文档库 最新最全的文档下载
当前位置:文档库 › 微纳米

微纳米

微纳米
微纳米

1.简述纳米和纳米科技的定义。

纳米是长度单位,原称毫微米,就是10的-9次方米(10亿分之一米)。

纳米科技是20世纪90年代发展起来的一个覆盖面极广、多学科交叉的领域,近年来在全世界范围得到飞速发展.

2.简述纳米科学技术的特征。

3.磁性纳米微粒主要表现出哪些特性?请说明何为超顺磁性。

纳米微粒的小尺寸效应、量子尺寸效应、表面效应等使得它具有常规粗晶材料不具备的磁特性.

(1)超顺磁性和其他超磁性

超顺磁性:铁磁性的超铁磁性以及具有新磁性特点的超反铁磁性等。当稀释磁材料中的磁团体积和序磁材到可受热扰动影响而呈现混乱排列时,其磁性与具有磁矩原子系统的顺磁性相似,一旦受到外加磁场磁化时,其磁化曲线表现出可逆的磁和矫顽力为零的特点,并且呈现普适磁化曲线,即(M/Ms)——(H/T)曲线可互相重合(其中M为温度T时的磁化强度,H为外加磁场强度,Ms从为温度T时其磁化率也远高于一般顺磁物质的磁化率。故这种磁性称为超顺磁性。

超顺磁状态的起源可归为以下原因:在小尺寸下,当各向异性能减少到与热运动能可相比拟时,磁化方向就不再固定在一个易磁化方向,易磁化方向作无规则的变化,结果导致超顺磁性的出现。

(2)矫顽力

(3)磁相变温度

(4)磁化率

4.简述纳米微粒主要表现出哪些特殊的光学特性?并选取一个举例说明其应用。

(1)宽频带强吸收例如铂纳米粒子的反射率为1%,金纳米粒子的反射率小于10%。这种对可见光的低反射率、强吸收率导致粒子变黑。利用此特性可把金属纳米微粒薄膜作为高效光热材料、光电转换材料、红外隐身材料,还可以制作红外敏感元件等。

(2)蓝移和红移现象

(3)量子限域效应

(4)纳米微粒的发光埋藏于BaO介质中的Ag纳米微粒产生光致荧光增强现象。

(5)纳米微粒分散物系的光学性质丁铎尔效应

5.纳米固体材料与常规块材料相比,其力学特性有哪些变化?

1.Hall一Petch关系:(1) 正Hall一Petch关系

(2)负Hall-Petch关系

(3)正-负Hall-Petch关系

当组成固体的微粒尺寸进入纳米量级时,力学性质发生明显变化,

出现了常规材料中从未出现的负Han-Petch关系及正-负混合

Han-Petch关系。

2.模量:纳米微晶材料的模量比大块试样的相应值要小得多。

3.超塑性:所谓超塑性是指材料在一定的应变速率下,产生较大的拉伸形变

6.单壁碳纳米管有何特征?简述碳纳米管的主要应用领域。

而单壁纳米管(SWNTs)可以认为是很长的卷起来的石墨层结构。纳米管通常具有约为1000的长径比,所以可以被认为是准一维结构。一个SWNTs包括两个隔开的具有不同物理和化学性能的区域。它们分别为管子的侧壁和管子的端部。端部结构类似较小的富勒烯(如C60),或认为是由富勒烯衍生出来的。

SWNTs的另一部分——侧壁构成了一个圆柱体。它是由一定大小的石墨层沿一定方向卷曲而成,各个卷曲方向是分立的集合(图2.31)。

碳纳米管在能量存储、真空微电子器件、纳米探针和传感器、复合材料和模板上的应用。

7.纳米复合材料在增强补韧方面有怎样的突出优势?主要机理是什么?

突出优势:聚合物基无机纳米复合材料不仅具有纳米材料的表面效应、量子尺寸效应等性质,而且将无机物的刚性、尺寸稳定性和热稳定性与聚合物的韧性、加工性及介电性能揉合在一起,从而产生许多特异的性能。

通过合成技术得到的具有磁学、电学、光学、化学及力学等功能的纳米复合材料,在先进的电子器件、光学器件、精密机械器件、航空航天器件、军事化学、生物医学及化学化工等领域有着常规材料无法比拟的作用。

主要机理:纳米复合材料与常规的无机填料——聚合物体系不同,不是有机相与无机相的简单混合,而是两相在纳米尺寸范围内复合而成。

由于分散相与连续相之间界面面积非常大,界面间具有很强的相互作用,产生理想的粘接性能,使界面模糊。

作为分散相的有机聚合物通常是指刚性棒状高分子,包括溶致液晶聚合物、热致液晶聚合物和其他刚直高分子,它们以分子水平分散在柔性聚合物基体中,构成无机物——有机聚合物纳米复合材料。

8.简述脂质体的结构,并说明脂质体作为药物的载体具有那些优点?

结构:这种类似生物膜双分子层结构的微囊称为脂质体(Liposome)

优点:①脂质体载体能保护被包裹物;

②能有效地控制药物释放;

③通过改变脂质体大小和电荷,可以控制药物在组织内的分布与在血液中的清除

率;

④可用单克隆抗体等配体修饰脂质体,使药物靶向病变部位(即药物导弹);

⑤脂质体本身对人体无毒性和免疫抑制作用。

9.简述DNA芯片的工作原理,及其应用领域。

其基本原理是基因探针与特异寡核苷酸的碱基互补。DNA芯片是根据待测的基因片段,确定可以与之杂交的探针序列,将大量已知的探针固定于支持物上。根据探针来源,DNA芯片有两种:

一种是采用显微光蚀刻技术或压电打印技术在芯片特定位置原位合成寡核苷酸探针的芯片;

另一种是将克隆基因或聚合酶链式反应(PCR)扩增产物作为探针显微打印到芯片上的微集芯片。

用途:(1)基因表达和发现

(2)突变和多态性分析

(3)遗传作图

(4)杂交测序

10.纳米氧化钛为什么可以用作透明防晒剂?

因为TiO2能强烈吸收紫外线以免紫外线穿透肌肤。微米尺寸的TiO2、ZnO能散射光波而呈现白色,如果这些粒子尺寸减少到50nm甚至更小,整个系统将会变得透明「图

4.3(a))。因此,纳米粒子第一个大市场在透明遮光剂上。

11.光子具有哪些优异特性?使其在很多领域特别是信息领域显示出非凡的能力。

1.光子具有极高的信息容量和效率

2.光子具有极快的响应能力

3.光子具有极强的互连能力与并行能力

4.光子具有极大的存储能力

12.简述单电子晶体管的原理及其结构,试述其与传统电子晶体管相比具有哪些优势?

原理:如此逐渐增加栅电压坎就造成了一系列源一漏电流的周期振荡(或电导G(。2/h)的振荡),每个峰对应于岛上电子平衡的数量。这个周期振荡是单电子库仑阻塞的特征.

结构:单电子晶体管主要是由一个小区域或“岛”构成,通过这个小区域或“岛”,电子能从源极隧穿到漏极。这一体系中,被绝缘势垒分开的源极和漏极之间存在着第三个电极(岛),电荷从源极穿过绝缘层到岛和从岛穿过绝缘层到漏极是两个量子力学隧穿过程.

优势:单电子晶体管能够在单个电子水平上控制和测量电流,在纳米电子学和纳米计算等方面都有很多用途。

13.简述量子计算机与传统计算机的区别

计算机可以进行两种类型的操作:算术和逻辑;在量子计算机中计算规则发生了改变。

一个量子位(qubio不仅可以存在于0和1的状态,还可以存在于既是0又是1的叠加状态。

另一种理解量子计算机和经典计算机区别的方法是考虑三位经典位(bit)的寄存器。14.简述隧道扫描显微镜的工作原理,并绘出原理图。

扫描隧道显微镜的工作原理是基于量子力学中的隧道效应,一根探针慢慢地通过要被分析的材料(针尖极为尖锐,仅仅由一个原子组成)。一个小小的电荷被放置在探针上,一股电流从探针流出,通过整个材料,到底层表面。当探针通过单个的原子,流过探针的电流量便有所不同,这些变化被记录下来。电流在流过一个原子的时候有涨有落,如此便极其细致地探出它的轮廓。在许多的流通后,通过绘出电流量的波动,人们可以得到组成一个网络结构的单个原子的美丽图片。

15.简述原子力显微镜的工作原理,并绘出原理图。

(1)将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触。

(2)由于针尖尖端原子与样品表面原子间存在极微弱的力,会使悬臂产生微小的偏转。

(3)通过检测出偏转量并作用反馈控制其排斥力的恒定,就可以获得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的图像。

纳米材料和纳米结构

纳米材料和纳米结构 1.纳米微粒尺寸的评估 在进行纳米微粒尺寸的评估之前,首先说明如下几个基本概念: (1)关于颗粒及颗粒度的概念 (i)晶粒:是指单晶颗粒,即颗粒内为单相,无晶界。 (ii)一次颗粒:是指含有低气孔率的一种独立的粒子,颗粒内部可以有界面,例如相界、晶界等。 (iii)团聚体:是由一次颗粒通过表面力或固体桥键作用形成的更大的颗粒。团聚体内含有相互连接的气孔网络。团聚体可分为硬团聚体 和软团聚体两种。团聚体的形成过程使体系能量下降。 (iv)二次颗粒:是指人为制造的粉料团聚粒子。例如制备陶瓷的工艺过程中所指的“造粒”就是制造二次颗粒。 纳米粒子一般指一次颗粒,它的结构可以是晶态、非晶态和准晶,可以是单相、多相结构。只有一次颗粒为单晶时,微粒的粒径才与晶粒尺寸(晶粒度)相同。 (2)颗粒尺寸的定义对球形颗粒来说,颗粒尺寸(粒径)是指其直径。对不规则颗粒,尺寸的定义常为等当直径,如体积等当直径、投影面积直径等。 粒径评估的方法很多,这里仅介绍几种常用的方法。 A 透射电镜观察法 用透射电镜可观察纳米粒子平均直径或粒径的分布。 该方法是一种颗粒度观察测定的绝对方法,因而具有可靠性和直观性。首先将那米粉制成的悬浮液滴在带有碳膜的电镜用Cu网上,待悬浮液中的载液(例如乙醇)挥发后,放入电镜样品台,尽量多拍摄有代表性的电镜像,然后由这些照片来测量粒径。测量方法有以下几种:(i)交叉法:用尺或金相显微镜中的标尺任意的测量约600颗粒的交叉长度,然后将交叉长度的算术平均值乘上一统一因子(1.56)来获得平均粒径;(ii)测量约100个颗粒中每个颗粒的最大交叉长度,颗粒粒径为这些交叉长度的算术平均值。(iii)求出颗粒的粒径或等当半径,画出粒径与不同粒径下的微粒数的分布图,将分布曲线中峰值对应的颗粒尺寸作为平均粒径。用这种方法往往测得的颗粒粒径是团聚体的粒径,这是因为在制备超微粒子的电镜观察样品时,首先需用超声波分散法,使超微粉分散在载液中,有时候很难使它们全部分散成一次颗粒,特别是纳米粒子很难分散,结果在样品Cu网上往往存在一些团聚体,在观察时容易把团聚体误认为是一次颗粒。电镜观察法还存在一个缺点就是测量结果缺乏统计性,这是因为电镜观察用的粉体是极少的,导致观察到的粉体的粒子分布范围并不代表整个粉体的粒径范围。 B X射线衍射线线宽法(谢乐公式) 电镜观察法测量得到的是颗粒度而不是晶粒度。X射线衍射线宽法是测定颗粒晶粒度的最好方法。当颗粒为单晶时,该法测得的是颗粒度。颗粒为多晶时,测得的是组成单个颗粒的单个晶粒的平均晶粒度。这种测量方法只适用晶态的纳

微纳米材料

其应用

纳米材料定义 ?1959 年, 美国著名理论物理学家、诺贝尔奖获得者R. Feynman 曾说过: 我深信当人们能操纵细微物体的排列时, 将可以获得极其丰富的新的物质性质。如今, Feynman 的梦想终于在纳米材料中得到实现。 ?尺寸在0. 1nm 到100nm之间, 处在原子簇和宏观物体交接区域内的粒子称为纳米材料或超微粒。

纳米材料制备历史 ?20 世纪80 年代初, 德国科学家Gleiter提出纳米晶体材料的概念, 并采用人工制备首次获得纳米晶体。 ?1987 年美国Argon 实验室Siegles 等采用惰性气体蒸发原位加压的方法, 制备?了纳米级TiO2 陶瓷材料。 ?到20 世纪90 年代, 人工制备的纳米材料已达百种以上。

纳米材料特性 ?表面效应 ?小尺寸效应 ?量子尺寸效应 ?宏观量子隧道效应

小尺寸效应 ?当纳米材料的晶体尺寸与光波波长、传导电子的德布罗意波长、超导态的相干长度或透射深度等物理特征尺寸相当或比它们更小时, 一般固体材料赖以成立的周期性边界条件将被破坏, 声、光、热和电磁等特征会出现小尺寸效应。

?例如: 纳米银的熔点为373K, 而银块则为1234K。纳米铁的抗断裂应力比普通铁高12 倍。纳米材料之所以具有这些奇特的宏观结构特征, 是由于在纳米层次上, 物质的尺寸不大不小, 所包含的原子、分子数不多不少, 其运动速度不快不慢。而决定物质性质的正是这个层次的由有限分子组装起来的集合体, 而不再是传统观念上的材料性质直接决定于原子和分子。介于物质的宏观结构与微观原子、分子结构之间的层次( 即小尺寸效应) 对材料的物性起着决定性作用。

纳米材料与技术- 纳米微粒的基本特性

第三章纳米微粒的基本特性 一、纳米微粒的结构 二、纳米微粒的基本特性 热学、磁学、光学、动力学、表面活性、光催化性能 一、纳米微粒的结构 纳米态:物质的第?态! 区别于固、液、气态,也区别于“等离子体态”(物质第四态)、地球内部的超高温、超高压态(物质第五态),与“超导态”、“超流态”也不同。 纳米态的物质一般是球形的。物质在球形的时候,在等体积的条件下,它的界面最小、能量最低、自组织性最强、对称性也最高,有着很好的强关联性。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2nm)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体、十面体、二十面体等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态。尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。 纳米微粒一般为球形或类球形,可能还具有其他各种形状(与制备方法有关)。 纳米微粒的结构一般与大颗粒的相同,内部的原子排列比较整齐,但有时也会出现很大的差别:高表面能引起表层(甚至内部)晶格畸变。 二、纳米微粒的基本特性 1. 纳米微粒的热学性质 固态物质在其形态为大尺寸时,其熔点是固定的;超细微化后发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。 大块Pb的熔点为600K,而20nm的的球形Pb微粒熔点降低288K。 Ag的熔点:常规粗晶粒为960?C;纳米Ag粉为100?C Cu的熔点:粗晶粒为1053?C;粒度40nm时为750?C 纳米微粒的熔点降低:由于颗粒小,纳米微粒的表面能高、比表面原子数多,这些表面原子近邻配位不全、活性大,因此纳米粒子熔化时所需增加的内能比块体材料小得多,使纳米微粒的熔点急剧下降。 ?应用:降低烧结温度。纳米微粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利于界面中的孔洞收缩,空位团的湮没,因此,在较低的温度下烧结就能达到致密化的目的,即烧结温度降低。(烧结温度:指把粉末先用高压压制成形、然后在低于熔点的温度下使这些粉末互相结合成块、密度接近常规材料的最低加热温度。) 2. 纳米微粒的磁学性质 材料磁性的分类 ①抗磁性(Diamagnetism) ②顺磁性(Paramagnetism) ③铁磁性(Ferromagnetism) ④反铁磁性(Antiferromagnetism) ⑤亚铁磁性(Ferrimagnetism) 人们发现鸽子、海豚、蝴蝶、蜜蜂以及生活在水中的趋磁细菌等生物体中存在超微的磁性颗粒(实质上是一个生物磁罗盘),使这类生物在地磁场导航下能辨别方向,具有回归的本领。小尺寸的超微颗粒的磁性与大块材料的有显著不同。 i) 超顺磁性:纳米微粒尺寸小到一定临界值时进入超顺磁状态,这时磁化率χ不再服从常规的居里-外斯定律。 例如:α-Fe、Fe3O4和α-Fe2O3粒径分别为5nm、16nm 和20nm时变成顺磁体。Ni粒径小于15nm时,矫顽力Hc→0,说明进入了超顺磁状态。 不同种类的纳米磁性微粒显现超顺磁的临界尺寸是不相同的。

微纳米

1.简述纳米和纳米科技的定义。 纳米是长度单位,原称毫微米,就是10的-9次方米(10亿分之一米)。 纳米科技是20世纪90年代发展起来的一个覆盖面极广、多学科交叉的领域,近年来在全世界范围得到飞速发展. 2.简述纳米科学技术的特征。 3.磁性纳米微粒主要表现出哪些特性?请说明何为超顺磁性。 纳米微粒的小尺寸效应、量子尺寸效应、表面效应等使得它具有常规粗晶材料不具备的磁特性. (1)超顺磁性和其他超磁性 超顺磁性:铁磁性的超铁磁性以及具有新磁性特点的超反铁磁性等。当稀释磁材料中的磁团体积和序磁材到可受热扰动影响而呈现混乱排列时,其磁性与具有磁矩原子系统的顺磁性相似,一旦受到外加磁场磁化时,其磁化曲线表现出可逆的磁和矫顽力为零的特点,并且呈现普适磁化曲线,即(M/Ms)——(H/T)曲线可互相重合(其中M为温度T时的磁化强度,H为外加磁场强度,Ms从为温度T时其磁化率也远高于一般顺磁物质的磁化率。故这种磁性称为超顺磁性。 超顺磁状态的起源可归为以下原因:在小尺寸下,当各向异性能减少到与热运动能可相比拟时,磁化方向就不再固定在一个易磁化方向,易磁化方向作无规则的变化,结果导致超顺磁性的出现。 (2)矫顽力 (3)磁相变温度 (4)磁化率 4.简述纳米微粒主要表现出哪些特殊的光学特性?并选取一个举例说明其应用。 (1)宽频带强吸收例如铂纳米粒子的反射率为1%,金纳米粒子的反射率小于10%。这种对可见光的低反射率、强吸收率导致粒子变黑。利用此特性可把金属纳米微粒薄膜作为高效光热材料、光电转换材料、红外隐身材料,还可以制作红外敏感元件等。 (2)蓝移和红移现象 (3)量子限域效应 (4)纳米微粒的发光埋藏于BaO介质中的Ag纳米微粒产生光致荧光增强现象。 (5)纳米微粒分散物系的光学性质丁铎尔效应 5.纳米固体材料与常规块材料相比,其力学特性有哪些变化? 1.Hall一Petch关系:(1) 正Hall一Petch关系 (2)负Hall-Petch关系 (3)正-负Hall-Petch关系 当组成固体的微粒尺寸进入纳米量级时,力学性质发生明显变化, 出现了常规材料中从未出现的负Han-Petch关系及正-负混合 Han-Petch关系。 2.模量:纳米微晶材料的模量比大块试样的相应值要小得多。 3.超塑性:所谓超塑性是指材料在一定的应变速率下,产生较大的拉伸形变

微纳米生物技术及其在药物研发方面的应用续

微纳米生物技术及其在药物研发方面的应用(续) (7)生物分子马达 (Biomolecular Motors) :分子马达是一种分子机械,它是分子尺度(纳米尺度)下的一种复合体,能够作为机械零件的最小实体。驱动方式是透过外部的刺激(如化学、电化学、光化学等方法),使分子结构或模型发生较大变化,且这种变化是可以被控制及调整,具有可预期的规则性,进而使整个体系在理论上具有对外机械作功的可能性。由于马达是机器运转的核心,若将生物分子马达利用微机电技术再接上其它东西,可制造出纳米机器人等。生物分子马达的相关研究,目前遭遇到的最大困难在于作用时的稳定性问题,这些生物分子仅能够在狭窄的温度范围与离子强度下运作,在有机溶液或空气中都无法作用。 (8)核酸计算机 (DNA computer):DNA计算机的应用原理是基于DNA分子中的密码相当于数据的储存,DNA分子间可以在酵素作用下瞬间完成生化反应,从一种基因代码变成另一种基因代码。如果将反应前的基因代码作为输入数据,反应后的基因代码即为运算结果。DNA计算机运算速度极快,几天的运算量就相当于计算机问世以来的总运算量,储存容量也非常大,超过目前所有计算机的储存量,但所耗的能量极低,只有一台普通计算机的十亿分之一。 其中将微纳米技术应用到药物研究中治疗一些疾病是最受人们关注的,在近期的研究中,研究人员利用TD微纳米生物芯片中医消融法,推动了甲状腺结节治疗技术发展。甲状腺结节是甲状腺专科常见的内分泌疾病,在我们日常忙碌的生活中甲状腺结节一般情况下都是因为甲亢治疗不及时所引发的,这种情况下患者很难通过自己观察发现,通过常规体检会检查出甲状腺结节病发,不同程度病

微纳制造技术作业

问题:1、微机械制造材料大致分为几类而常用的制造微机电产品的材料有哪些,MEMS装置为何大多选用硅材料制造 2、纳米材料与常规的材料相比,有哪些优点 答:1、(1)微机械制造材料大致分为结构材料、功能材料和智能材料三大类。 (2)常用的制造微机电产品的材料有: a,结构材料:是以力学性能为基础,具有一定强度,对物理或化学性能也有一定要求,一般用于构造微机械器件结构机体的材料,如硅晶体。 b,功能材料:指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。如压电材料、光敏材料等。 c,智能材料:一般具备传感、致动和控制3个基本要素。如形状记忆合金、磁/电致伸缩材料、导电聚合物、电流变/磁流变材料等。 (3)由于硅材料具有众多优点,所以MEMS装置大多选用硅材料制造。 其优点如下:?? ①优异的机械特性:在集成电路和微电子器件生产中,主要利用硅的电学特性;在微机械结构中,则 是利用其机械特性。或者同时利用其机?械特性和电学特性,即具有机电合一的特性,便于实现机电器件的集?成化。? ②储量丰富,成本低。硅是地壳中含量最多的元素之一,自然界的硅元素通常以氧化物如石英(sio2) 的形式存在,使用时要提纯处理,通?常加工成为单晶形式(立方晶体,各向异性材料)? ③便于批量生产微机械结构和微机电元件。硅材料的制造工艺与基层电路工艺有很好的兼容性,便于 微型化、集成化和批量生产。硅的微细?加工技术比较成熟,且加工精度高,容易生成绝缘薄膜。? ④具有多种传感特性,如压电阻效应、霍尔效应。? ⑤纯净的单晶硅呈浅灰色,略具有金属性质。可以抛光加工,属于硬脆材料,热传导率较大,对温度 敏感。 2、纳米材料内部粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。对纳米体 材料,可以用“更轻、更高、更强”这六个字来概括。 ①“更轻”是指借助于纳米材料和技术,可以制备体积更小性能不变甚至更好的器件,减小器件的体

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

纳米材料功能化宏观体系的构筑和性能研究

项目名称:纳米材料功能化宏观体系的构筑和性能 研究 首席科学家:姜开利清华大学 起止年限:2012.1至2016.8 依托部门:教育部

一、关键科学问题及研究内容 本项目拟解决的关键科学问题是: 1、纳米材料单元构筑宏观尺度纳米材料体系的界面结构控制 (1)不同材质纳米结构单元界面结构的设计和构筑方法 (2)不同尺寸和维度纳米结构单元组合的原理 2、不同纳米材料单元组装后性能演变和调控 (1)纳米材料单元组装后性能变化的机理和优化的方法 (2)多尺度单元组合对性能的影响以及单元耦合所产生的新功能 3、宏观尺度纳米材料体系中电子、光子和能量传输的新规律 (1)异质界面电子、光子和能量传输的新规律 (2)纳微尺度下的界面效应对性能的调控 4、宏观尺度纳米结构服役过程中的性能稳定性 (1)对外场的响应 (2)结构稳定性和性能稳定性的关系 以解决上述科学问题为核心,本项目的主要研究内容是: 1、不同材质纳米结构单元界面结构的设计,多元异质宏观尺度纳米结构单元构筑的新原理和新方法,包括从纳米结构单元的制备,纳米结构单元组合成微米结构,到由微米结构构筑宏观尺度的材料体系,发展不同尺度、不同维度纳米单元构筑宏观尺度纳米材料体系的新技术。构筑宏观尺度纳米材料体系的单元材质为:(a)半导体/金属肖特基结;(b)磁性/非磁性、磁性/铁电组合体;(c)碳管、碳管束和其他碳纳米结构单元。 2、纳米材料单元组装后性能变化的机理和优化的方法,宏观尺度纳米材料体系中纳米单元的耦合效应产生的新现象和新性能。主要研究内容为:碳纳米管与金属、高聚物复合体系界面的耦合效应,半导体量子点和贵金属纳米线异质界面耦合和光传输行为,肖特基结能量传递(光→电),磁性/非磁性和磁性/铁电性复合纳米单元界面耦合效应及能量传递的新规律(电→磁、磁→光)。通过耦合尺度效应的研究实现纳米单元组成的宏观尺度体系的综合性能的调控和优化。 3、宏观尺度纳米材料体系中异质界面对电、光、磁性能调控和输运性质的影响,能量传递和转化的新规律,探索其可能的应用。主要研究内容为:磁性/铁电复合纳米单元之间能量传递和转换的新规律(电→力、力→磁),实现增强电控磁效应的最佳条件,探索基于磁性/铁电复合纳米单元的电控磁存储技术,以纳微光学器件为导向,研究半导体量子点、金属纳米线等组合单元协同传递光子的行为,通过尺度效应和耦合效应的研究,探索能量传输、转换的新规律,发展基于纳米材料的红外波段探测器件,研究红外示范探测器件性能的稳定性。 4、宏观尺度纳米材料体系的结构性能关系及其在服役过程中的性能稳定性,主要研究内容为:研究复合纳米材料体系中,界面结构和特性对宏观性质的影响,探索提高材料综合性能的途径,研究碳纳米结构复合材料在外场作用下材料性能的变化与纳微结构的关系,能量和物质转化和传输的规律,服役条件下材料和结构的稳定性,探讨在高性能储能器件中的应用。

微纳米力学及纳米压痕表征技术

微纳米力学及纳米压痕表征技术 摘要:微纳米力学为微纳米尺度力学,即特征尺度为微纳米之间的微细结构所涉及的力学问题[1] 。纳米压痕方法是通过计算机控制载荷连续变化,并在线监测压深量[2],适用于微米或纳米级的薄膜力学性能测试,本实验采用Oliver–Pharr方法研究了Al2O3薄膜,附着在ZnS 基底,得到了Al2O3薄膜的力学性能。 关键词:微纳米力学纳米压痕杨氏模量硬度 0引言 近年来,随着工业的现代化、规模化、产业化,以及高新技术和国防技术的发展,对各种材料表面性能的要求越来越高。20世纪80年代,现代表面技术被国际科技界誉为最具发展前途的十大技术之一。薄膜、涂层和表面处理材料的极薄表层的物理、化学、力学性能和材料内部的性能常有很大差异,这些差异在摩擦磨损、物理、化学、机械行为中起着主导作用,如计算机磁盘、光盘等,要求表层不但有优良的电、磁、光性能,而且要求有良好的润滑性、摩擦小、耐磨损、抗化学腐蚀、组织稳定和优良的力学性能。因此,世界各国都非常重视材料的纳米级表层的物理、化学、机械性能及其检测方法的研究。[3]同时随着材料设计的微量化、微电子行业集成电路结构的复杂化,传统材料力学性能测试方法已难以满足微米级及更小尺度样品的测试精度,不能够准确评估薄膜材料的强度指标和寿命 ;另外在材料微结构研究领域中, 材料研究尺度逐渐缩小,材料的变形机制表现出与传统块状材料相反的规律 ,以上趋势要求测试仪器具有高的位置分辨率、位移分辨率和载荷分辨率 ,纳米压痕方法能够满足上述测试需求。[4] 现在,薄膜的厚度己经做到了微米级,甚至于纳米级,对于这样的薄膜,用传统的材料力学性能测试方法己经无法解决。纳米压痕试验方法是一种在传统的布氏和维氏硬度试验基础上发展起来的新的力学性能试验方法。它通过连续控制和记录样品上压头加载和卸载时的载荷和位移数据,并对这些数据进行分析而得出材料的许多力学性能指标,压痕深度可以非常浅,压痕深度在纳米范围,也可以得到材料的力学性能,这样该方法就成为薄膜、涂层和表面处理材料力学性能测试的首选工具,如薄膜、涂层和表面处理材料表面力学性能测试等。 1纳米力学简介 1.1纳米材料 纳米材料是指三维空间尺度至少有一维处于纳米量级(1-100nm)的材料,它是由尺寸介于原子、分子与宏观体系之间的纳米粒子所组成的材料,是把组成相或晶粒结构控制在 100nm 以下尺寸的材料。 1.2纳米材料分类 纳米材料分类:按维数,纳米材料的基本单元可以分为: 1 零维:在空间三维尺度上均在纳米尺度,如纳米尺度颗粒,原子团簇; 2 一维:在空间有两维处于纳米尺度,如纳米丝,纳米棒,纳米管等; 3 二维:在三维空间中有一维在纳米尺度,如超薄膜,多层膜,超晶格等。 1.3纳米材料特性及其基本单元 纳米材料的基本单元:团簇、纳米微粒、纳米管、纳米带、纳米薄膜、纳米结构。

微纳米加工技术及其应用

绪论 1:纳米技术是制造和应用具有纳米量级的功能结构的技术,这些功能结构至少在一个方向的几何尺寸小于100nm。 2:微纳米技术包括集成电路技术,微系统技术和纳米技术;而微纳米加工技术可获得微纳米尺度的功能结构和器件。 3:平面集成加工是微纳米加工技术的基础,其基本思想是将微纳米机构通过逐层叠加的方式筑在平面衬底材料上。(类似于3d打印机?) 4:微纳米加工技术由三个部分组成:薄膜沉积,图形成像(必不可少),图形转移。如果加工材料不是衬底本身材料需进行薄膜沉积,成像材料的图形需转化为沉积材料的图形时需进行图形转移。(衬底材料,成像材料,沉积材料的区别和联系) 5:图形成像工艺可分为三种类型:平面图形化工艺,探针图形化工艺,模型图形化工艺。平面图形化工艺的核心是平行成像特性,其主流的方法是光学曝光即“光刻“技术;探针图形化工艺是一种逐点扫描成像技术,探针既有固态的也有非固态的,由于其逐点扫描,故其成像速度远低于平行成像方法;模型图形化工艺是利用微纳米尺寸的模具复制出相应的微纳米结构,典型工艺是纳米压印技术,还包括模压和模铸技术。 6:微米加工和纳米加工的主要区别体现在被加工结构的尺度上,一般以100nm 作为分界点。 光学曝光技术 1:光学曝光方式和原理 可分为掩模对准式曝光和投影式曝光。其中,掩模对准式曝光又可分为接触式曝光和邻近式曝光,投影式曝光又可分为1∶1投影和缩小投影(一般为1∶4和1∶5)。 接触式曝光可分为硬接触和软接触。其特点是:图形保真度高,图形质量高,但由于掩模与光刻胶直接接触,掩模会受到损伤,使得掩模的使用寿命较低。采用邻近式曝光可以克服以上的缺点,提高掩模寿命,但由于间隙的存在,使得曝光的分辨率低,均匀性差。 掩模间隙与图形保真度之间的关系 W=k√ 其中w为模糊区的宽度。 掩模对准式曝光机基本组成包括:光源(通常为汞灯),掩模架,硅片台。 适用范围:掩模对准式曝光已不再适用于大规模集成电路的生产,但却广泛应用于小批量,科研性质的以及分辨率要求不高的微细加工中。 投影式曝光:投影式曝光广泛应用于大批量大规模集成电路的生产。 评价曝光质量的两个参数:分辨率和焦深。

纳米材料

绪论 1、纳米科技的提出:源自于费曼大师1959年在美国物理学会年会上的一次演讲。Richard Feynman:世界上首位提出纳米科技构想的科学家。 2、纳米材料 (1)纳米材料的定义:物质结构在三维空间至少有一维处于纳米尺度,或由纳米结构单元组成且具有特殊性质的材料(也是以维数划分纳米材料的原因) (2)纳米尺度:1-100 nm范围的几何尺; 纳米的单位:1 nm = 10^-9 m,即千分之一微米(μm)。 (3)纳米结构单元:具有纳米尺度结构特征的物质单元,包括纳米团簇、纳米颗粒、纳米管、纳米线、纳米棒、纳米片等 (4)纳米材料的维度: ○1零维:纳米团簇、纳米颗粒、量子点(三维尺度均为纳米级,没有明显的取向性,近等轴状) ○2一维:纳米线、纳米棒、纳米管(单向延伸、二维尺度为纳米级、第三维尺度不限,、直径大于100 nm,具有纳米结构) ○3二维:纳米片、纳米带、超晶格、纳米薄膜(一维尺度为纳米级,面状分布,,厚度大于100 nm,具有纳米结构) ○4三维:纳米花、四脚针等(包含纳米结构单元,三维尺寸均超过纳米尺度,由不同型低维纳米结构单元复合形成) (5)纳米材料的分类○1具有纳米尺度外形的材料 ○2以纳米结构单元作为主要结构组分所构成的材料 3、久保理论:即金属的超微粒子将出现量子限域效应,显示出与块体金属显著不同的性能;金属纳米粒子,量子限域效应。 4、扫描隧道电子显微镜(STM):将探针靠近导电材料表面进行扫描,获得表面图像。分辨率达0.1~0.2 nm,可以直接观察和移动原子。 5、原子力显微镜(AFM):利用针尖和材料原子间的相互微弱作用力来获得材料表面的形貌图像。可用于研究半导体、导体和绝缘体。 AFM三大特点:原子级高分辨率、观察活生命样品和加工样品的力行为成就。6、纳米科技的研究内容:纳米科学、纳米技术与纳米工程 分支学科:纳米力学:研究物体在纳米尺度的力学性质 纳米物理学:研究物质在纳米尺度上的物理现象及表征 纳米化学:研究纳米尺度范围的化学过程及反应 纳米生物学:利用纳米的手段解决生物学问题,在分子水平揭示细胞内外的物质、能量与信息交换机制; 纳米医学:利用纳米科技解决医学问题的边缘交叉学科 纳米材料学:包括纳米材料的成分、结构、性能与使用效能四个方面。 成分:是影响性能的基础 结构:决定材料性能的关键材料 性能:各种物理或化学性质 效能:材料在使用条件下的表现

纳米科学与微纳制造》复习材料.docx

《纳米科学与微纳制造》复习材料1、纳米材料有哪些危害性? 答:纳米技术对生物的危害性: 1)在常态下对动植物体友好的金,在纳米态下则有剧毒; 2)小于 100nm的物质进入动物体内后,会在大脑和中枢神经富集,从而影响动物的正常生存; 3)纳米微粒可以穿过人体皮肤,直接破坏人体的组织及血液循环。 2、什么是纳米材料、纳米结构? 答:纳米材料:纳米级结构材料简称为纳米材料,是指组成相或晶粒结构的尺寸介于1nm~100nm范围之间,纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。 纳米材料有两层含义: 其一,至少在某一维方向,尺度小于 100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结 构单元的尺度小于 100nm ,如纳米晶合金中的晶粒 ; 其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系。 3、什么是纳米科技? 答:纳米科技是研究在1-100nm 内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子进行操纵和加工的技术。 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和 微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的 源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的 学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大 的好奇心和探索欲望。 5、纳米材料有哪 4 种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒

纳米材料

《功能金属材料》课程作业 一维氧化锌纳米材料应用与发展前景及课程感悟 班级:0610104 学号:061010418 姓名:刘广通

一、一维ZnO 纳米材料性能 ZnO 纳米材料以形态和尺度划分,包括零维ZnO纳米材料(ZnO 纳米颗粒)、一维ZnO 纳米材料(ZnO 纳米线、棒、丝、管和纤维等)、二维ZnO 纳米材料(ZnO 纳米薄膜)等。按成分划分,包括纯ZnO 纳米材料和掺杂ZnO 纳米材料,如In、Ga、Sn、Mn、Co等各种元素掺杂的n型掺杂纳米材料,P、N、Li等元素掺杂的p型掺杂纳米材料及多元素复合掺杂的掺杂ZnO 纳米材料。 一维ZnO 纳米材料在光学、电输运、光电、压电、力电、场发射、稀磁、光催化、吸波等性能上具有显著特点,在传感、光学、电子、场发射、压电、能源、催化等领域已经显示出良好的应用前景。目前,在一维ZnO 纳米材料研究领域,关注的重点包括一维ZnO 纳米材料的可控及高产率设备、结构与性能调控、纳米器件组装、纳米材料及器件的性能测试与评价、纳米效应及耦合效应、理论计算与模拟、安全服役与损伤等方面。[1] 目前来说,我们都希望电子器件能越小型越好,也就是通过不断缩小器件的尺寸来达到提高速度、减少功耗的目的,这种方法在过去几十年一直被运用而随着我们周围的生活电子产品的不断微型化而发展。所以要利用薄膜生长和光刻技术(电子束光刻、X射线光刻等)制备材料和器件。我们希望纳米线作为基本功能单位来组成电子电路。一维纳米材料的原理器件的研制可以完成这一使命。而ZnO 是一种具有压电和光电特性的半导体材料,它是典型的直接带隙宽禁带半导体,同时它的激子结合能高达60meV。因此ZnO 材料在紫外光电器件方面有巨大的应用潜力。ZnO有很高的导电、导热性能,化学性质非常稳定,作为短波长发光器件具有高的稳定性和较低的价格,有极大的应用价值。而在一维纳米材料中, ZnO 有三个主要的优点:首先,它既是半导体又有压电效应,这是做电动机械耦合传感器和变频器的基础;其次,ZnO 的生物安全性与相容性相对高,可以用在医学方面;最后,ZnO 的种类最丰富,如纳米线,纳米带,纳米螺旋结构等。因而有一系列的一维ZnO 纳米材料的新器件被不断地开发研制,如室温激光器、发光二极管、传感器、晶体管、场发射器等。 二、一维ZnO 纳米材料的应用及发展前景 一维ZnO纳米材料被用于光学器件。因为ZnO是一种宽禁带半导体,而且在室温下具有很高的激子束缚能,因此ZnO被认为是一种优异的蓝光到紫外波段发射的发光材料。在325nm的He-Cd激光激发下,ZnO纳米材料的室温发光谱中存在两个发射峰,分别是380nm左右的近带边的自由激子复合引起的紫外发射峰[2]和540nm左右的氧空位引起的绿光发射峰[3]。ZnO纳米材料的发光效率远高于块体材料,这主要是因为ZnO纳米线的单晶形态和小尺寸效应。小尺寸效应的影响是由于纳米材料非常微小,其尺寸与光波波长、传到电子的得布罗意波长及超导态的相干长度、透射深度等具有物理特征的尺寸相当或更小时,它的周期性边界将被破坏,使它原本所具有的声,光,电,磁,热力学等特性呈现出“另类”的现象。ZnO纳米的发光机制有以下几种:1)带间跃迁发光。即适当的光照射时,半导体的价带电子发生带间跃迁,也就是电子从价带跃迁到导带,而产生光生电子和空穴。而对纳米材料,器能带将会展宽,改变其性能。2)激子辐射复合发光。纳米结构ZnO有宽的禁带隙、大的比表面积、

微纳米技术

微纳米技术国内外发展现状 ——————微加速度传感器 MEMS是英文Micro Electro Mechanical systems的缩写,即微电子机械系统。微电子机械系统技术是建立在微米/纳米基础上的21世纪前沿技术,是指对微米/纳米材料进行设计、加工、制造、测量和控制的技术。MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的,目前MEMS加工技术还被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。它可将机械构件、光学系统、驱动部件、电控系统集成为一个整体单元的微型系统。这种微电子机械系统不仅能够采集、处理与发送信息或指令,还能够按照所获取的信息自主地或根据外部的指令采取行动。它用微电子技术和微加工技术(包括硅体微加工、硅表面微加工、LIGA和晶片键合等技术)相结合的制造工艺,制造出各种性能优异、价格低廉、微型化的传感器、执行器、驱动器和微系统。 完整的MEMS是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。其目标是把信息的获取、处理和执行集成在一起,组成具有多功能的微型系统,集成于大尺寸系统中,从而大幅度地提高系统的自动化、智能化和可靠性水平。它涉及机械、电子、化学、物理、光学、生物、材料等多学科。微电子机械系统(MEMS)是近年来发展起来的一种新型多学科交叉的技术,该技术将对未来人类生活产生革命性的影响。 基于MEMS技术的微型传感器是微机电系统研究中最具活力与现实意义的领域。微加速度传感器作为微传感器的重要分支一直是热门的研究课题。本文基于对微加速度传感器研究现状的综述,探讨了微加速度传感器的发展趋势。 微加速度传感器是一种十分重要的力学敏感传感器,其研究与开发始于80年代初,是继微压力传感器之后第二个进入市场的微机械传感器。我国从1992年开始致力于微加速度传感器的研究,清华大学、重庆大学、北京大学、东南大学、电子工业部第十三所、中科院上海冶金研究所等单位均开展了各种结构的微型加速度传感器的研究,并取得了一些阶段性成果,但尚未具备批量生产的能力,与产业化相距甚远。 微加速度传感器可通过其加工技术、控制系统类型、敏感机理来分类。应用于微加速度传感器的敏感机理很多,目前有文献报道的主要有压阻式、电容式、温敏式(热对流式)、真空微电子式、隧道式、谐振式等形式。

纳米材料论文

学院:机电工程学院 专业年级:2009级机械五班 学生姓名:刘威学号:20091347 指导老师:袁光明

纳米材料与应用 (中南林业科技大学机电工程学院机械专业20091347,湖南长沙,410004)摘要:简要介绍了纳米材料的分类以及它的基本效应,讲解了纳米材料的特殊性能。分析了新型能源纳米材料中光电转换、热点转换、超级电容器及电池电极的纳米材料;环境净化纳米材料中的光催化、吸附、尾气处理等;较具体的讲述了纳米生物医药材料中纳米陶瓷材料、纳米碳材料、纳米高分子材料、纳米复合材料。 关键词:纳米材料,性能,应用。 【Abstract】: Briefly introduces the classification of nanomaterials and its basic effect, explaining the nanometer material the special performance. A new energy nanomaterials analyzed in photoelectric conversion, hot conversion, super capacitors and battery electrodes nanometer material; Environmental purification of nanomaterials photocatalytic, adsorption, exhaust handling, etc.; The more specific about nano biological medicine materials nano ceramic material, nano carbon materials, nanometer high polymer materials, nano composite materials. 【Keywords】: nanomaterials, performance ,the application. 纳米是一个长度单位,1nm=10ˉ9m。纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1~100nm。当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。 按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。 按纳米尺度在空间的表达特征,纳米材料可分为零维纳米材料即纳米颗粒材料、一维纳米材料(如纳米线、棒、丝、管和纤维等)、二维纳米材料(如纳米膜、纳米盘和超晶格等)、纳米结构材料即纳米空间材料(如介孔材料)。 按形态,纳米材料可分为纳米颗粒材料、纳米固体材料(也称纳米块体材料)、纳米膜材料以及纳米液体材料(如磁性液体纳米材料和纳米溶胶等)。 按功能,纳米材料可分为纳米生物材料、纳米磁性材料、纳米药物材料、纳米催化材料、纳米智能材料、纳米吸波材料、纳米热敏材料以及纳米环保材料等)。 当纳米材料的结构进入纳米尺度调至范围时,会表现出小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应等纳米效应。 表面效应是指纳米粒子表面原子数与总原子之比随粒径的变小而急剧增大后引起的性质上的变化。随着粒径的减小,纳米粒子的表面原子数、比表面积、表面能及表面结合能都迅速增大。表面原子处于裸露状态,周围缺少相邻的原子,有许多剩余键力,易与其他原子结合而稳定具有较高的化学活性。纳米材料中界面原子所占的体积分数很大,它对材料性能的影响非常显著。低温超塑性是纳米材料的一个重要特性,普通陶瓷只有在1 000℃以上,在小于一定的应变速率时才能表现出塑性,而许多纳米陶瓷在室温下就会发生塑性变形。这种纳米陶瓷增韧效应主要归因于大量界面的存在。而它的塑性变形主要是通过晶粒之间相对滑移而实现的。 而小尺寸效应纳米粒子的熔点可远低于块状本体,此特性为粉末冶金工业提供了新工艺,利用等离子共振频移随颗粒尺寸变化的性质,可通过改变颗粒尺寸,控制吸收边的位移,构造具有一定频宽的微波吸收纳米材料,用于电磁波屏蔽、隐形飞机等。 对于量子尺寸而言,对于晶粒状态难以发光的间接带隙半导体,当其粒径减少到纳米量级时,会表现出明显的可见光发光现象,且随着粒径的进一步减少,发光强度逐渐增强,

微纳米多尺度改性混凝土力学性能研究

微纳米多尺度改性混凝土力学性能研究 发表时间:2019-05-23T16:34:48.077Z 来源:《基层建设》2019年第4期作者:王端 [导读] 摘要:本实验采用微米尺度的矿粉、粉煤灰、硅灰与纳米尺度的纳米二氧化硅协同改善水泥混凝土的力学性能。 中铁十四局铁正检测科技有限公司 摘要:本实验采用微米尺度的矿粉、粉煤灰、硅灰与纳米尺度的纳米二氧化硅协同改善水泥混凝土的力学性能。通过坍落度分析了微纳粉体对混凝土工作性能的影响,进而影响强度。通过孔隙率和电子显微镜照片分析了微纳粉体对混凝土孔结构和微观形貌的影响,从微观角度解释了改性混凝土力学性能提高的机理。 关键词:微纳粉体;混凝土;抗压强度;孔隙率 引言 水泥混凝土是当今全球范围内用量最大、用途最广的人造复合材料之一,已被广泛应用于建筑、桥梁、道路、堤坝、市政工程、海工工程、核电工程以及国防工程等诸多领域[1, 2]。混凝土能够得到认可和普及主要得益于其优良的性能和低廉的成本。从古代的白灰、黏土拌和秸秆到现在的水泥、砂石配合钢筋,其原材料主要以廉价易得的无机材料为主。而且,随着技术的进步和时代的发展,混凝土强度从最初的十几兆帕提高到了几百兆帕。不仅能够承受几百米高的摩天大楼,还能支撑大跨度的桥梁和恶劣环境的大坝等。这主要归功于混凝土微观结构的改善。影响微观结构发展的因素很多,在水灰比不变的情况下,我们可以通过改善胶凝材料体系来实现微观结构密实化。 随着水泥混凝土技术的发展,矿粉、粉煤灰、硅灰等具有火山灰活性的辅助胶凝材料被普遍应用于混凝土中。矿粉是炼铁产业的副产物,属于冶炼业的工业垃圾。但其中包含的钙、硅、铝等氧化物具有反应活性,应用到混凝土中能明显改善其工作性和后期强度,对混凝土的长期耐久性能也有积极的作用,这主要归功于矿粉的微集料作用和对微结构的改善[3-6]。粉煤灰是火力发电产生的工业垃圾,对环境容易造成污染。但它的主要成分包含活性二氧化硅和氧化钙,具有反应活性。而且其球形颗粒形状具有“滚珠效应”,能很好的改善新拌混凝土的工作性与和易性[7]。将粉煤灰应用于混凝土,不仅减低了生成成本,还减少了环境污染[8, 9]。但粉煤灰的惰性会影响混凝土的早期强度,因此需要其他材料的辅助改善。硅灰能较好的弥补矿粉、粉煤灰早期强度低的缺点。因为它的颗粒较小,活性较高,反应速度较快,因此也被当作辅助胶凝材料用于混凝土中[10, 11]。矿物掺合料的使用较好的改善了硬化混凝土的微结构,填充了孔隙。但它们的粒径在微米级,对于毛细孔的改善作用很小。随着纳米技术的发展,纳米材料为混凝土微结构的改善提供了新契机。 本实验采用微米级的矿物掺合料和纳米级的纳米二氧化硅协同作用,研究微纳米尺度的混凝土微结构改善作用对其力学性能的提高。通过孔隙率的分析和显微照片分析,从微观的角度解释协同改性的作用机理。为高强高耐久的高性能混凝土发展提供理论支持。 1、实验 1.1 原材料 本实验采用市售的东岳水泥,型号为普通硅酸盐水泥P?O42.5,比表面积为315m2/kg,平均粒径为14.29μm。粉煤灰、矿粉、硅灰均由浙江合力新型建材有限公司提供。其粉煤灰的比表面积为640m2/kg,平均粒径为3.79μm;矿粉的比表面积为480m2/kg,平均粒径为 12.15μm;硅灰的比表面积为28300m2/kg,平均粒径为2.96μm,主要以非晶态SiO2为主,含量在97%以上。纳米二氧化硅是购自上海阿拉丁实业公司的亲水300型气相二氧化硅,纯度大于99.8%,颗粒尺寸在4-70nm之间,如图1所示。水泥、粉煤灰、矿粉和硅灰的化学成分见表1。图2~图5分别表示了这4种材料的激光粒度分布。

相关文档