0)0,0(),(=>f y x f .

从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件.

定理1(必要条件)

设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y .

几何解释

若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为

))(,())(,(0000000y y y x f x x y x f z z y x ?+?=?

是平行于xoy 坐标面的平面0z z =.

类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为 0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z

说明 上面的定理虽然没有完全解决求极值的问题,但它明确指出找极值点的途径,即只要解方程组???==0),(0),(0

000y x f y x f y x ,求得解),(),(),,(2211n n y x y x y x ??,那么极值点必包含在其中,这些点称为函数),(y x f z =的驻点.

注意1.驻点不一定是极值点,如xy z =在)0,0(点.

怎样判别驻点是否是极值点呢?下面定理回答了这个问题.

定理2(充分条件)

设函数),(y x f z =在点),(00y x 的某邻域内连续,且有一阶及二阶连续偏导数,又

0),(00=y x f x ,0),(00=y x f y ,

令 A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则

(1)当02>?B AC 时,函数),(y x f z =在点),(00y x 取得极值,且当0A 时,有极小值00(,)f x y ;

(2)当02

(3)当02=?B AC 时,函数),(y x f z =在点),(00y x 可能有极值,也可能没有极值,还要另作讨论.

求函数),(y x f z =极值的步骤:

(1)解方程组0),(00=y x f x ,0),(00=y x f y ,求得一切实数解,即可求得一切驻点 ),(),(),,(2211n n y x y x y x ??;

(2)对于每一个驻点),(i i y x (1,2,)i n =,求出二阶偏导数的值C B A ,,;

(3)确定2B AC ?的符号,按定理2的结论判定),(i i y x f 是否是极值,是极大值还是极小值;

(4)考察函数),(y x f 是否有导数不存在的点,若有加以判别是否为极值点.

例3.考察22y x z +?=是否有极值.

解 因为22y x x x z +?=??,22y x y y z +=??在0,0==y x 处导数不存在,但是对所

有的)0,0(),(≠y x ,均有0)0,0(),(=

注意2.极值点也不一定是驻点,若对可导函数而言,怎样?

例4.求函数x y x y x y x f 933),(2

233?++?=的极值.

解 先解方程组?????=+?==?+=063096322y y f x x f y x ,求得驻点为)2,3(),0,3(),2,1(),0,1(??, 再求出二阶偏导函数66+=x f xx ,0=xy f ,66+?y f yy .

在点)0,1(处,0726122>=?=?B AC ,又0>A ,所以函数在点)0,1(处有极小值为5)0,1(?=f ;

在点)2,1(处,0722

在点)0,3(?处,0722

在点)2,3(?处,0722>=?B AC ,又0

二.函数的最大值与最小值

求最值方法:

⑴ 将函数),(y x f 在区域D 内的全部极值点求出;

⑵ 求出),(y x f 在D 边界上的最值;即分别求一元函数1(,())f x x ?,2(,())f x x ?的最值;

⑶ 将这些点的函数值求出,并且互相比较,定出函数的最值.

实际问题求最值

根据问题的性质,知道函数),(y x f 的最值一定在区域D 的内部取得,而函数在D 内只有一个驻点,那么可以肯定该驻点处的函数值就是函数),(y x f 在D 上的最值. 例4.求把一个正数a 分成三个正数之和,并使它们的乘积为最大.

解 设y x ,分别为前两个正数,第三个正数为y x a ??,

问题为求函数 )(y x a xy u ??=在区域D :0>x ,0>y ,a y x <+内的最大值. 因为)2()(y x a y xy y x a y x

u ??=???=??,)2(x y a x y u ??=??, 解方程组???=??=??0

202x y a y x a ,得3a x =,3a y =. 由实际问题可知,函数必在D 内取得最大值,而在区域D 内部只有唯一的驻点,则函

数必在该点处取得最大值,即把a 分成三等份,乘积3)3(a 最大.

另外还可得出,若令y x a z ??=,则

33)3(

)3(z y x a xyz u ++=≤= 即 3

3z y x xyz ++≤. 三个数的几何平均值不大于算术平均值.

三.条件极值,拉格朗日乘数法

引例 求函数22y x z +=的极值.

该问题就是求函数在它定义域内的极值,前面求过在)0,0(取得极小值;

若求函数2

2y x z +=在条件1=+y x 下极值,这时自变量受到约束,不能在整个函数定义域上求极值,而只能在定义域的一部分1=+y x 的直线上求极值,前者只要求变量在定义域内变化,而没有其他附加条件称为无条件极值,后者自变量受到条件的约束,称为条件极值.

如何求条件极值?有时可把条件极值化为无条件极值,如上例从条件中解出x y ?=1,代入22y x z +=中,得122)1(222+?=?+=x x x x z 成为一元函数极值问题,令024=?='x z x ,得21=x ,求出极值为2

1)21,21(=z . 但是在很多情形下,将条件极值化为无条件极值并不这样简单,我们另有一种直接寻求条件极值的方法,可不必先把问题化为无条件极值的问题,这就是下面介绍的拉格朗日乘数法.利用一元函数取得极值的必要条件.

求函数),(y x f z =在条件

0),(=y x ?

下取得极值的必要条件.

若函数),(y x f z =在00(,)x y 取得所求的极值,那么首先有

00(,)0x y ?=.

假定在00(,)x y 的某一邻域内函数),(y x f z =与均有连续的一阶偏导数,且00(,)0y x y ?≠. 有隐函数存在定理可知,方程0),(=y x ?确定一个单值可导且具有连续导数的函数()y x ψ=,将其代入函数),(y x f z =中,得到一个变量的函数

(,())z f x x ψ=

于是函数),(y x f z =在00(,)x y 取得所求的极值,也就是相当于一元函数(,())z f x x ψ=在0x x =取得极值.由一元函数取得极值的必要条件知道

00

0000(,)(,)0x y x x x x dz dy f x y f x y dx dx ===+=, 而方程0),(=y x ?所确定的隐函数的导数为

00000(,)(,)

x x x y x y dy dx x y ??==?. 将上式代入00000(,)(,)

0x y x x dy f x y f x y dx =+=中,得 00000000(,)(,)(,)0(,)

x x y y x y f x y f x y x y ???=, 因此函数),(y x f z =在条件0),(=y x ?下取得极值的必要条件为

0000000000(,)(,)(,)0(,)(,)0x x y y x y f x y f x y x y x y ?????=???=?

为了计算方便起见,我们令

0000(,)

(,)y y f x y x y λ?=?,

则上述必要条件变为

0000000000(,)(,)0(,)(,)0(,)0x x y y f x y x y f x y x y x y λ?λ??+=??+=??=?

容易看出,上式中的前两式的左端正是函数

),(),(),(y x y x f y x F λ?+=

的两个一阶偏导数在00(,)x y 的值,其中λ是一个待定常数.

拉格朗日乘数法

求函数),(y x f z =在条件0),(=y x ?下的可能的极值点.

⑴ 构成辅助函数

),(),(),(y x y x f y x F λ?+=,(λ为常数)

⑵ 求函数F 对x ,对y 的偏导数,并使之为零,解方程组

?????==+=+0

),(0),(),(0),(),(y x y x y x f y x y x f y y x x ?λ?λ?

得λ,,y x ,其中y x ,就是函数在条件0),(=y x ?下的可能极值点的坐标;

⑶ 如何确定所求点是否为极值点?在实际问题中往往可根据实际问题本身的性质来判定.

拉格朗日乘数法推广

求函数),,,(t z y x f u =在条件(,,,)0x y z t ?=,(,,,)0x y z t ψ=下的可能的极值点. 构成辅助函数

12(,,,)(,,,)(,,,)(,,,)F x y z t f x y z t x y z t x y z t λ?λψ=++

其中21,λλ为常数,求函数F 对z y x ,,的偏导数,并使之为零,解方程组

121212120000(,,,)0(,,,)0

x x x y y

y z z z t t t f f f f x y z t x y z t λ?λψλ?λψλ?λψλ?λψ?ψ++=??++=??++=??++=??=?=??

得z y x ,,就是函数),,,(t z y x f u =在条件(,,,)0x y z t ?=,(,,,)0x y z t ψ=下的极值点. 注意:一般解方程组是通过前几个偏导数的方程找出,,x y z 之间的关系,然后再将其代入到条件中,即可以求出可能的极值点.

例6.求表面积为2a 而体积为最大的长方体的体积.

解 设长方体的三棱长分别为z y x ,,,则问题是在条件

0222),,(2

=?++=a xz yz xy z y x ?

下,求函数xyz v = )0,0,0(>>>z y x 的最大值.

构成辅助函数)222(),,(2a xz yz xy xyz z y x F ?+++=λ,

求函数F 对z y x ,,偏导数,使其为0,得到方程组

??

?????=?++=++=++=++0

2220)(20)(20)(22a xz yz xy y x xy z x xz z y yz λλλ )4()3()2()1( 由)1()2(,得 z y z x y x ++=, 由 )2()3( , 得 z

x y x z y ++=, 即有, ()(),x y z y x z x y +=+= ,()(),y x z z x y y z +=+=,

可得z y x ==,将其代入方程02222

=?++a xz yz xy 中,得 a z y x 6

6===. 这是唯一可能的极值点,因为由问题本身可知最大值一定存在,所以最大值就是在这可能的极值点处取得,即在表面积为2a 的长方体中,以棱长为a 6

6的正方体的体积为最大,最大体积为336

6a v =. 例7.试在球面2224x y z ++=上求出与点(3,1,1)?距离最近和最远的点.

解 设(,,)M x y z 为球面上任意一点,则到点(3,1,1)?距离为

d =但是,如果考虑2d ,则应与d 有相同的最大值点和最小值点,为了简化运算,故取 2222

(,,)(3)(1)(1)f x y z d x y z ==?+?++,

又因为点(,,)M x y z 在球面上,附加条件为222(,,)40x y z x y z ?=++?=.

构成辅助函数(,,)F x y z 222(3)(1)(1)x y z =?+?++222(4)x y z λ+++?.

求函数F 对z y x ,,偏导数,使其为0,得到方程组 2222(3)202(1)202(1)204x x y y z z x y z λλλ?+=???+=??++=?

?++=? )

4()3()2()1( 从前三个方程中可以看出,,x y z 均不等于零(否则方程两端不等),以λ作为过渡,把这三

个方程联系起来,有

311x y z x y z λ??+?===或311x y z

??==, 故3,x z y z =?=?,将其代入2224x y z ++=中,得

222(3)()4z z z ?+?+=, 求出

z =,再代入到3,x z y z =?=?中,即可得 11x =,11y =, 从而得两点(

,, 对照表达式看出第一个点对应的值较大,第二个点对应的值较小,所以最近点为

,最远点为(.

函数极值的几种求法

函数极值的几种求法 ──针对高中生所学知识 摘要:函数是数学教学中一个重要的组成部分,从小学六年级的一元一次方程继而延伸到初中的一次函数,二次函数的初步介绍,再到高中的函数的单调性、周期性、最值、极值,以及指数函数、对数函数、三角函数的学习,这些足以说明函数在数学教学中的地位。极值作为函数的一个重要性质,无论是在历年高考试题中,还是在实际生活运用中都占有不可或缺的地位。本文主要阐述了初高中常见的几种函数,通过函数极值的相关理论给出每种函数极值的求解方法。 关键词:函数;单调性;导数;图像;极值 Abstract: Function is an important part of mathematics teaching. First the learning of linear equation in six grade, secondly the preliminary introduction of linear functions and quadratic functions in junior high school, then the monotonicity, the periodicity, the most value and the extreme value of function, finally the learning of the logarithmic function, exponential function and trigonometric function in high school. These are enough to show the important statue of the function in mathematics teaching. As an important properties of function, extreme value has an indispensable status whether in the calendar year test, or in daily life. This article will mainly expound the methods of solving the extreme value of sever functions in middle school. Key words: function; monotonicity; derivative; image; extreme value “函数”一词最先是由德国的数学家莱布尼茨在17世纪采用的,当时莱布尼茨用“函数”这一词来表示变量x的幂,也就是x的平方x的立方。之后莱布尼茨又将“函数”这一词用来表示曲线上的横坐标、纵坐标、切线的长度、垂线的长度等与曲线上的点有关的变量[]1。就这样“函数”这词逐渐盛行。在中国,清代著名数学家、天文学家、翻译家和教育家,近代科学的先驱者善兰给出的定义是:

多元函数的极值及其应用(精)

2012 年 5 月(上)科技创新与应用科教纵横多元函数的极值及其应用苏兴花(山东现代职业学院,山东济南 250104 )多元函数的极值问题在近年来研究比较广泛,相关的理论逐渐地完善起来,多元函数极值问题的应用也越来越广泛.然而在数学分析的教材中,与一元函数比较起来,多元函数极值的理论及应用却比较少,没有详细的讨论,例如二元函数极值的讨论中,当判别式时,无法判别二元函数的极值是否存在.鉴于这种状况与实际需要的矛盾,总结出几种较为简便的判别多元函数极值的方法,使得多元函数的极值问题的解决方法简单多样化,运用起来更加灵活与方便。 1 多元函数极值 1.1 极值的定义、性质和判定定理二元函数的极值定义 1 设二元函数 f(x,y 在点 P(a,b 的邻域 G 有定义,在 P 处给自变量的增量△P=(h,k,相应有函数增量.若,则称 P(a,b是函数 f(x,y的极大点(极小点).极大点(极小点)的函数值 f(a,b称为函数 f(x,y的极大值(极小值).极大值与极小值统称为函数的极值.定义 2 方程组的解(xy 平面上的某些点)称为函数 f(x,y的稳定点.定理 1 若函数 f(x,y在点 P(a,b存在两个偏导数,且P(a,b是函数 f(x,y的极值点,则 . 定理 2 设函数 f(x,y有稳定点 P(a,b,且在 P(a,b的邻域 G 存在二阶连续偏导数.令 1)若△<0,则 P(a,b是函数 f(x,y的极值点,(iA>0(或 C>0,P(a,b是函数 f(x,y的极小点; (iiA<0(或 C<0,P(a,b是函数 f(x,y的极大点. 2)若△>0,P(a,b不是函数 f(x,y的极值点. 1.2 多元函数极值推广 1.2.1 多元函数极值在数学分析中的推广定理设 f(P是 R n 中的实函数,且 f(P在点 P 0 取到极值,则 f(P 在点 P 0 的任何方向导数均为零. 1.2.2 多元函数极值在线性代数中的推广定理 1 设 n 元函数 f(x=f(x 1 ,x 2 ,...,x n 在某区域上具有二阶连续偏导数,并且区域内一点 P(a 1 ,a 2 ,...,a n 是 f(x的稳定点.其中为实对称矩阵,其元素且不全为零 (i,j= 1,2,...,n即A≠0. 1 若 A 为正定矩阵,f(P为极小值; 2 若 A 为负定矩阵,f(P为极大值; 3 若 A 既不正定,也不负定,则 f(P不是极值.注意:若二次齐次多项式为零,即 A=0 时,此时不能用 A 的正定与负定来判断 f(P是否为极值,或判断 f(P是极大值或极小值,需根据二次齐次多项式后边的高次项去判定.定理 2 设二元函数 f(x,y在点 P 0 (x 0 ,y 0 的某邻域内具有三阶连续偏导数,且 P 0 是稳定点,又,即△=0 时,则当时, f 在点 P 0 无极值.例 2 判别函数是否存在极值.解

论文函数的极值问题在实际中的应用.

函数的极值问题在实际中的应用 一、函数求极值方法的介绍 利用函数求极值问题,是微积分学中基本且重要的内容之一,函数求极值的方法很多,但主要可分为初等方法和微积分中的导数方法等。用初等方法求最值问题,主要是利用二次函数的最值性质,二次函数非负的性质,算术平均数不小于几何平均数。正弦,余弦函数的最值性质讨论问题。一般而言,他需要较强技巧,在解决某些问题时,其解法让人赏心悦目,但这些方法通用性较差,利用高等数学的导数等工具求解极值问题,通用性较强,应用也较强,应用也较广泛,下面给出用导数求极值最值得一些定理和方法。 1、一元函数极值的判定及求法 定理1(必要条件)设函数在点处可导,且在处取得极值,那么。 使导数为零的点,即为函数的驻点,可导函数的极值点必定是它的驻点,但反过来,函数的驻点却不一定是极值点。当求出驻点后,还需进一步判定求得驻点是不是极值点,下面给出判断极值点的两个充分性条件。 定理2(极值的第一充分条件)设在连续,在某领域内可导。 (1)若当时,当时,则在点取得最小值。 (2)若当时,当时,则在点取得最大值。 定理3(极值的第二充分条件)设在连续,在某领域内可导,在 处二阶可导,在处二阶可导,且,。 (1)若,则在取得极大值。 (2)若,则在取得极小值。 由连续函数在上的性质,若函数在上一定有最大、最小值。这就为我们求连续函数的最大、最小值提供了理论保证,本段将讨论怎样求出最大(小)值。在一个区间上,一个函数的最值可能在不可导点取得,也可能在区间的端点取得,除去这两种情况之外,必然在区间内部的可导点取得,根据上面的必要条件,

在这些点的导数为0,即为驻点。因此,我们如果要求一个函数在一个区间的最值,只要列举出不可导的点,区间端点以及驻点,然后比较函数在这些点的最值,即可求出最值。

多元函数求极值(拉格朗日乘数法)

第八节多元函数的极值及其求法 教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定 方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法求条件极值。 教学重点:多元函数极值的求法。 教学难点:利用拉格朗日乘数法求条件极值。 教学内容: 一、 多元函数的极值及最大值、最小值 定义设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内异于 ),(00y x 的点,如果都适合不等式 00(,)(,)f x y f x y <, 则称函数(,)f x y 在点),(00y x 有极大值00(,)f x y 。如果都适合不等式 ),(),(00y x f y x f >, 则称函数(,)f x y 在点),(00y x 有极小值),(00y x f .极大值、极小值统称为极值。使函数取得极值的点称为极值点。 例1 函数2 243y x z +=在点(0,0)处有极小值。因为对于点(0,0)的任 一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。从 几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面 2 243y x z +=的顶点。

例2函数2 2y x z +-=在点(0,0)处有极大值。因为在点(0,0)处函 数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负, 点(0,0,0)是位于xOy 平面下方的锥面2 2y x z +-=的顶点。 例3 函数xy z =在点(0,0)处既不取得极大值也不取得极小值。因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。 定理1(必要条件)设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零: ),(,0),(0000==y x f y x f y x 证不妨设),(y x f z =在点),(00y x 处有极大值。依极大值的定义,在点),(00y x 的某邻域内异于),(00y x 的点都适合不等式 ),(),(00y x f y x f < 特殊地,在该邻域内取0y y =,而0x x ≠的点,也应适合不等式 000(,)(,)f x y f x y < 这表明一元函数f ),(0y x 在0x x =处取得极大值,因此必有 0),(00=y x f x 类似地可证 ),(00=y x f y

函数极值最值的求法及其应用

函数极值最值的求法及其应用 学习目标:会用导数求函数的极值与最值并利用其解决相关的数学问题. 学习重点:利用导数求函数单调区间和极值最值,并能利用他们解决相恒成立问题、方程的根和函数的零点问题. 学习难点:含参函数的分类讨论和数形结合的思想方法. 学习方法:指导学习法. 课前五分钟展示:求函数)0()(>+=a x a Inx x f 在区间[]1,e 上的最小值. 基础知识回顾: 1、 单调区间: 在某个区间(a,b)内,如果()0f x '> ,那么函数()y f x =在这个区间内单调 如果()0f x '<,那么函数()y f x =在这个区间内单调 注意:求参数范围时,若函数单调递增,则'()0f x ≥;若函数单调递减,则 '()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解. 2、 函数的极值与最值: 极大值和极小值:一般地,设函数)(x f 在点0x 附近有定义,如果对0x 附近的所有的点都有)(x f <)(0x f 或)(x f >)(0x f ,就说)(0x f 是函数)(x f 的一个极大值或极小值,记作极大值y =)(0x f ,0x 是极大值点或记作极小值y =)(0x f ,0x 是极小值点.

在定义中,极大值与极小值统称为 取得极值的点称为 极值点是自变量的值,极值指的是 最大值和最小值:观察图中一个定义在闭区间[]b a ,上的 函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x .一般地,在闭区间[]b a ,上连续的函数)(x f 在 []b a ,上必有最大值与最小值. 请注意以下几点: (1; (2)函数的极值不是唯一的; (3)极大值与极小值之间无确定的大小关系 ; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点取得最大值.最小值的点可能在区间的内部,也可能在区间的端点. 思考探究: 在连续函数)(x f 中,0)('= x f 是函数)(x f 在 x x =处取到极值的什么条件( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件D 、既不充分也不必要条件 典型例题: 题型一:利用导数求函数的极值最值问题: 例1:求函数5224+-=x x y 在区间[]2,3-上的最大值与最小值.

多元函数的极值与应用

多元函数的极值与应用

摘要:本文是有关函数极值问题的解决,它由一元函数极值问题的讲解不断深化到多元函数并且还讲解到函数极值的应用以及奇异性 关键词:函数极值:函数极值应用:函数极值奇异性 Extreme value of function and application Abstract :This article is about the function extreme solution by a function extreme problem to explain the continuous deepening to a multi-function and explain the application of function extreme and singular Keywords :Function extreme: function extend application 一函数极值理论 定义 2.1.1[3]设n (2)n ≥元函数12 (,,)n z f x x x =在点00012(,, ,)n x x x 的某个 邻域内有定义,如果对该邻域内任一异于00012(,,,)n x x x 的点12(,,)n x x x 都有

00012 12(,,)(,,,)n n f x x x f x x x <(或0001212(,,)(,,,)n n f x x x f x x x >),则称函数在 点00012(,,,)n x x x 有极大值(或极小值)00012(,,,)n f x x x .极大值、极小值统称为极 值,使函数取得极值的点称为极值点. 定义 2.2.1 [3] 函数12(,,,)n z f x x x =在m 个约束条件12(,,,)0i n x x x ?= (1,2, ,;)i m m n =<下的极值称为条件极值. 3. 多元函数普通极值存在的条件 定理(必要条件)若n (2)n ≥元函数12(,,,)n z f x x x =在点00012(,, ,)n x x x 存 在偏导数,且在该点取得极值,则有00012(,, ,)0i x n f x x x = (1,2, ,)i n = 备注:使偏导数都为0的点称为驻点,但驻点不一定是极值点. 定理[3](充分条件)设n (2)n >元函数12(,,,)n f x x x 在00012(,,,)n x x x 附近具 有二阶连续偏导数,且00012(,,,)n x x x 为12(,, ,)n z f x x x =的驻点.那么当二次型 00012,1 ()(,,,)i j n x x n i j i j g f x x x ζζζ== ∑ 正定时,00012(,,,)n f x x x 为极小值;当()g ζ负定时,00012(,, ,)n f x x x 为极大 值;当()g ζ不定时,00012(,, ,)n f x x x 不是极值. 记00012(,, ,)i j ij x x n a f x x x =,并记 11121321 22 2312 k k k kk a a a a a a A a a a ?? ????=??? ??? , 它称为f 的k 阶Hesse 矩阵.对于二次型()g ζ正负定的判断有如下定理: 定理 [3] 若det 0k A > (1,2, ,)k n =,则二次型()g ζ是正定的,此时 00012(,, ,)n f x x x 为极小值;若(1)det 0k k A -> (1,2, ,)k n =,则二次型()g ζ是负 定的,此时00012(,, ,)n f x x x 为极大值. 特殊地,当2n =时,有如下推论:

多元函数的极值及其-求法

第十一讲 二元函数的极值 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相 类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,来讨论多元函数的极值问题. 一.二元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点 )0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 243y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的 偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 几何解释 若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点) ,,(000z y x 处的切平面方程为 ))(,())(,(0000000y y y x f x x y x f z z y x -+-=- 是平行于xoy 坐标面的平面0z z =. 类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为 0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

函数极值与最值研究毕业论文

函数极值与最值研究 摘要:在实际问题中, 往往会遇到一元函数.二元函数,以及二元以上的多元函数的最值问题和极值问题等诸多函数常见问题。求一元函数的极值,主要方法有:均值等式法,配方法,求导法等。求一元函数的最值,主要方法有:函数的单调性法,配方法,判别式法,复数法,导数法,换元法等。求二元函数极值,主要方法有:条件极值拉格朗日乘数法,偏导数法等。求二元函数最值,主要方法有:均值不等式法,换元法,偏导数法等。对于多元函数,由于自变量个数的增加, 从而使该问题更具复杂性,求多元函数极值方法主要有:条件极值拉格朗日法, 等,对于多元函数最值问题与一元函数类似可以用极值来求函数的最值问题.主要方法有:向量法,均值不等式法,换元法,消元法,柯西不等式法,数形结合法等, 关键词:函数,极值,最值,极值点,方法技巧. Abstract: in practical problems,often encounter a unary function. The function of two variables, and multiplefunctions of two yuan more than the most value questionand extremum problems and many other functions of common problems. Extremum seeking a binary function,the main methods are: inequality extremum method,distribution method, derivation etc.. The value for theelement function, the main methods are: monotone method, function method, the discriminant method,complex method, derivative method, substitution methodetc.. For two yuan value function, the main methods are:conditional extremum of Lagrange multiplier method etc..Ask two yuan to the value function, the main methods are:mean inequality method, substitution method, partial derivative method etc.. For multivariate function, due to the increased number of

多元函数的极值及其应用

多元函数的极值及其应用 作者:程俊 指导老师:黄璇 学校:井冈山大学 专业:数学与应用数学

【摘要】 多元函数的极值是函数微分学中的重要组成部分,本文对几种特殊的多元函数进行了简单的介绍,对多元函数的极值常见的求法进行了研究,并引入其在生活中、生产中解决实际问题的广泛应用,突显这一学术课题在生活中的重大意义。如今构建经济型节约社会慢慢成为我们共同努力的方向,而最优化问题是达到这一目标的有效途径,其常常有与多元函数的极值息息相关。对函数极值的研究不仅把理论数学推上一个高度,给经济方面,生活方面带来的益处不容小觑,本人浅谈极值问题,为了抛砖引玉,希望这一课题能有更广大额发展空间 【关键词】:多元函数;极值;生活中的应用

目录 Ⅰ引言 (1) Ⅱ多元函数极值的介绍………………………………………… 2.1什么是多元函数………………………………………… 2.2函数的极值理论………………………………………… Ⅲ几种函数的极值的常见求法……………………………… 3.1高中极值求法的弊端………………………………… 3.2拉格朗日乘数法……………………………………… 3.3消元法…………………………………………………… 3.4均值不等式法…………………………………………… Ⅳ多元函数在生活中的应用……………………………………

引言 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它有助于我们提高对函数的认识。而函数的极值的作用已经蔓延到经济领域,在各种解决最优化中应用广泛,从而引发了本人对该课题的研究兴趣。 编者 2014年2月

函数的极值及其求法1

三、导数的应用 函数的极值及其求法 在学习函数的极值之前,我们先来看一例子:设有函数,容易知道点x=1及x=2是此函数单调区间的分界点,又可知在点x=1左侧附近,函数值是单调增加的,在点x=1右侧附近,函数值是单调减小的.因此存在着点x=1的一个邻域,对于这个邻域内,任何点x(x=1除外),<均成立,点x=2也有类似的情况(在此不多说),为什么这些点有这些性质呢? 事实上,这就是我们将要学习的内容——函数的极值, 函数极值的定义设函数在区间(a,b)内有定义,x 0是(a,b)内一点. 若存在着x 0点的一个邻域,对于这个邻域内任何点x(x 0点除外),<均成立,则说是函数的一个极大值; 若存在着x 0点的一个邻域,对于这个邻域内任何点x(x 0点除外),>均成立,则说是函数的一个极小值.函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点。 我们知道了函数极值的定义了,怎样求函数的极值呢? 学习这个问题之前,我们再来学习一个概念——驻点凡是使的x 点,称为函数的驻点。 判断极值点存在的方法有两种:如下 方法一:设函数在x 0点的邻域可导,且. 情况一:若当x 取x 0左侧邻近值时, >0,当x 取x 0右侧邻近值时,<0,则函数在x 0点取极大值。 情况一:若当x 取x 0左侧邻近值时, <0,当x 取x 0右侧邻近值时,>0,则函数在x 0点取极小值。 注:此判定方法也适用于导数在x 0点不存在的情况。 用方法一求极值的一般步骤是:

a):求; b):求的全部的解——驻点; c):判断在驻点两侧的变化规律,即可判断出函数的极值。例题:求极值点 解答:先求导数 再求出驻点:当时,x=-2、1、-4/5 判定函数的极值,如下图所示

多元函数的极值及其求法

多元函数的极值及其求法 The latest revision on November 22, 2020

第十一讲 二元函数的极值 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,来讨论多元函数的极值问题. 一.二元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点)0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2243y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 几何解释 若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为 是平行于xoy 坐标面的平面0z z =. 类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为 0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z 说明 上面的定理虽然没有完全解决求极值的问题,但它明确指出找极值点的途径,即只要 解方程组???==0 ),(0),(0000y x f y x f y x ,求得解),(),(),,(2211n n y x y x y x ??,那么极值点必包含在其中,这些点称为函数),(y x f z =的驻点. 注意1.驻点不一定是极值点,如xy z =在)0,0(点. 怎样判别驻点是否是极值点呢下面定理回答了这个问题.

(整理)多元函数的极值及其求法

第六节 多元函数的极值及其求法 在实际问题中,我们会大量遇到求多元函数的最大值、最小值的问题. 与一元函数的情形类似,多元函数的最大值、最小值与极大值、极小值密切的联系. 下面我们以二元函数为例来讨论多元函数的极值问题. 内容分布图示 ★ 引例 ★ 二元函数极值的概念 例1-3 ★ 极值的必要条件 ★ 极值的充分条件 ★ 求二元函数极值的一般步骤 ★ 例4 ★ 例5 ★ 求最值的一般步骤 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 例10 ★ 例11 ★ 条件极值的概念 ★ 拉格郎日乘数法 ★ 例12 ★ 例 13 ★ 例 14 ★ 例 15 ★ 例 16 *数学建模举例 ★ 最小二乘法 ★ 线性规划问题 ★ 内容小结 ★ 课堂练习 ★ 习题6-6 ★ 返回 内容提要: 一、二元函数极值的概念 定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义, 对于该邻域内异于),(00y x 的任意一点),(y x , 如果 ),,(),(00y x f y x f < 则称函数在),(00y x 有极大值;如果 ),,(),(00y x f y x f > 则称函数在),(00y x 有极小值; 极大值、极小值统称为极值. 使函数取得极值的点称为极值点. 定理1 (必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数, 且在点),(00y x 处有极值, 则它在该点的偏导数必然为零,即 .0),(,0),(0000==y x f y x f y x (6.1) 与一元函数的情形类似,对于多元函数,凡是能使一阶偏导数同时为零的点称为函数的驻点. 定理2 (充分条件) 设函数),(y x f z =在点),(00y x 的某邻域内有直到二阶的连续偏导

第八节多元函数的极值及其求法

第八节 多元函数的极值及其求法 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 重点:二元函数取得极值的必要条件与充分性判别法,拉格朗日乘数法求最值实际问题。 难点:求最值实际问题建立模型,充分性判别法的证明。 作业:习题8-8(71P )3,5,8,9,10 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相 类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,先来讨论多元函数的极值问题. 一.多元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点 )0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 243y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的 偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 证明 不妨设函数),(y x f z =在点),(00y x 处有极大值,依定义,在该点的邻域上均 有 ),(),(00y x f y x f <,),(),(00y x y x ≠ 成立. 特别地,取0y y =而0x x ≠的点,有000(,)(,)f x y f x y <也有成立.

多元函数极值的判定

. .. . 目录 摘要 (1) 关键词 (1) Abstract............................................................................................................. .. (1) Keywords.......................................................................................................... .. (1) 引言 (1) 1定理中用到的定义 (2) 2函数极值的判定定理.............................................................. .. (5) 3多元函数极值判定定理的应用 (7) 参考文献 (8)

多元函数极值的判定 摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值. 关键词:极值;条件极值;偏导数;判定 The judgement of the extremum of the function of many variables Abstract:This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the

function of many variables and the conditional extremum of the function of many variables . Keywords : extremum; conditional ;partial derivative 引言 在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二 元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去. 1 定理中用到的定义 定义1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点 0(,)()P x y U P ∈,成立不等式 0()()f P f P ≤(或0()()f P f P ≥), 则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点. 定义1.2[]1 设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在 0x 的某一领域有定义,则当极限 0000000(,)(,)(,) lim x xf x y f x x y f x y x x →+-= 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作 00(,) x y f x ??. 定义1.3[]3 设n D R ?为开集,12(,, ,)n P x x x D ∈,00 0012 2(,,,)P x x x D ∈ :f D R →,若在某个矩阵A ,使当0()P U P ∈时,有 000 ()()() lim P P f P f P A P P P P →----, 则称n 元函数12(,, ,)n f x x x 在点0P 可导.称A 为在点0P 处的导数,记为

2函数的极值和最值及其应用

函数的极值和最值及其应用 函数极值的定义 ??????是函,则设函数在附近有定义,如果对附近的所有的点,都有xxxf?ff xx)(xf0000??????????的一,则的一个极大值。如果附近所有的点,都有 是函数数xxfxffxfx?f00个极小值,极大值与极小值统称为极值。 极值点只能在函数不可导的点或导数为零的点中取得。 ???.的极值点,则这就是说可导函数在点取极若函数在点处可导,且为 0fx?xxff000????0xf. 值的必要条件是0函数最值的定义 ????xffx Xx?不小于其他所有的区间上有定义,如果存在一点,使得在设函数X00??????,xff?xxfxX?,,亦即0????????xfmaxxxff?是在上的最大值,又可记为;则称X00????????,x?f?xffxXfxx同样使得,亦即,不大于其他所有的o0????????xxfxf?fmin . 是在则称上的最小值,又可记为X00??xf在注意上未必一定有最大(小)值。:函数X最值和极值的联系与区别 (1)极值一定是函数在某个区间内的最值; (2)极值未必是最值; (3)如果函数的最值在某个区间内取得,那么该点一定是极值点。 函数极值、最值的求解方法 1、降元法 求多元函数极值的基本方法之一就是选择两个变量作为主元,而消去其他变量,化为二元函数求解。 1 22,求函数的极值。例1:已知x?z?y22y?x?22,代人得解:由题设得xy2?x?y?2 22????282?z??2?x?x??2x 2??22?2?22?x???2?0???x?28??即函数的定义域为:2?2?22,?2?2??

(完整版)求函数极值的几种方法

求解函数极值的几种方法 1.1函数极值的定义法 说明:函数极值的定义,适用于任何函数极值的求解,但是在用起来时却比较的烦琐. 1.2导数方法 定理(充分条件)设函数()f x 在0x 处可导且0()0f x '=,如果x 取0x 的左侧的值时,()0f x '>,x 取0x 的右侧的值时,()0f x '<,那么()f x 在0x 处取得极大值,类似的我们可以给出取极小值的充分条件. 例1 求函数23()(1)f x x x =-的单调区间和极值 解 23()(1)f x x x =- ()x -∞<<+∞, 3222()2(1)3(1)(1)(52)f x x x x x x x x '=-+-=--. 令 ()0f x '=,得到驻点为10x =,22 5 x = ,31x =.列表讨论如下: 表一:23()(1)f x x x =-单调性列表 说明:导数方法适用于函数()f x 在某处是可导的,但是如果函数()f x 在某处不可导,则就不能用这样的方法来求函数的极值了.用导数方法求极值的条件是:函数()f x 在某点0x 可导. 1.3 Lagrange 乘法数方法 对于问题: Min (,)z f x y = s.t (,)0x y =

如果**(,)x y 是该问题的极小值点,则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 利用这一性质求极值的方法称为Lagrange 乘法数 例2 在曲线3 1(0)y x x = >上求与原点距离最近的点. 解 我们将约束等式的左端乘以一个常数加到目标函数中作为新的目标函 数2231 ()w x y y x λ=++- 然后,令此函数对x 的导数和对y 的导数分别为零,再与原等式约束合并得 43 320201x x y y x λλ?+=?? +=???=? 解得 x y ?=? ?= ?? 这是唯一可能取得最值的点 因此 x y == . 说明:Lagrange 乘法数方法对于秋多元函数是比较方便的,方法也是比较简单的 :如果**(,)x y 是该问题的极小值点则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 这相当于一个代换数,主要是要求偏导注意,这是高等代数的内容. 1.4多元函数的极值问题 由极值存在条件的必要条件和充分条件可知,在定义域内求n 元函数()f p 的极值可按下述步骤进行:①求出驻点,即满足grad 0()0f p =的点0p ;②在0 p

高中数学人教版选修1-1(文科) 第三章 导数及其应用 3.3.2 函数的极值与导数(II)卷

高中数学人教版选修1-1(文科)第三章导数及其应用 3.3.2 函数的极值与导数(II) 卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共8题;共16分) 1. (2分)f′(x0)=0是函数f(x)在点x0处取极值的() A . 充分不必要条件 B . 既不充分又不必要条件 C . 充要条件 D . 必要不充分条件 2. (2分)(2017·湖北模拟) 已知函数f(x)=(2x+1)er+1+mx,若有且仅有两个整数使得f(x)≤0.则实数m的取值范围是() A . B . C . D . 3. (2分)已知非零向量,满足| |=2| |,若函数f(x)= x3+ | |x2+ x+1在R 上存在极值,则和夹角的取值范围是() A . B . C .

D . 4. (2分) (2019高二下·雅安期末) 已知函数在时取得极大值,则的取值范围是() A . B . C . D . 5. (2分)已知f(x)=x2+sin,f′(x)为f(x)的导函数,则f′(x)的图象是() A . B . C . D . 6. (2分) (2017高二上·邯郸期末) 设函数f(x)=ex(sinx﹣cosx)(0≤x≤2016π),则函数f(x)的各极大值之和为() A . B .

C . D . 7. (2分)函数的图象过原点且它的导函数的图象是如图所示的一条直线,则 的图象的顶点在() A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 (其中), 8. (2分)(2018·绵阳模拟) 已知函数,有三个不同的零点, 则的值为() A . B . C . -1 D . 1 二、填空题 (共3题;共3分) 9. (1分) (2017高二下·太仆寺旗期末) 函数若函数在上有3个零点,则的取值范围为________.

相关文档
相关文档 最新文档