文档库 最新最全的文档下载
当前位置:文档库 › 高中数学 选修2-1双曲线导学案

高中数学 选修2-1双曲线导学案

高中数学  选修2-1双曲线导学案
高中数学  选修2-1双曲线导学案

双曲线及其标准方程导学案

【学习要求】

1.了解双曲线的定义,几何图形和标准方程的推导过程. 2.掌握双曲线的标准方程.

3.会利用双曲线的定义和标准方程解决简单的问题.

【学法指导】

本节课的学习要运用类比的方法,在与椭圆的联系与区别中建立双曲线的定义及标准方程.

【知识要点】

1.双曲线的定义

把平面内与两个定点F 1,F 2的距离的 等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做 , 叫做双曲线的焦距. 2

探究点一 双曲线的定义

问题1 取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F 1,F 2上,把笔尖放在点M 处,拉开闭拢拉链,笔尖经过的点可画出一条曲线,思考曲线满足什么条件?

问题2 双曲线的定义中强调平面内动点到两定点的距离差的绝对值为常数,若没有绝对值,则动点的轨迹是什么?

问题3 双曲线的定义中,为什么要限制到两定点距离之差的绝对值为常数2a,2a <|F 1F 2|?

问题4 已知点P (x ,y )的坐标满足下列条件,试判断下列各条件下点P 的轨迹是什么图形? (1)

6)5()5(2222=+--++y x y x ;

(2)6)4()4(2

222=+--++y x y x

(3)方程x =3y 2

-1所表示的曲线是( )

A .双曲线

B .椭圆

C .双曲线的一部分

D .椭圆的一部分 探究点二 双曲线的标准方程

问题1 类比椭圆的标准方程推导过程,思考怎样求双曲线的标准方程?

问题2 两种形式的标准方程怎样进行区别?能否统一?

问题3 如图,类比椭圆中a ,b ,c 的意义,你能在y 轴上找一点B ,使|OB |=b 吗?

例1 (1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和????

94,5,求双曲线的标准方程; (2)求与双曲线x 216-y 2

4=1有公共焦点,且过点(32,2)的双曲线方程.

跟踪训练1 (1)过点(1,1)且b

a

=2的双曲线的标准方程是 ( )

A .12

122

=-y x B .y 212-x 2=1 C .x 2

-y 212=1

D .x 212-y 2=1或y 2

12

-x 2=1

(2)若双曲线以椭圆x 216+y 2

9=1的两个顶点为焦点,且经过椭圆的两个焦点,则双曲线的标准方程为_______

探究点三 与双曲线定义有关的应用问题

例2 已知双曲线的方程是x 216-y 2

8=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的

中点,求|ON |的大小(O 为坐标原点).

跟踪训练2 如图,从双曲线x 23-y 2

5=1的左焦点F 引圆x 2+y 2=3的切线FP 交双曲线右支于点P , T 为切

点,M 为线段FP 的中点,O 为坐标原点,则|MO |-|MT |等于( )

A . 3

B . 5

C .5- 3

D .5+ 3

例3 已知A ,B 两地相距800 m ,在A 地听到炮弹爆炸声比在B 地晚2 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程.

跟踪训练3 2008年5月12日,四川汶川发生里氏8.0级地震,为了援救灾民,某部队在如图所示的P 处空降了一批救灾药品,今要把这批药品沿道路PA 、PB 送到矩形灾民区ABCD 中去,已知PA =100 km ,PB =150 km ,BC =60 km ,∠APB =60°,试在灾民区中确定一条界线,使位于界线一侧的点沿道路PA 送药较近,而另一侧的点沿道路PB 送药较近,请说明这一界线是一条什么曲线?并求出其方程.

【当堂检测】

1.已知A (0,-5)、B (0,5),|PA |-|PB |=2a ,当a =3或5时,P 点的轨迹为 ( ) A .双曲线或一条直线 B .双曲线或两条直线 C .双曲线一支或一条直线 D .双曲线一支或一条射线

2.若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是 ( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 3.双曲线x 216-y 2

9

=1上一点P 到点(5,0)的距离为15,那么该点到(-5,0)的距离为 ( )

A .7

B .23

C .5或25

D .7或23

4.已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,求动圆圆心的轨迹方程.

【课堂小结】

1.双曲线定义中||PF 1|-|PF 2||=2a (2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.

2.在双曲线的标准方程中,a >b 不一定成立.要注意与椭圆中a ,b ,c 的区别.在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b 2.

3.用待定系数法求双曲线的标准方程时,要先判断焦点所在的位置,设出标准方程后,由条件列出a ,b ,c 的方程组.如果焦点不确定要分类讨论,采用待定系数法求方程或用形如mx 2+ny 2=1 (mn <0)的形式求解.

【拓展提高】

1.已知方程12

52

2=---k y k x 的图形是双曲线,那么k 的取值范围是( )

A .k >5

B .k >5,或22<<-k

C .k >2,,或2-

D .22<<-k

2.===-

212

2211216

25,PF PF y x F F P ,则上一点,且为焦点的双曲线是以点( ) A .2 B .22 C .4或22 D .2或22

3.已知双曲线14

92

2=-y x ,B A 、为过左焦点1F 的直线与双曲线左支的两个交点,2,9F AB =为右焦点,则△B AF 2的周长为

4.是双曲线上的一点,且,点的两个焦点分别是已知双曲线P F F y x 2122

,13

=-

__________602121的面积等于,则PF F PF F ?=∠

5.根据下列条件,求双曲线的标准方程. (1)过点P )415,

3(,Q )5,3

16

(-且焦点在坐标轴上; (2)c =6,经过点(-5,2),焦点在x 轴上. (3))的双曲线。,有公共焦点,且过点(求与双曲线

12214

52

2=-y

x 6.已知双曲线:C )0,0(122

22>>=-b a b

y a x 的两个焦点)0,2()0,2(21F F 、-,点)7,3(P 在双曲线C 上

(1)求双曲线C 的方程

(2)记O 为坐标原点,过点)2,0(Q 的直线l 与双曲线C 相交于不同的两点F E 、, 若△OEF 的面积为,22求直线l 的方程

【课后作业】

一、基础过关

1.若方程y 24-x 2

m +1

=1表示双曲线,则实数m 的取值范围是

( )

A .-1

B .m >-1

C .m >3

D .m <-1

2.双曲线5x 2+ky 2=5的一个焦点是(6,0),那么实数k 的值为

( )

A .-25

B .25

C .-1

D .1

3.椭圆x 234+y 2n 2=1和双曲线x 2n 2-y

216=1有相同的焦点,则实数n 的值是

( )

A .±5

B .±3

C .5

D .9

4.若点M 在双曲线x 216-y

24=1上,双曲线的焦点为F 1,F 2,且|MF 1|=3|MF 2|,则|MF 2|等于( )

A .2

B .4

C .8

D .12

5.已知双曲线的一个焦点坐标为(6,0),且经过点(-5,2),则双曲线的标准方程为 ( )

A .x 25-y 2=1

B .y 25-x 2=1

C .x 225-y 2

=1 D .x 24-y 22

=1

6.已知动圆M 过定点B (-4,0),且和定圆(x -4)2+y 2=16相切,则动圆圆心M 的轨迹方程为 ( ) A .x 24-y 212=1 (x >0) B .x 24-y 212=1 (x <0)

C .x 24-y 212=1

D .y 24-x 212=1

7.若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B 两点,若|AB |=5,则△AF 1B 的周长为________. 二、能力提升

8.在平面直角坐标系xOy 中,方程x 2k -1+y 2

k -3

=1表示焦点在x 轴上的双曲线,则k 的取值范围为________.

9.已知双曲线的两个焦点F 1(-5,0),F 2(5,0),P 是双曲线上一点,且PF 1→·PF 2→

=0,|PF 1|·|PF 2|=2,则双曲线的标准方程为____________.

10.如图,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:x 2+y 2

-10x +9=0,动圆M 与定圆F 1、F 2都外切,求动圆圆心 M 的轨迹方程.

11.在△ABC 中,BC 边固定,顶点A 在移动,设|BC |=m ,当三个角满足条件|sin C -sin B |=1

2|sin A |时,求顶

点A 的轨迹方程.

12.已知双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有相同的焦点. (1)求双曲线的标准方程;

(2)若点M 在双曲线上,F 1、F 2为左、右焦点,且|MF 1|+|MF 2|=63,试判断△MF 1F 2的形状.

三、探究与拓展

13.A、B、C是我方三个炮兵阵地,A在B正东6千米,C在B北偏西30°,相距4千米,P为敌炮阵地,某时刻A处发现敌炮阵地的某种信号,由于B、C两地比A距P地远,因此4 s后,B、C才同时发现这一信号,此信号的传播速度为1 km/s,求A应沿什么方向炮击P地.

双曲线的简单几何性质(一)导学案

【学习要求】

1.掌握双曲线的简单几何性质.

2.了解双曲线的渐近性及渐近线的概念.

3.能区别椭圆与双曲线的性质.

【学法指导】

利用双曲线的方程研究其图象和几何性质,在自主探究合作交流中通过类比椭圆的几何性质,分析双曲线的几何性质.

【知识要点】

1

2.等轴双曲线

实轴和虚轴的双曲线叫等轴双曲线,它的渐近线是. 【问题探究】

探究点一双曲线的几何性质

问题1类比椭圆的几何性质,结合图象,你能得到双曲线

x2

a2-

y2

b2=1 (a>0,b>0)的哪些几何性质?

问题2椭圆中,椭圆的离心率可以刻画椭圆的扁平程度,在双曲线中,双曲线的“张口”大小是图象的一个重要特征,怎样描述双曲线的“张口”大小呢?

例1求双曲线9y2-16x2=144的半实轴长和半虚轴长、焦点坐标、离心率、渐近线方程.

跟踪训练1求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程.

探究点二由双曲线的几何性质求标准方程

例2求中心在原点,对称轴为坐标轴,且满足下列条件的双曲线方程:

(1)双曲线过点(3,92),离心率e=

10

3;

(2)过点P(2,-1),渐近线方程是y=±3x.

跟踪训练2求满足下列条件的双曲线方程:

(1)以2x±3y=0为渐近线,且经过点(1,2);

(2)离心率为

5

4,半虚轴长为2;

(3)与椭圆x2+5y2=5共焦点且一条渐近线方程为y-3x=0.

探究点三双曲线的离心率

例3设双曲线

x2

a2-

y2

b2=1 (0

3

4 c,求双曲线的离心率.

跟踪训练3(1)如图,F1和F2分别是双曲线

x2

a2-

y2

b2=1 (a>0,b>0)的两个焦点,A、B是以O为圆心、以OF1为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则双曲线的离心率e=________. (2)设点P在双曲线

x2

a2-

y2

b2=1 (a>0,b>0)的右支上,双曲线两焦点为F1、F2,|PF1|=4|PF2|,则双曲线离心率的取值范围为__________.

【当堂检测】

1.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为()

A.

x2

4-

y2

12=1 B.

x2

12-

y2

4=1 C.

x2

10-

y2

6=1 D.

x2

6-

y2

10=1

2.双曲线的渐近线方程为y=±

3

4x,则双曲线的离心率是()

A.

5

4B.2 C.

5

4或

5

3D.

5

2或

15

3

3.若在双曲线

x2

a2-

y2

b2=1 (a>0,b>0)的右支上到原点O和右焦点F的距离相等的点有两个,则双曲线的离心

率的取值范围是 ( ) A .e > 2

B .1

C .e >2

D .1

4.已知双曲线x 2

a 2-y 2

b 2=1(a >0,b >0)的两条渐近线方程为y =±3

3x ,若顶点到渐近线的距离为1,则双曲线方

程为 _____________

【课堂小结】

1.渐近线是双曲线特有的性质.两方程联系密切,把双曲线的标准方程x 2

a 2-y

2

b 2=1 (a >0,b >0)右边的常数1换

为0,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2

-b 2y 2

=λ,再结合其他条件求得λ就可得双曲线方程.

2.准确画出几何图形是解决解析几何问题的第一突破口.对圆锥曲线来说,渐近线是双曲线特有的性质.利用双曲线的渐近线来画双曲线特别方便,而且较为精确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.

【拓展提高】

1.P 为双曲线

116

92

2=-y x 的右支上一点,N M 、分别是圆4)5(22=++y x 和1)5(22=+-y x 上的点,则PN PM -的最大值是( )

A .6

B .7

C .8

D .9

2.已知双曲线

14

122

2=-y x 的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是

3.已知P 是双曲线

192

2

2=-y a

x 右支上的一点,双曲线的一条渐近线方程为03=-y x ,设21F F 、分别为双曲线的左、右焦点.若32=PF ,则1PF =

4.设21F F 、分别是双曲线19

22

=-y x 的左、右焦点。若点P 在双曲线上,且021=?PF PF ,

+=

5.已知双曲线的中心在原点,焦点21F F 、在坐标轴上,离心率为2,且过)10,4(-M (1)求双曲线的方程

(2)若点),3(m N 在双曲线上,求证:021=?NF NF (3)求△21NF F 的面积

【课后作业】

一、基础过关

1.双曲线2x 2-y 2=8的实轴长是

( ) A .2

B .2 2

C .4

D .4 2

2.双曲线3x 2-y 2=3的渐近线方程是

( )

A .y =±3x

B .y =±1

3x

C .y =±3x

D .y =±3

3

x

3.双曲线x 24-y 2

12=1的焦点到渐近线的距离为

( )

A .2 3

B .2

C . 3

D .1

4.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于 ( )

A .-14

B .-4

C .4

D .14

5.双曲线x 2a 2-y

2b 2=1 (a >0,b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为30°的直线,交双曲线右支于

M 点,若MF 2垂直于x 轴,则双曲线的离心率为 ( )

A . 6

B . 3

C . 2

D .3

3

6.已知双曲线x 2a 2-y

2b 2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆

C 的圆心,则该双曲线的方程为

( )

A .x 25-y 24=1

B .x 24-y 25=1

C .x 23-y 26=1

D .x 26-y 23=1

二、能力提升

7.已知双曲线C :x 24-y 2

m =1的开口比等轴双曲线的开口更开阔,则实数m 的取值范围是________.

8.已知圆C 过双曲线x 29-y 2

16=1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离

是________.

9.如图所示,ABCDEF 为正六边形,则以F 、C 为焦点,且经过A 、E 、 D 、B 四点的双曲线的离心率为________.

10.根据下列条件,求双曲线的标准方程.

(1)与双曲线x 29-y 2

16=1有共同的渐近线,且过点(-3,23);

(2)与双曲线x 216-y 2

4=1有公共焦点,且过点(32,2).

11.已知双曲线的一条渐近线为x +3y =0,且与椭圆x 2+4y 2=64有相同的焦距,求双曲线的标准方程.

12.求证:双曲线x 2a 2-y 2

b 2=1 (a >0,b >0)上任意一点到两条渐近线的距离之积为定值.

三、探究与拓展

13.已知双曲线x 2a 2-y 2

b 2=1 (a >0,b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0).若双曲线上存在点P ,使

sin ∠PF 1F 2sin ∠PF 2F 1

=a

c ,求该双曲线的离心率的取值范围.

双曲线的简单几何性质(二)导学案

【学习要求】

1.了解直线与双曲线的位置关系及其判定方法.

2.会求直线与双曲线相交所得的弦长、弦中点等问题.

【学法指导】

在与椭圆的性质类比中获得双曲线的性质,进一步体会数形结合的思想,掌握利用方程研究曲线性质的基本方法,培养分析、归纳、推理等能力.

【知识要点】

1.直线与双曲线的位置关系及判定

直线:Ax +By +C =0,双曲线:x 2a 2-y 2

b 2=1(a >0,b >0),

2

2.弦长公式

设斜率为k 的直线l 与双曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则:|AB |= ,或|AB |=

【问题探究】

题型一 直线与双曲线的位置关系

例1 已知直线y =kx -1与双曲线x 2-y 2=1有且仅有一个公共点,k 为何值?

跟踪训练1 (1)已知双曲线C :x 2-y 2=1,F 是其右焦点,过F 的直线l 只与双曲线的右支有唯一的交点,则直线l 的斜率等于________

(2)已知直线y =kx 与双曲线4x 2-y 2=16.当k 为何值时,直线与双曲线: ①有两个公共点;②有一个公共点;③没有公共点.

题型二 双曲线中的相交弦问题

例2 已知曲线C :x 2-y 2=1和直线l :y =kx -1.

(1)若l 与C 有两个不同的交点,求实数k 的取值范围;

(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值.

跟踪训练2 设双曲线的顶点是椭圆x 23+y 2

4=1的焦点,该双曲线又与直线15x -3y +6=0交于A ,B 两点,

且OA ⊥OB (O 为坐标原点). (1)求此双曲线的方程; (2)求|AB |.

题型三 直线与双曲线位置关系的综合应用

例3 设双曲线C :x 2a 2-y 2

=1(a >0)与直线l :x +y =1相交于两个不同的点A 、B .

(1)求双曲线C 的离心率e 的取值范围; (2)设直线l 与y 轴的交点为P ,且PB PA 12

5

=

,求a 的值. 跟踪训练3 设A 、B 分别是双曲线x 2a 2-y 2

b 2=1(a ,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离

为 3.

(1)求此双曲线的方程; (2)已知直线y =

3

3

x -2与双曲线的右支交于D 、E 两点,且在双曲线的右支上存在点C ,使得OC m OE OD =+,求m 的值及点C 的坐标.

【当堂检测】

1.已知双曲线x 2a 2-y 2

9=1(a >0)的一条渐近线方程为3x -4y =0,则以右焦点为圆心,虚轴长为半径的圆的方

程为( )

A .(x -5)2+y 2=36

B .(x +5)2+y 2=36

C .(x -5)2+y 2=9

D .(x +5)2+y 2=9

2.已知双曲线x 2a 2-y 2

b 2=1 (a >0,b >0)的左、右焦点分别为F 1、F 2,过F 2的直线交双曲线右支于A ,B 两点.

若△ABF 1是以B 为顶点的等腰三角形,且△AF 1F 2,△BF 1F 2的面积之比S △AF 1F 2∶S △BF 1F 2=2∶1,则双曲线的离心率为________.

3.已知双曲线x 2a 2-y 2

b

2=1(a >0,b >0)的离心率为3,且过点 (2,2).

(1)求双曲线C 的方程.

(2)已知直线x -y +m =0与双曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=5上,求m 的值.

4.过点)1,3(-M 且被点M 平分的双曲线14

22

=-y x 的弦所在直线方程

【课堂小结】

直线与双曲线相交的问题,常有两种思路:

(1)若问题涉及相交弦的中点坐标,常联立直线与双曲线的方程,消去一个参数,化成关于x (或y )的一元二次方程,然后根据根与系数的关系,把已知条件化为两根和与两根积的形式,从而整体解题.

(2)若问题涉及相交弦的斜率等,需设出两交点坐标,将两交点坐标代入双曲线方程,然后两式相减,得到关于斜率的等式.。上述两种思路都是设而不求,该方法在求解直线与圆锥曲线相交问题时经常使用,应重点掌握.

【拓展提高】

1.已知双曲线方程为14

2

2

=-y x ,过)0,1(P 的直线L 与双曲线只有一个公共点,则L 的条数共有( )

A .4条

B .3条

C .2条

D .1条

2.设双曲线12222=-b y a x 与)0,0(122

22>>=+-b a b

y a x 的离心率分别为21e e 、,则当b a 、在变化时,

2

221e e +的最小值是( )

A .2

B .42

C .22

D .4

3.已知双曲线

)0(1222

2>=-b b

y x 的左、右焦点分别为21,F F ,其一条渐近线方程为x y =,点),3(0y P 在该双曲线上,则12PF PF ?等于

4.已知双曲线12

2

2

=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。

5.已知直线1+=ax y 与双曲线132

2=-y x 交于B A ,两点

(1)若以AB 为直径的圆过坐标原点,求实数a 的值 (2)是否存在这样的实数a ,使B A ,两点关于直线x y 2

1

=对称?若存在,请求出a 的值;若不存在,请说明理由

【课后作业】

一、基础过关

1.过双曲线x 2-y 2=4的焦点且垂直于实轴的直线与双曲线交于A ,B 两点,则AB 的长 ( ) A .2 B .4

C .8

D .4 2

2.过双曲线的一个顶点A 作直线l ,若l 与双曲线只有一个公共点,则这样的直线l 有几条 ( ) A .0

B .1

C .3

D .4

3.已知椭圆x 29+y 25=1和双曲线x 2m 2-y

23=1(m >0)有相同的焦点,那么双曲线的渐近线方程是 ( )

A .3x ±y =0

B .x ±3y =0

C .3x ±y =0

D .x ±3y =0 4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的半焦距为c ,若原点到直线bx +ay =ab 的距离为c

2,则双曲线的离心率

e 等于 ( )

A . 2

B .2

C .2 2

D .4

5.过双曲线x 2a 2-y 2

b 2=1的左焦点F 且垂直于x 轴的直线与双曲线相交于M ,N 两点,且双曲线的右顶点A 满

足MA ⊥NA ,则双曲线的离心率等于________.

6.已知点(x ,y )在双曲线4x 2-y 2=16上,则y 2+8x 的最小值为________.

7.双曲线x 2a 2-y 2

b 2=1(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的

取值范围为________. 二、能力提升

8.设F 1、F 2分别是双曲线x 2

-y 29

=1的左、右焦点.若P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→

|等于 ( )

A .2 5

B . 5

C .210

D .10 9.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y

24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为

直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则 ( )

A .a 2=13

2 B .a 2=13

C .b 2=1

2

D .b 2=2

10.已知双曲线方程x 2

-y 22

=1,过点A (0,1)作直线l 交双曲线于P 1、P 2的不同两点,若线段P 1P 2的中点在直

线x =1

2上,求l 的斜率k 的值.

11.已知双曲线E 的中心为原点,F (3,0)是E 的一个焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15).求双曲线E 的方程.

三、探究与拓展

12.直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B . (1)求实数k 的取值范围;

(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.

课后作业参考答案

2.3.1 双曲线及其标准方程参考答案

1.B

2.C

3.B

4.B

5.A

6.C [设动圆M 的半径为r ,依题意有|MB |=r ,另设A (4,0),则有|MA |=r ±4,即|MA |-|MB |=±4.亦即动圆圆心M 到两定点A 、B 的距离之差的绝对值等于常数4,又4<|AB |,因此动点M 的轨迹为双曲线,且c =4,2a =4,

高二数学 双曲线的简单性质导学案

高二数学双曲线的简单性质导学案 1、通过对双曲线标准方程的讨论,掌握双曲线的范围,对称性,顶点,渐近线和离心率等几何性质与双曲线的中心,实轴,虚轴,渐进线,等轴双曲线的概念,加深对a、b、c、e的关系及其几何意义的理解; 2、能利用双曲线的简单几何性质及标准方程解决相关的基本问题。学习重点双曲线的简单几何性质及其应用学习难点双曲线的简单几何性质及其应用学法指导类比归纳法学习过程学习笔记(教学设计) 【自主学习(预习案)】 阅读教材80-82页内容,完成下列问题: 一、自主学习: 1、双曲线的定义: 2、双曲线的标准方程: 3、回想我们是怎样利用椭圆的标准方程探究椭圆性质的? 【合作学习(探究案)】 小组合作完成下列问题探究 一、双曲线的几何性质类比探究椭圆的简单几何性质的方法,根据双曲线的标准方程,研究它的几何性质。①范围:由双曲线的标准方程可得: 从而得x的范围:

;即双曲线在不等式和所表示的区域内。= 从而得y的范围为。 ②对称性:以代,方程不变,这说明所以双曲线关于对称。同理,以代,方程不变得双曲线关于对称,以代,且以代,方程也不变,得双曲线关于对称。③顶点:即双曲线与对称轴的交点。在方程里,令y=0,得x= 得到双曲线的顶点坐标为()A2();我们把()()也画在y轴上(如图)。线段分别叫做双曲线的实轴和虚轴,它们的长分别为。④离心率:双曲线的离心率e= ,范围为。思考:离心率可以刻画椭圆的扁平程度,双曲线的离心率刻画双曲线的什么几何特征?渐近线:双曲线的渐近线方程为 ,双曲线各支向外延伸时,与它的渐近线和无限逼近,但永不相交。探究 二、双曲线的图像 1、根据上述五个性质,画出椭圆与双曲线的图象。探究 三、整合前面的探究结果,类比出双曲线焦点在y轴时的几何性质,完成下表。标准方程(a>0,b>0)(a>0,b>0)图象范围对称轴对称中心实虚轴顶点渐近线离心率a,b,c关系 【当堂检测】 例:求双曲线的实半轴长和虚半轴长焦坐标、顶点坐标、离心率。练习(1) XXXXX:的实轴长虚轴长顶点坐标焦点坐标离心率;(2)的实轴长为虚轴长顶点坐标焦点坐标离心率渐近线方

高中数学双曲线经典例题

高中数学双曲线经典例题 一、双曲线定义及标准方程 1.已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是() A.x=0 B. C.D. 2、求适合下列条件的双曲线的标准方程: (1)焦点在 x轴上,虚轴长为12,离心率为; (2)顶点间的距离为6,渐近线方程为. 3、与双曲线有相同的焦点,且过点的双曲线的标准方程是

4、求焦点在坐标轴上,且经过点A(,﹣2)和B(﹣2,)两点的双曲线的标准方程. 5、已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为. 二、离心率 1、已知点F1、F2分别是双曲线的两个焦点,P为该双曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为. 2、设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为. 3、双曲线的焦距为2c,直线l过点(a,0) 和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l 的距离之和.则双曲线的离心率e的取值范围是() A. B.C.D. 3、焦点三角形

1、设P是双曲线x2﹣=1的右支上的动点,F为双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为. 2、.已知F1,F2分别是双曲线3x2﹣5y2=75的左右焦点,P是双曲线上的一点,且∠F1PF2=120°,求△F1PF2的面积. 3、已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求: (1)双曲线的渐近线方程; (2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积. 4、直线与双曲线的位置关系 已知过点P(1,1)的直线L与双曲线只有一个公共点,则直线L的斜率k= ____ 5、综合题型

高中数学选修2_2全套知识点与练习答案解析

选修2-2 知识点及习题答案解析 导数及其应用 一.导数概念的引入 1. 导数的物理意义: 瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是000 ()()lim x f x x f x x ?→+?-?, 我们称它为函数 () y f x =在 x x =处的导数,记作 0() f x '或 |x x y =',即 0()f x '=000 ()()lim x f x x f x x ?→+?-? 2. 导数的几何意义: 曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数 ()y f x =在0x x =处的导数就是切线PT 的斜率 k ,即00 ()()lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数:当x 变化时, ()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有 时也记作 y ',即 ()()()lim x f x x f x f x x ?→+?-'=? 二.导数的计算 基本初等函数的导数公式: 1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1 ()f x x αα-'=; 3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-; 5 若()x f x a =,则()ln x f x a a '= 6 若()x f x e =,则()x f x e '= 7 若 ()log x a f x =,则1()ln f x x a '= 8 若 ()ln f x x =,则1()f x x '= 导数的运算法则 1. [()()]()()f x g x f x g x '''±=± 2. [()()]()()()()f x g x f x g x f x g x '''?=?+? 3. 2 ()()()()()[]()[()] f x f x g x f x g x g x g x ''?-?'= 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=? 三.导数在研究函数中的应用 1.函数的单调性与导数: 一般的,函数的单调性与其导数的正负有如下关系: 在某个区间(,)a b 内

高中数学导学案双曲线及其标准方程

1. 1.3双曲线及其标准方程 课前预习学案 一、预习目标 ①双曲线及其焦点,焦距的定义。 ②双曲线的标准方程及其求法。 ③双曲线中a,b,c的关系。 ④双曲线与椭圆定义及标准方程的异同。 二、预习内容 ①双曲线的定义。 ②利用定义推导双曲线的标准方程并与椭圆的定义、标准方程和推导过程进行李类 比。 ③掌握a,b,c之间的关系。 三、提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点疑惑内容 课内探究学案 一、教学过程 前面我们学习过椭圆,知道“平面内与两定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆”。 下面我们来考虑这样一个问题? 平面内与两定点F1,F2的距离差为常数的点的轨迹是什么? 我们在平面上固定两个点F1,F2,平面上任意一点为M,假设|F1F2|=100,|MF1|>|MF2|且|MF1|-|MF2|=50不断变化|MF1|和|MF2|的长度,我们可以得出它的轨迹为一条曲线。 若我们交换一下长度,|MF1|<|MF2|且|MF1|-|MF2|=-50时,可知它的轨迹也是一条曲线 那么由这个实验我们得出一个结论: “平面内两个定点F1,F2的距离的差的绝对值为常数的点的轨迹是双曲线。” 但大家思考一下这个结论对不对呢? 我们知道在椭圆定义里,到两定点的距离和为一个常数,这个常数(必须大于|F1F2|)那么这里差的绝对值为一个常数,这个常数和|F1F2|有什么关系呢? 下面我们来看一个试验,当|MF1|-|MF2|=0时,M点的轨迹为F1,F2的中垂线; 随着|MF1|-|MF2|的不断变化,呈现出一系列不同形状的双曲线; 当|F1F2|即和|F1F2|长度相等时,点的轨迹为以F1,F2为端点的两条射线; 若|MF1|-|MF2|>100 时,就不存在点M。 那么由以上的一些试验我们可以得出双曲线的准确定义: 定义:平面内与两定点F1,F2的距离差的绝对值为非零常数(小于|F1F2|)的点的轨迹是双曲线。定点F1,F2叫做双曲线的焦点,两焦点的距离叫双曲线的焦距。

高中数学教材选修2-2知识点

高中数学选修2-2知识点汇总 目录 第一章导数及其应用 (2) 常见的函数导数和积分公式 (2) 常见的导数和定积分运算公式 (3) 用导数求函数单调区间的步骤 (3) 求可导函数f(x)的极值的步骤 (3) 利用导数求函数的最值的步骤 (4) 求曲边梯形的思想和步骤 (4) 定积分的性质 (4) 定积分的取值情况 (4) 第二章推理与证明 (5) 第三章数系的扩充和复数的概念 (7) 常见的运算规律 (8)

高中数学选修2-2知识点总结 第一章 导数及其应用 1.函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。 常见的函数导数和积分公式

常见的导数和定积分运算公式 若()f x ,()g x 均可导(可积),则有: 用导数求函数单调区间的步骤 ①求函数f (x )的导数'()f x ②令'()f x >0,解不等式,得x 的范围就是递增区间.③令'()f x <0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。 求可导函数f(x)的极值的步骤 (1)确定函数的定义域。(2) 求函数f (x )的导数'()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的 点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/ ()f x 在方程根左右的值的符号, 如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值

高中数学 选修1-1 18.直线与双曲线的位置关系

18.直线与双曲线的位置关系 教学目标 班级_____姓名________ 1.了解直线与双曲线的位置关系. 2.掌握双曲线中弦长问题的解法. 教学过程 一、直线与双曲线的位置关系. 1.直线与双曲线的位置关系. (1)相交:①有两个交点:交点在双曲线同一支或交点在双曲线两支上; ②有一个交点;(直线与渐近线平行时) (2)相切:直线与双曲线相切,只有一个交点.(直线只能与双曲线的一支相切) (3)相离:直线与双曲线无交点. 2.分析直线与双曲线的位置关系. (1)通过斜率分析.(已知直线恒过定点) (2)通过?分析.(注意特殊情况) 3.弦长公式. 设直线方程m kx y +=,直线与双曲线相交,两交点分别为),(11y x A ,),(22y x B . 则 (1)2122124)(1||x x x x k AB -+?+=(联立方程,消y ,应用韦达定理); (2)2122124)(11||y y y y k AB -+?+ =(联立方程,消x ,应用韦达定理). 二、例题分析. 1.直线与双曲线的位置关系. 例1:已知双曲线C :122 2 =-y x ,直线l 过点P )1,1(,当斜率k 为何值时,直线l 与双曲线C :(1)有一个公共点;(2)有两个公共点;(3)无公共点.

2.双曲线中的弦长问题. 例2:双曲线的两条渐近线的方程为x y 2±=,且经过点)32,3(-,若过双曲线的右焦点F 且倾斜角为 60的直线交双曲线于A 、B 两点,求AB 弦长. 作业:已知斜率为2的直线l 在双曲线12 32 2=-y x 上截得的弦长为4,求直线l 的方程.

新编人教A高中数学选修2-1全册导学案

人教版高中数学选修2-1 全册导学案

目录 1.1.1命题及其关系 1.1.2四种命题的关系 1.2.1充分条件 1.2.2充要条件 1.3.1逻辑联结词1 1.3.2简单的逻辑联结词2 1.4全称量词与存在量词 2.1.1曲线与方程(1)学案 2.1.2曲线与方程(2)学案 2.2.1椭圆及其标准方程(1)学案 2.2.1椭圆及其标准方程(2)学案 2.2.2椭圆及其简单几何性质(1)学案 2.2.2椭圆及其简单几何性质(2)学案 2.3.1双曲线及其标准方程学案 2.3.2双曲线的简单几何性质(1)学案 2.3.2双曲线的简单几何性质(2)学案 2.4.2抛物线的简单几何性质(1) 2.4.2抛物线的简单几何性质(2) 2.5曲线与与方程学案 第二章圆锥曲线与方程复习学案 3.1.1 空间向量及其加减运算 3.1.2 空间向量的数乘运算 3.1.3 空间向量的数量积运算 3.1.4 空间向量的正交分解及其坐标表示 3.1.5 空间向量运算的坐标表示 3.1 空间向量及其运算 3.2 立体几何中的向量方法一 3.2 立体几何中的向量方法二--利用向量方法求距离 3.2 立体几何中的向量方法三--利用向量方法求角 3.2 立体几何中的向量方法一--平行与垂直关系的向量证法

§1.1.1 命题及四种命题 一.自主学习 预习课本2—6页完成下列问题 1、命题:; 2、真命题:假命题:。 3、命题的数学形式:。 4、四种命题:。 (1)互逆命题:。(2)互否命题:。 (3)互为逆否命题:。 注意:数学上有些命题表面上虽然不是“若p,则q”的形式,但可以将它的表述作适当的改变,写成“若p,则q”的形式,从而得到该命题的条件和结论。 二、自主探究: 〖例1〗判断下列语句中哪些是命题?是真命题还是假命题? (1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数; (3)2小于或等于2;(4)对数函数是增函数吗? x<;(6)平面内不相交的两条直线一定平行; (5)215 > (7)明天下雨;(8)312 〖例2〗将下列命题改写成“若p,则q”的形式。 (1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等;(4)负数的立方是负数。 〖例3〗把下列命题改写成“若p则q”的形式,并写出它们的逆命题、否命题与逆否命题: (1)两直线平行,同位角相等;(2)负数的平方是正数;(3)四边相等的四边形是正方形。 课堂小结

双曲线及其标准方程--导学案

双曲线及其标准方程 学习目标:掌握双曲线的定义及标准方程,进一步理解坐标法的思想; 学习重点:了解双曲线的定义; 学习难点:双曲线标准方程的推导过程; 学习过程: 一、复习与问题: 1、复习:椭圆的定义 椭圆的标准方程: 2、问题:平面内与两定点的距离的和等于常数(大于两定点之间的距离)的点的轨迹叫做椭圆,平面内与两定点的距离的差为非零常数的点的轨迹是怎样的曲线呢? 二、双曲线的定义: 双曲线的定义:把平面内 的点的轨迹叫做双曲线。 这两个定点叫做双曲线的 ,两焦点间的距离叫做双曲线的 合作探究:试说明在下列条件下动点M 的轨迹各是什么图形? ),,2,2,(212121都为正常数是两定点,c a c F F a MF MF F F ==- (1)当21MF MF -=2a 时,点M 的轨迹 (2)当12MF MF -=2a 时,点M 的轨迹 (3)当2a =2c 时,动点M 的轨迹 (4)当2a >2c 时,动点M 的轨迹

(5)当2a =0时,动点M 的是轨迹 三、双曲线的标准方程: 1、焦点在x 轴上的双曲线的标准方程 建系: 设点: 若焦距为2c (c >0),则1F ,2F ,又设点M 与两焦点的距离差的绝对值等于常数2a ,由双曲线的定义得: (整理过程) 由曲线与方程的关系知所求方程为双曲线的标准方程, 双曲线的标准方程 它所表示的双曲线的焦点在 ,焦点坐标为 2、焦点在y 轴上的双曲线的标准方程 焦点在y 轴上的双曲线的标准方程为 ,

它所表示的双曲线的焦点在 ,焦点坐标为 思考:如何根据双曲线的标准方程确定焦点的位置? 四、典例剖析 例1、已知双曲线的焦点为F1(-5,0), F2(5,0),双曲线上一点到焦点的距离差的绝对值等于8,则求双曲线的标准方程. 变式1、已知双曲线的焦点为F1(0,-5), F2(0,5),双曲线上一点P 到F1、F2的距离的差等于6,求双曲线的方程. 例2、求适合下列条件的双曲线的标准方程 1、焦点为(0,--6),(0,6),且经过点(2,5) 2、焦点在x 轴上, 3、经过两点 ),(),, (372B 267A --), (经过点25A ,52-=a

高中数学双曲线导学案及答案

高三理科数学 导学案 平面解析几何 编制: 审阅: 第二讲 双曲线(2课时) 班级 姓名 【考试说明】1.了双曲线的定义、几何图形和标准方程,知道其简单几何性质(范围、对称性、顶点、离心率、)2. 理解数形结合的思想. 3.了解双曲线的简单应用. 【知识聚焦】(必须清楚、必须牢记) 1.双曲线定义 平面内与两个定点F 1,F 2的____________等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做_____________,两焦点间的距离叫做_______________.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.(1)当______________时,P 点的轨迹是双曲线;(2)当_____________时,P 点的轨迹是两条射线; (3)当_____________时,P 点不存在. 2.双曲线的标准方程和几何性质 3实轴和_________相等的双曲线叫做等轴双曲线.离心率e =2是双曲线为等轴双曲线的充要条件,且等轴双曲线两条渐近线互相垂直.一般可设其方程为x 2-y 2=λ(λ≠0). 4.巧设双曲线方程 (1)与双曲线x 2a 2-y 2b 2=1 (a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2 b 2=t (t ≠0). (2)过已知两个点的双曲线方程可设为x 2m +y 2 n =1 (mn <0).

【链接教材】(打好基础,奠基成长) 1.(教材改编)若双曲线x 2a 2-y 2 b 2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5 B .5 C. 2 D .2 2.(2015·安徽)下列双曲线中,渐近线方程为y =±2x 的是( ) A .x 2 -y 24=1 B.x 24-y 2=1 C .x 2 -y 2 2 =1 D.x 22 -y 2 =1 高三理科数学 导学案 平面解析几何 编制: 审阅: 3.(2014·广东)若实数k 满足00)的一个焦点,则点F 到C 的一条渐近线的距离为________. 5.(教材改编)经过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线方程为_______. 6. 设双曲线x 2a 2-y 2 9 =1(a >0)的渐近线方程为3x ±2y =0,则a 的值为( ) A.4 B.3 C.2 D.1 7 (2013·湖北)已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x 2 sin 2θtan 2θ =1的( ) A.实轴长相等 B .虚轴长相等 C.焦距相等 D.离心率相等 8. 已知曲线方程x 2λ+2-y 2 λ+1 =1,若方程表示双曲线,则λ的取值范围是________________. 【课堂考点探究】 探究点一 双曲线定义的应用 例1 1.已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________. 2. 设P 是双曲线2 2 11620 y x -=上的一点,F1F2 分别是双曲线的左右焦点,若为 1 29PF PF ==则( ) A.1 B.17 C.1或17 D.以上答案均不对 [总结反思] 探究点二 双曲线的标准方程的求法 例2 1.根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为5 4 ;(2)经过两点P (-3,27)和Q (-62,-7). 2 .(2014·天津)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 2 25=1 [总结反思] 变式题 (1)(2015·课标全国Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±1 2x ,则该双曲线的标准方程为

高中数学双曲线抛物线知识点总结

双曲线 平面到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 221(0,0)x y a b a b -=>> 22 2 21(0,0)y x a b a b -=>> 简图 围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22 2 21x y a b -=共渐近线的方程可设为2222(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425 y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 233 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

(完整word版)高中数学选修2-2知识点总结(最全版)

高中数学选修2-2知识点总结 第一章、导数 1.函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,平均变化率 可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y = 在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000 . 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() .用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格, f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()

高中数学双曲线抛物线知识点的总结

双曲线 平面内到两个定点, 的距离之差的绝对值是常数2a(2a< )的点的轨迹。 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为22 22(0)x y m n λλ-=≠,与双曲线 2222 1x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,A -。

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425 y x -=。 (3)设双曲线的方程为22 22x y a b λ -= ( 3,A -在双曲线上 ∴(2 2 3 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值范围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离 1d = , 同理得到点(-1,0)到直线l 的距离 2d =

《双曲线及其标准方程》教学设计

《双曲线及其标准方程》教学设计

《双曲线及其标准方程》教学设计 一、设计理念 1.课标解读: 《普通高中数学课程标准》(实验)中指出:(1)高中数学课程应设立“数学探究”等学习活动,为学生形成积极主动的、多样的学习方式进一步创造有利的 条件,以激发学生的数学学习兴趣。(2)高中数学课程应注重提高学生的数学思 维能力,在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、 归纳类比、抽象概括、符号表示、运算求解、反思与建构等思维过程,提高学生 对客观事物中蕴涵的数学模式进行思考和做出判断的能力(3)高中数学课程实施 应重新审视基础知识、基本技能和能力的内涵,删减繁琐的计算、人为技巧化的 难题和过分强调细枝末节的内容。(3)高中数学课程提倡实现信息技术与课程内 容的有机整合,整合的基本原则是有利于学生认识数学的本质;提倡利用信息技 术来呈现以往教学中难以呈现的课程内容,加强数学教学与信息技术的结合。(4)高中数学课程应建立合理、科学的评价体系;评价既要关注学生数学学习的结果,也要关注数学学习的过程;过程性评价应关注对学生理解数学概念、数学思想等 过程的评价,关注对学生在学习过程中表现出来的与人合作的态度、表达与交流 的意识的评价。 基于课表理念的指导,本节课教学方法选择以问题探究、练习为主、以讲授法辅。教学过程侧重知识的自主建构和应用,重视信息技术在教学中的辅助作用。 2.高考解读: 解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题是解析几何的基本特点和性质。因此,在解题的过程中计算占了很大的比例,对 运算能力有较高的要求,但计算要根据题目中曲线的特点和相互之间的关系进行,所以曲线的定义和性质是解题的基础。解析几何试题除考查概念与定义、基本元 素与基本关系外,还突出考查函数与方程的思想、数形结合的思想等思想方法。 3.教材解读: 本节课的教学内容是《数学选修2-1》第二章《圆锥曲线与方程》§ 3.1“双曲线及其标准方程”,教学课时为1课时。圆锥曲线是一个重要的 几何模型,有许多几何性质,这些性质在日常生活、生产和科学技术中有 着广泛的应用,同时,圆锥曲线也是体现数形结合思想的重要素材,而双 曲线是三种圆锥曲线中最复杂的一种,作为最后一种圆锥曲线来学习充分 考虑到了知识学习由易到难的教学要求。双曲线可以与椭圆类比学习,主 要内容是:①探求轨迹(双曲线);②学习双曲线概念;③推导双曲线标准

高中数学双曲线题型归纳

高中数学双曲线题型归纳 类型一 双曲线的定义 【例1】已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________. 1-1设P 是双曲线120 162 2=- y x 上一点,F 1,F 2分别是双曲线左、右焦点,若|PF 1|=9,则|PF 2|=( ) A .1 B .17 C .1或17 D .以上答案均不对 1-2已知F 是双曲线112 42 2=- y x 的左焦点,A (1,4),P 是双曲线右支上的动点, 则|PF |+|P A |的最小值为( ) A .5 B .5+43 C .7 D .9 1-3已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________. 类型二 几何性质 【例2】设F 1,F 2分别为双曲线122 22=-b y a x (a >0,b >0)的左、右焦点.若在双曲线右 支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( ) A .3x ±4y =0 B .3x ±5y =0 C .4x ±3y =0 D .5x +4y =0

2-1若双曲线()01322 2>=-b b y x 的一个焦点到一条渐近线的距离等于焦距的4 1,则该双 曲线的虚轴长是( ) A .2 B .1 C . 5 5 D . 5 5 2 2-2设直线x -3y +m =0(m ≠0)与双曲线122 22=-b y a x (a >0, b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是________. 2-3中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2, 且F 1F 2=213,椭圆的半长轴长与双曲线半实轴长之差为4,离心率之比为3∶7. (1)求这两曲线方程; (2)若P 为这两曲线的一个交点,求△F 1PF 2的面积.

高中数学选修21知识点总结

高二数学选修2-1知识点 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ?,则q ?”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ?,则p ?”. 6、四种命题的真假性: 四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性; ()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题. 用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题. 对一个命题p 全盘否定,得到一个新命题,记作p ?. 若p 是真命题,则p ?必是假命题;若p 是假命题,则p ?必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“?”表示. 含有全称量词的命题称为全称命题. 全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ?∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“?”表示. 原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假

高中数学 选修2-1双曲线导学案

双曲线及其标准方程导学案 【学习要求】 1.了解双曲线的定义,几何图形和标准方程的推导过程. 2.掌握双曲线的标准方程. 3.会利用双曲线的定义和标准方程解决简单的问题. 【学法指导】 本节课的学习要运用类比的方法,在与椭圆的联系与区别中建立双曲线的定义及标准方程. 【知识要点】 1.双曲线的定义 把平面内与两个定点F 1,F 2的距离的 等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做 , 叫做双曲线的焦距. 2 探究点一 双曲线的定义 问题1 取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F 1,F 2上,把笔尖放在点M 处,拉开闭拢拉链,笔尖经过的点可画出一条曲线,思考曲线满足什么条件? 问题2 双曲线的定义中强调平面内动点到两定点的距离差的绝对值为常数,若没有绝对值,则动点的轨迹是什么? 问题3 双曲线的定义中,为什么要限制到两定点距离之差的绝对值为常数2a,2a <|F 1F 2|? 问题4 已知点P (x ,y )的坐标满足下列条件,试判断下列各条件下点P 的轨迹是什么图形? (1) 6)5()5(2222=+--++y x y x ; (2)6)4()4(2 222=+--++y x y x (3)方程x =3y 2 -1所表示的曲线是( ) A .双曲线 B .椭圆 C .双曲线的一部分 D .椭圆的一部分 探究点二 双曲线的标准方程 问题1 类比椭圆的标准方程推导过程,思考怎样求双曲线的标准方程? 问题2 两种形式的标准方程怎样进行区别?能否统一? 问题3 如图,类比椭圆中a ,b ,c 的意义,你能在y 轴上找一点B ,使|OB |=b 吗? 例1 (1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和???? 94,5,求双曲线的标准方程; (2)求与双曲线x 216-y 2 4=1有公共焦点,且过点(32,2)的双曲线方程. 跟踪训练1 (1)过点(1,1)且b a =2的双曲线的标准方程是 ( ) A .12 122 =-y x B .y 212-x 2=1 C .x 2 -y 212=1 D .x 212-y 2=1或y 2 12 -x 2=1 (2)若双曲线以椭圆x 216+y 2 9=1的两个顶点为焦点,且经过椭圆的两个焦点,则双曲线的标准方程为_______ 探究点三 与双曲线定义有关的应用问题 例2 已知双曲线的方程是x 216-y 2 8=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的 中点,求|ON |的大小(O 为坐标原点). 跟踪训练2 如图,从双曲线x 23-y 2 5=1的左焦点F 引圆x 2+y 2=3的切线FP 交双曲线右支于点P , T 为切 点,M 为线段FP 的中点,O 为坐标原点,则|MO |-|MT |等于( ) A . 3 B . 5 C .5- 3 D .5+ 3 例3 已知A ,B 两地相距800 m ,在A 地听到炮弹爆炸声比在B 地晚2 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程. 跟踪训练3 2008年5月12日,四川汶川发生里氏8.0级地震,为了援救灾民,某部队在如图所示的P 处空降了一批救灾药品,今要把这批药品沿道路PA 、PB 送到矩形灾民区ABCD 中去,已知PA =100 km ,PB =150 km ,BC =60 km ,∠APB =60°,试在灾民区中确定一条界线,使位于界线一侧的点沿道路PA 送药较近,而另一侧的点沿道路PB 送药较近,请说明这一界线是一条什么曲线?并求出其方程. 【当堂检测】 1.已知A (0,-5)、B (0,5),|PA |-|PB |=2a ,当a =3或5时,P 点的轨迹为 ( ) A .双曲线或一条直线 B .双曲线或两条直线 C .双曲线一支或一条直线 D .双曲线一支或一条射线 2.若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是 ( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 3.双曲线x 216-y 2 9 =1上一点P 到点(5,0)的距离为15,那么该点到(-5,0)的距离为 ( ) A .7 B .23 C .5或25 D .7或23 4.已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,求动圆圆心的轨迹方程. 【课堂小结】 1.双曲线定义中||PF 1|-|PF 2||=2a (2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.

高考数学最全总结高中数学选修2-1知识点总结清单

高中数学选修2-1 知识点 第一章:命题与逻辑结构 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p,则q”,它的逆命题为“若q,则p”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p,则q”,则它的否命题为“若?p ,则?q ”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。其中一个命题称为原命题,另一个称为原命题的逆否命题。 若原命题为“若p,则q”,则它的否命题为“若?q ,则?p ”。 6、四种命题的真假性: 原命题逆命题否命题逆否命题 真真真真 真假假真 假真真假 假假假假 四种命题的真假性之间的关系: (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关 系.7、若p ?q ,则p 是q 的充分条件,q 是p 的必要条件. 若p?q,则p是q的充要条件(充分必要条件). 8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p ∧q . 当p 、q 都是真命题时,p ∧q 是真命题;当p 、q 两个命题中有一个命题是假命题时,p ∧q 是假命题. 用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p ∨q . 当p 、q 两个命题中有一个命题是真命题时,p ∨q 是真命题;当p 、q 两个命题都是假命题时,p ∨q 是假命题. 对一个命题p 全盘否定,得到一个新命题,记作?p . 若p 是真命题,则?p 必是假命题;若p 是假命题,则?p 必是真命题.

相关文档
相关文档 最新文档