文档库 最新最全的文档下载
当前位置:文档库 › 单细胞测序

单细胞测序

单细胞测序
单细胞测序

第一章单细胞测序技术概览

摘要: 2013年,单细胞测序技术开始成为科研界主流关注的焦点。前言2013年,单细胞测序技术(single-cell sequencing)

荣膺《自然-方法》年度技术。单细胞测序技术有助于我们剖析细胞的异质性。它可以揭示肿瘤细胞基因组中...

2013年,单细胞测序技术开始成为科研界主流关注的焦点。

前言

2013年,单细胞测序技术(single-cell sequencing)荣膺《自然-方法》年度技术。单细胞测序技术有助于我们剖析细胞的异质性。它可以揭示肿瘤细胞基因组中发生的突变及结构性变异,而这些突变和变异往往有着极高的突变率。有了这些信息,我们就可以描述肿瘤细胞的克隆结构,并追踪疾病的进展及扩散范围。本文将介绍2013年单细胞测序技术在人类早期发育、癌症以及神经科学研究等几个重点领域的最新应用成果。

1. 单细胞测序技术简介

本节将概述如何获得一个单细胞的基因组及转录组。

单细胞基因组及转录组测序所需要的测序样本量要比单细胞中本身所含有的基因组及转录组分子高出好多个数量级,所以这对核酸扩增技术(amplification technology)也是一大考验。面对如此微量的分子,任何降解、样品损失、或者污染都会对测序质量带来非常严重的影响。而且多重扩增又容易带来试验误差,比如基因组或转录组覆盖不均一、背景噪声以及定量不准确等问题。

最近所取得的技术进步有望部分解决上述问题,使单细胞测序技术能够走进更多的实验室,解决更多领域的科学问题。比较罕见的细胞、异质性的样本、与遗传嵌合或突变相关的表型、不能人工培养的微生物,这些都是单细胞测序技术能够一展所长的研究平台。使用单细胞测序技术能够发现克隆突变(clonal mutation)、隐藏的细胞类型,或者在大块组织样品研究工作中被―稀释‖或平均掉的转录特征。

1.1 选择恰当的细胞

说到分离单细胞,显微操作(micromanipulation)无疑是一项非常精确的技术,而且利用

毛细管(microcapillary)可以直接吸取细胞内容物,但是这项操作也需要耗费大量人力。很多组织解离之后都能够制成单细胞悬液,这种单细胞悬液很容易操作,而且可以用细胞分选器(cellsorter),根据细胞表面表达的特异性分子标志物对细胞进行分类富集操作。这种策略也被用来分离非常微量的循环肿瘤细胞。

1.2 单细胞转录组策略

现在有很多单细胞RNA测序操作流程可供选择,不过不管采用何种策略,首先都需要通过逆转录反应,利用RNA合成出cDNA。然后才会有所区别,比如有一些方法是对整个转录子进行测序,有一些方法只针对转录子的5'和3'端进行测序。不论采用何种方法,目的都只有一个,那就是捕获原始的RNA分子,然后均一的、准确地对其进行扩增。核酸的捕获效率主要受到逆转录反应的影响,不过我们可以使用更小的反应体系,选择更好的逆转录酶来进行改善。另外,采用模板转换技术(template switching)也能够保证被捕获的绝大部分转录子都是全长片段。减少反应循环数也能够改善核酸扩增反应,还可以借助―抑制PCR(suppression PCR)‖技术减少引物扩增,或者将取自不同样品的cDNA(这些cDNA都是分别做好标记的)混合到一起,提高起始反应模板浓度,用体外转录技术进行线性扩增(linear amplification)。另外,还可以利用特有的分子识别序列(molecular identifier sequences)对每一个RNA分子进行标记,这样即便在经历了非均一的扩增之后,我们还是能够对原始的RNA分子数量进行绝对定量。

1.3 单细胞基因组策略

全基因组扩增(whol e-genome amplification)的起始反应产物更少,只有一个DNA分子。这样在扩增反应时就难免出现不均一的问题,即可能在基因组中某些位点会扩增多次,而另外一些位点则无法扩增。解决这个问题最常用的办法就是多重置换扩增技术(multiple displacement amplification, MDA),即使用随机引物,让这些引物与基因组广泛结合,同时使用一种特定的聚合酶,这种聚合酶能够置换与它自身附着在同一模板上的DNA链片段,形成一种反复分支结构(iterative branching structure),扩增出大段的DNA。早期循环对整个扩增反应的均一性起到了决定性作用。有一种扩增技术采用了一种独特的引物,这样能够生成闭合环状的扩增子(amplicon),而且这种扩增产物不会再进一步复制,等于是在进行PCR扩增反应之前先进行几轮线性扩增反应。将反应按比例扩大,同时对反应情况进行实时监控都有助于改善基因组扩增成功率低的问题,另外减少扩增次数,准备更少模板的测序文库也是一个比较值得发展的方向。

1.4 一个细胞解决所有问题

在单细胞研究工作中,扩大试验规模是确保采集足够多的生物多样性信息的关键。微流体设备(microfluidics)或微孔板技术(microwell technology)能够提供标准化、高通量的选择,而且由于这种设备的反应体积通常都比较小,所以反应效率也都比较高。不过微流体设备也有一定的限制,只能处理某些特定大小的细胞样品。当然,将待测分子用生物条码(barcoding)标记之后混合起来进行分析也是一条处理通量的途径。单细胞核酸扩增及测序技术正在不断成熟、完善之中。我们相信,随着单细胞试验操作变得越来越容易,成本变得越来越低,会有更多的科研人员选择使用单细胞测序技术,这将会像PCR技术一样成为每个实验室里的常规试验操作,帮助我们以更高的分辨率去研究问题、解决问题。

2. 单细胞测序技术——科研界主流关注的焦点技术

单细胞基因组测序技术及单细胞转录组测序技术又掀起了一波新的科研浪潮,让科研人员们能够以新的视角看待发育、肿瘤及神经科学问题。

对于不孕不育症夫妇而言,孕育一个孩子是非常困难的事情,而且这也会让他们的情感饱受折磨。即便他们怀孕了,也不是高枕无忧的,因为这些家长需要担心另外一个问题,

如何生育一个健康的宝宝。对于那些存在遗传风险,需要借助体外受精技术(in vitro fertilization, IVF)辅助的父母而言,胚胎植入前遗传学诊断(preimplantation genetic diagnosis, PGD)技术(即从早期胚胎中取出一个细胞进行遗传学疾病筛查的技术)是孕育出健康下一代的保证,虽然目前PGD技术也只能够对基因组中的一个、或少数几个位点进行筛查和诊断。由于取自早期胚胎的细胞数量都不会太多,所以极其珍贵,临床医生们必须从这些宝贵的细胞中尽可能地获取有价值的信息。

而单细胞全基因组测序技术(single-cell whole genome sequencing method)就有望解决早期胚胎发育及其他科研领域里存在的这些重要的问题。由于单细胞分离技术以及单细胞中痕量的DNA或RNA扩增及测序技术的进步,科研人员们得以对单细胞的整个基因组或转录组(而不是少数几个位点)以前所未有的高分辨率进行扫描和研究。

美国哈佛大学(Harvard University)的Sunney Xie等人就是在IVF工作中进行单细胞基因组测序研究的课题组之一,他们用第一极体和第二极体(所谓极体指的是受精卵分裂时―遗弃‖的细胞成分,可以反映染色体的健康状况)验证了他们新开发的全基因组扩增技术。Xie等人最近发表的文章介绍了他们对8位女性供体的研究成果,研究发现极体活检(polar-body biopsy)和单细胞测序都能够准确地反映胚胎染色体非整倍体(aneuploidy)的情况,其中就包括唐氏综合症(Down's syndrome)这种染色体数目过多的情况,也包括染色体丢失,或者遗传自父母的单核酸突变(single-nucleotide variation)等情况(Cell, doi:10.1016/j.cell.2013.11.040 19 December 2013)。Xie发现染色体非整倍体平均只需要在每一百个基因组位点中挑出一个位点进行测序就足够了,所以这要比传统的方法成本更低,而且准确性也会更高。

Xie与这篇论文的合作者——中国北京大学(Peking University)的Fuchou Tang和中国北京大学附属第三医院(Peking University Third Hospital)的Jie Qiao针对这些接受IVF帮助的女性开展了一项临床研究。他们对这些志愿者的胚胎极体进行了基因组扩增和全基因组测序研究,以此来判断胚胎是否健康,是否适于进行移植、受孕。据Xie介绍,如果将时间提前两年,在临床上开展这项研究工作几乎是不可能的,当时有大批没有遗传问题,可是不能受孕的夫妻给他发邮件寻求帮助。目前这次临床研究的第一位婴儿将在年内降生。Xie指出,他并没有想到他们的技术能够这么快地走向临床,给患者们提供切实的帮助。‖

Sunney Xie很快就能够看到他们课题组开发的基因组扩增技术被应用到临床PGD实际工作当中的表现情况了。

2.1 2013年测序技术回顾

单细胞测序技术可谓是科技发展史上的一大创举。一个细胞里的DNA或RNA仅仅处在皮克(picograms)级的水平,这么少的量远远达不到现有测序仪的最低上样需求。因此科学家们必须先对单细胞内的微量核酸分子进行扩增,而且必须保证尽可能少地出现技术误差,以便开展后续的测序及其他研究。直到最近,也还是只有少数几位专家相信能

够对单细胞进行可靠的研究。

虽然早在几年前就开始有研究团体在宣传、推广单细胞基因组及转录组测序技术,但是这些技术是最近这两年才开始被大范围接受,其中就包括从事神经科学研究、肿瘤及微生物生态学研究的科研人员。据美国Fluidigm公司的联合创始人,斯坦福大学(Stanford University)的Stephen Quake介绍,几乎从PCR技术诞生的第一天开始,就不断有人尝试用PCR技术进行单细胞基因表达研究及单细胞基因组研究。但是由于种种原因,单细胞测序技术直到现在才算是刚刚起步。

DNA和RNA扩增技术的不断改进,尤其是最近这两年新出现的进步给刚刚涉足这个领域的科研人员在开展试验时提供了非常丰富的选择。工业界也提供了无数种商业化的、而且价格低廉的单细胞核酸扩增试剂盒及读取技术。Fluidigm公司就在2013年推出了世界上第一款单细胞RNA测序自动化准备系统(single-cell automated prep system for

RNA-seq)。所有这些技术上的进步极大地降低了科研人员们进入单细胞研究这个领域的技术门槛。瑞典卡罗林斯卡研究院(Karolinska Institutet in Sweden)的Rickard Sandberg 在谈到单细胞RNA测序时说道:―大家等这一天已经等了好几十年了。直到今天,由于技术的进步,这些试验才变得足够简单,而且成本也能够让大家接受,所以才能够走进千千万万个实验室。‖

进行单细胞研究的核心问题其实是:为什么要进行单细胞研究?这主要是因为如果将成千上万个细胞混在一起进行研究,就会模糊我们对大脑、血液系统、免疫系统,及其组成这些系统的细胞之间异质性(heterogeneity)的认识。美国宾夕法尼亚大学(University of Pennsylvania)的James Eberwine就认为,当你的研究深入到单细胞层面时,你就会失去对整个系统的把控,但是如果你能够从整个系统中挑选多个不同的单细胞进行研究,则可以重建出整个系统,而且这种重建过程能够提供更多更有价值的信息。有大量很难对大块组织进行研究的科研领域也都会从这些最新的单细胞研究技术中获益。这种单细胞测序技术不仅有助于我们认识细胞之间的差异,还可以为我们提供一个新的比较层面,这也是大家期盼已久的,能够重新定义细胞类型的层面。

可与大家这种极高热情相伴的却是各种各样的技术难题,包括单细胞分离、基因组或转录组扩增,以及数据解读等各个方面。试验成本也是需要考虑的一大因素。通常来说,对细胞进行分析时所需要的细胞数量要比对组织进行分析时所需要的组织数量多很多,所以在决定是否应该进行单细胞研究时一定要谨慎,要根据实际情况做出合适的判断。―我们真的需要进行单细胞研究吗?如果答案是否定的,那就不要进行单细胞研究。单细胞研究非常贵,而且你会碰到很多的变数。‖美国博大研究院(Broad Institute),同时也在麻省理工学院任职的Paul Blainey这样说道。

对体外受精卵分裂产生的极体进行基因组测序能够为临床医生们进行胚胎植入前的遗传学诊断和筛查提供非常有价值的帮助。

2.2 从少数几个RNA分子开始

对细胞的转录组进行测序,关键在于能否利用细胞内的RNA扩增出大量的cDNA。然而,捕获少量的RNA分子制备cDNA,以及大量扩增这些cDNA分子的工作很难做到平等和高效。

1990年,Norman Iscove的课题组首次证实对单细胞进行转录组分析是可行的,他们用PCR技术实现了对cDNA分子的指数级扩增。在20世纪90年代初期,Eberwine等人发明了一种新技术,能够从单个的活神经元细胞中获得cDNA,并且再以这些cDNA为模板转录生成RNA,实现RNA的线性扩增。随着芯片时代的来临,科学家们用这些线性、和指数级扩增技术对单细胞之间的基因表达差异进行了大量的比较和研究。

2008年时出现了高通量RNA测序技术,不久之后,科研人员们就将这种技术与前面发展起来的核酸扩增技术结合起来,对单细胞转录组进行了更加精细的研究。2009年,当时在英国剑桥大学Gurdon研究所(Gurdon Institute at the University of Cambridge)M. Azim Surani实验室工作的Tang通过对单个小鼠卵裂细胞(blastomere)的研究发现,与芯片技术相比,利用单细胞转录组技术可以多发现数千个基因的表达情况(Nat. Methods 6,

377–382, 2009)。

就在同一年,美国冷泉港实验室(Cold Spring Harbor Laboratory)也召开了第一次单细胞大会,参加大会的有科研人员、技术开发人员,以及涉足单细胞研究领域的先驱们,参会者一共还不到50人。据现在在美国弗吉尼亚大学(University of Virginia)工作的Mike McConnell回忆,每一个人都试过做RNA测序,也尝试过对测序结果进行分析,想从中找出有价值的、可重复的结论。

不过技术的发展经历了很长一段时间,现在终于有了一整套单细胞测序的操作流程和各种商业化的试剂盒产品。瑞典卡罗林斯卡研究院的Sten Linnarsson认为,纯粹技术上的发展到今年已经达到了顶点,现在是考虑如何将这些技术应用到实际工作当中。有很多课题组瞄准的可不是几百个细胞,他们想要研究上万个细胞。

比如Kun Zhang课题组承担的、由美国国立卫生研究院公共资金(US National Institutes of Health Common Fund)资助的单细胞研究项目(Single Cell Analysis Program)就打算对取自人类大脑皮质三个不同区域里的10,000多个细胞进行全转录组分析。Zhang等人计划根据转录子对细胞类型进行分类(可能还会对细胞类型进行重新定义),并且将这些转录子重新定位到不同的大脑组织切片里。当然单细胞RNA测序这项技术本身已经不再是障碍了。据Zhang介绍,如果你有好的细胞,如果你想进行转录组研究,那么你会有很多种选择,帮助你达成目标。不过通常而言,如何在人死后提取神经元细胞,并尽可能减少RNA的降解,保持大脑组织正常的空间结构,这也都是需要解决的问题。Zhang

等人也在从事这方面的工作,正在对几种不同的技术进行比较。

2.3 基因组扩增技术

开发一项新的单细胞全基因组扩增技术是需要一定的时间的,这是因为在一个细胞内,通常都只有一至两个DNA的拷贝,所以直到2005年才出现单细胞全基因组扩增技术,这要远远落后于单细胞RNA扩增技术。当时Roger Lasken的团队成为世界上第一个成功完成单细胞DNA扩增及测序的团队,他们当时使用的是自己开发的多重置换扩增技术(multiple displacement amplification, MDA)对大肠杆菌进行试验。这项工作给微生物学家带来了极大的激励,他们利用这项技术对各种不能人工培养的微生物进行了测序研究,获得了大量的参考基因组序列(reference genome)。

MDA作为最常用的技术和策略一直沿用至今,该技术用到了Phi29等聚合酶,能够使经退火、结合到基因组上的任意随机引物不断延伸。每一种聚合酶都能够置换临近的延伸链,形成大量的、覆盖多个小片段的、长达7至10kb的大片段产物,用来进行DNA测

序。

到了2011年,科研人员们将单细胞基因组扩增技术与高通量测序技术结合起来开展研究。Nicholas Navin当时就在美国冷泉港实验室的Michael Wigler课题组工作,他在取自两位乳腺癌患者的乳腺癌肿瘤细胞中发现了大段的基因组DNA缺失或重复突变,即拷贝数变异(copy-number variant, CNV),该研究的分辨率达到了50kb(Nature 472, 90–94,2011)。在单细胞基因组测序工作中最大的困难就是某些DNA片段的扩增效率要远远高过另外一些DNA片段。Xie等人在2012年又发明了一种新的多重退火环状扩增循环技术(multiple annealing and looping-based amplification cycles, MALBAC),该技术首先需要进行5轮MDA预扩增,然后就可以使新获得的扩增产物形成闭合的环状分子(Science

338,1622–1626, 2012)。由于这些环状分子不能够被进一步扩增,所以整个扩增过程就变成了线性扩增。然后再进行常规的PCR扩增,由于此时采用的模板更加均一,所以在进行PCR扩增时就不易造成较大的差异。Xie等人用这种MALBAC技术获得的人类基因组扩增产物能够达到93%的覆盖度,同时也在单个肿瘤细胞中检出了CNV突变。

很快,科学家们就能够对单细胞的基因组进行更加深入的研究了,他们将能够发现更小的缺失和重复突变,乃至单碱基突变。虽然基因组均一扩增还是一个问题,但是专家们相信,缩小反应体积应该可以带来一定的帮助。

比如美国加州大学圣地亚哥分校(University of California, San Diego)的Zhang等人最近就介绍了一种MIDAS技术,即微孔板置换扩增系统(micro-well displacement amplification system),使用这套系统可以用纳升级的反应体系同时进行数千个MDA反应(Nat. Biotechnol., 31,1126–1132, 2013)。科研人员们可以手工、或者用机械手取出这些扩增产物,进行测序。借助这套MIDAS系统,Zhang等人课题组只进行了很少的测序工作就在人类神经元细胞中发现了单拷贝变异(single-copy-number change),分辨率达到了1至2MB。

这套MIDAS系统是一种高通量的单细胞分离、扩增及测序技术。

2.4 细胞表达差异

在美国博大研究院(Broad Institute),Aviv Regev与Joshua Levin等人在开始单细胞RNA 测序工作之前,先利用质量很差、降解严重的组织样本对多种RNA测序技术进行了比较,最后她们决定采用Smart-Seq技术对骨髓来源的树突状细胞(dendritic cell)进行研究。这些树突状细胞是一种有丝分裂后的免疫细胞,能够对抗原产生非常强烈的转录反应。Regev等人一共选择了18个细胞,耗时一周分批进行了试验。她们之前尝试了各种方法,最终都失败了。可是这一次却一次就成功了。研究发现,每一个细胞都会统一表达所谓的持家基因(?housekeeping‘genes),但是每一个细胞也都有各自独特的表达谱,与免疫调控功能相关的基因在有些细胞里的表达水平非常高,可是在有些细胞里却压根不表达。之前还从来没有在树突状细胞中发现这种两极分化的现象,因为一直以来都是对一堆细胞进行研究,细胞之间的差异全部被平均掉了。该研究成果于去年6月得以发表,该文章首次报道了一种―隐藏的‖细胞类型,即非常罕见的―第一应答者细胞(first responder)‖(Nature 498, 236-240, 2013)。从更广义的角度来说,这一发现有助于我们重新认识这些树突状细胞,以及它们的信号通路和功能。

单细胞RNA测序技术第一次尝试就取得了成功。

——美国博大研究所Aviv Regev

单细胞转录组测序也能够帮助科研人员研究发育早期的基因表达与调控情况,而且借助这项技术还能够以前所未有的精细程度对罕见的样品开展科学研究。比如美国加州大学洛杉矶分校(University of California, Los Angeles)的Guoping Fan与他在中国的合作者们在去年8月发表的一篇文章就对33个单细胞进行了转录组测序研究。这33个细胞全都

取自处于发育不同阶段的胚胎,他们根据测序结果确定了发育初期基因的表达顺序,还发现了人类与小鼠胚胎发育过程中基因表达时限上的差异(Nature 500, 593–597, 2013)。单细胞测序技术是一项非常强大的技术,可以帮助我们发现肿瘤细胞里的基因组变异。——美国德克萨斯大学MD Anderson癌症中心Nicholas Navin

与此同时,Tang的课题组也在从好几个人类早期胚胎中仔细地分离细胞标本,并且对这些细胞挨个进行单细胞转录组测序。据Tang介绍,他们非常紧张,因为这些标本全都来之不易,非常珍贵。不过他们的工作也获得了回报,他们发现了2700多个新的长非编码RNA(long noncoding RNA)分子,这些分子可能都与早期基因调控作用有关(Nat. Struct. Mol. Biol. 20, 1131–1139, 2013)。据Tang介绍,在此之前,所有的单细胞RNA测序工作还都只是针对已知基因进行分析,充其量也仅仅增加了已知基因的可变剪接亚型(alternative splicing isoforms)而已。

2.5 混合的肿瘤细胞

从疾病预后判断到病情监测,肿瘤研究人员都能够从单细胞测序技术那里获得巨大的帮助。我们都知道,肿瘤细胞的突变速率非常快,而且肿瘤组织是一种高度异质性的组织。确定肿瘤组织中存在哪些细胞亚群(或者叫克隆)具备转移能力,哪些克隆对化疗药物是敏感的,这些信息对于临床工作都非常有帮助。尤其针对隐藏在人体循环系统里的循环肿瘤细胞(circulating tumor cell, CTC)进行全基因组或者转录组测序最有帮助,因为这些CTC细胞就是导致肿瘤转移的元凶,有关它们的信息对于疾病的诊断、监测和治疗都至关重要。

比如Navin于2011年在《自然》(Nature)杂志就发表过一篇文章,介绍了他们的单细胞基因组研究成果。他们发现CNV突变与肿瘤的进化模式有关,肿瘤在稳定增长之后会突然发生基因组失稳。据现在在美国得克萨斯大学MD Anderson癌症中心工作的Navin 介绍,这一发现让他们非常吃惊,因为他们一直认为肿瘤细胞一直在缓慢地积累突变。这次研究工作也证实,单细胞技术非常强大,至少能够帮助他们发现人体单个肿瘤细胞里的基因拷贝数变异。Navin与他的合作者们还在继续对三阴型乳腺癌患者进行研究,主要想了解CNV方面的情况,同时也希望能够更好地了解肿瘤转移的问题。

除了Navin等人之外,还有其他几个课题组也都在利用单细胞测序技术开展与肿瘤相关的研究工作。比如前面介绍过的Xie就与中国北京大学的Fan Bai,以及美国哈佛大学的Jie Wang一起,在一种肺癌亚型(不包括其它亚型)的CTC细胞中发现了一种特定的CNV 突变(Proc. Natl. Acad. Sci. USA, doi:10.1073/pnas.1320659110, 9 December 2013)。Xie

认为,这些最新的进展都有助于我们开发早期诊断产品和技术。

Mike McConnell在单个人脑神经元细胞中发现了大段的DNA缺失或重复突变。

转录组上的差异也有助于我们认识肿瘤的进展情况。比如Sandberg的团队就使用他们自己开发的Smart-Seq技术对单个CTC细胞进行了RNA测序研究,并对他们的这套方法进行了验证。使用最新版的Smart-Seq2技术,他们能够以比以前更低的成本观察更多的细胞。由于观测的细胞数更多,所以让从事CTC研究的科研工作者们头痛不已的试验误差问题也能够得到更好的控制。据Sandberg介绍,他们真的希望拿出一套更加系统的解决方案,帮助大家更好地认识CTC细胞的异质性问题,帮助大家更好地认识CTC细胞进入血液循环系统时的基因表达情况。

Wolf Reik希望表观遗传学技术也能够早日达到单细胞检测水平。

比基因组和转录组研究更困难的就是以化学标志物形式附着在基因组上,并对基因的表达实施调控的表观基因组(epigenome)研究了。虽然目前的表观遗传学技术还达不到单细胞研究水平(因为传统的表观遗传学研究技术都会使DNA降解),但是科研人员们还是迫切希望看到单个肿瘤细胞的表观基因组情况。Tang的科研团队开发了一种可以对单

细胞全基因组内的DNA甲基化修饰情况进行研究的新技术(Genome Res. 23, 2126–2135, 2013)。Tang认为,表观基因组研究真的也需要单细胞技术,只有这样,科研人员们才能够了解这个肿瘤细胞与它周围的肿瘤细胞有什么差别,而且这种差别是因为甲基化修饰引起的,还是因为其它机制引起的。英国Wellcome基金会Sanger研究所(Wellcome Trust Sanger Institute)的Wolf Reik团队对50至100个细胞的甲基化组(methylome)情况进行了分析,他表示他真的很想再往前走一步。

2.6 大脑中的“禁区”

神经元细胞是最新一个被用来进行单细胞研究的对象,科学家们其实也不太清楚能够通过这些研究获得怎样的信息和结论。也是直到最近才开始有试验证据表明,神经元细胞之间也具有不同的基因组。虽然有这些研究成果,但是科学家们对神经元细胞的这种多样性也还是一头雾水。早在2001年,当时还在美国加州大学圣地亚哥分校(University of California, San Diego)工作的Jerold Chun就在小鼠的大脑中发现了染色体非整倍体现象,随后又于2005年在人类大脑细胞当中发现了同样的现象。据当时在Chun实验室读研究生的McConnell介绍,拿到这些结果之后,他们也没人知道下一步该怎么办。他们等于是发现了冰山的一角,如果细胞里存在非整倍体现象,那么一定会有很多的基因突变,或者基因组突变。

几乎就在同一时间,另外一帮科研人员发现,在人类基因组当中,平均每一个基因组里都含有80~100个具有潜在活力的L1元件(这是一种可以在整个基因组当中自我复制、自我粘贴的DNA元件),而且在大脑神经元细胞当中,这些L1元件都是有活性的。该研究,以及其它一些研究成果都证明,基因组至少是具备多样性可能的,但是这种变异的程度究竟有多大,没人说得清楚。

据美国国立精神卫生研究院(US National Institute of Mental Health)的Thomas Insel介绍,他们还只是刚刚开始尝试去了解大脑细胞的分子多样性问题。在这个领域单细胞研究技术起到了关键性的作用,不仅仅是在确定神经元细胞和神经胶质细胞的(分类)类型方面,同时也有利于我们了解体验和发育对大脑某个区域里的基因表达有何作用。

科学家们可以用好几种方法发现单细胞基因组变异情况。美国哈佛大学医学院(Harvard Medical School)的Christopher Walsh团队就对300个取自死者大脑的神经元细胞进行了单细胞L1元件插入研究(Cell 151, 483–496, 2012)。他们只发现了几个L1插入元件,这说明L1元件应该不是导致基因组多样性的主要原因,但至少在大脑皮质细胞和尾状核(caudate nucleus)细胞里是这样。

2013年,另外几个课题组也对单个人类神经元细胞进行了全基因组扫描研究。比如在2013年11月发表的文章就对3名健康人大脑的110个额皮质(frontal cortex)神经元细胞进行了全基因组测序研究,结果相当令人吃惊,他们发现在神经元细胞里有大量的大段CNV 突变(Science 342, 632–637, 2013)。对源自健康人皮肤细胞的神经元细胞进行的研究也发现了同样的情况,而且这些神经元细胞里的CNV要比其来源的皮肤细胞更多,这说明这种源自iPS细胞的神经元细胞是一种非常好的研究材料,适合用于开展细胞多样性方面的研究工作。

实际上,虽然有了这些发现,但是神经科学家们还是很头疼,因为他们不知道这些体细胞突变意味着什么。美国弗吉尼亚大学(University of Virginia)的遗传学家Ira Hall也是去年这篇发表于《科学》上的文章的合作者之一,他认为这些研究意味着大脑对影响和干扰的抵抗力很弱,另外,遗传嵌合现象(genomic mosaicism)也能够影响人们罹患肿瘤和其它疾病的风险。为了明确大脑中哪些部位与其它部位相比更容易受到干扰,以及大脑不同区域间的差异有多大,科研人员们还得研究更多的细胞才能够找到答案。现在就在从事这方面研究的McConnell认为现在还是一无所知。

2.7 概念验证之后的工作

虽然单细胞技术已经有可能解决很多生命科学领域的重大问题,但是技术上的进步还远远没有结束。比如科研人员就必须研究如何将真正的生物学差异与试验技术本身的背景噪音区分开。瑞典KTH皇家理工学院(KTH Royal Institute of Technology in Sweden)的Joakim Lundeberg(他们实验室就曾经开发过组织RNA测序技术)就认为,单细胞RNA 和DNA测序技术还远远算不上足够强大,他表示,他们还需要在一次试验中对更多的单细胞进行分析,以便解决背景噪声问题,这至少也能够加深他们对同一个组织里不同细胞之间差异的了解。

由于存在方方面面的问题,比如细胞分离、数据运算、以及用于不同领域时出现的特异性问题等等,所以Blainey希望在未来的几年里单细胞研究技术还能够有更大的进步。

对于新进入这个领域的人而言,光是选择哪一种转录组测序技术可能就够他们头疼半天的了。关于这个问题,应该视研究目的而定,比如是想对多个细胞进行分析,找出同型的转录子,还是想发现低丰度的RNA。―不过有多种方法可供选择总归是件好事。‖Quake 这样说道。在去年10月,Quake的课题组发现,如果将预处理时的反应体积控制在纳升级(他们使用的是Fluidigm公司提供的C1系统),那么单细胞qPCR技术和单细胞RNA 测序技术的检测效果是差不多的(Nat. Methods 11,41–46,2014)。―这对于我们整个试验操作的可信度而言是一个重大的好消息。‖Quake补充道。

随着商业化产品的推出,以及各个实验室经过多年实践总结出了自己的―独门秘笈‖,基因组扩增技术的选择也在同步改善。不过由于每一个人使用的进行基因组扩增的技术都不一样,所以很难对不同的研究成果进行直接的比较。比如Xie就认为,他们感觉MALBAC 技术要比MDA技术更好,但是这也要取决于你是如何进行MDA试验的。不过随着技术的不断进步,这两种技术都将会过时被淘汰,但我们也会继续改进这些技术,MALBAC 一定会赢得最终的胜利,我们会让这项技术变得更好。

与此同时,从事肿瘤研究、脑神经科学研究、微生物研究、以及从事药物开发和其他领域研究的科研人员也都会从这些技术进步当中受益。而且这些技术进步也会吸引众多优秀的人才加入单细胞研究领域,比如已经在表观遗传学研究领域颇有建树的Reik等。Reik 在去年才第一次参加单细胞学术会议,而在此之前还从来没有接触过单细胞研究,看到这么多新技术,Reik感到非常激动。他指出,最开始人们会因技术本身而激动,过不了多久,人们就会利用这些新技术去解决重要的生命科学问题,那将是更加令人激动的事情。

3. 单细胞分析技术——认识遗传多样性的利器

技术上的新进展已经让单细胞基因组测序技术(single-cell genome sequencing)逐渐成为了一项主流的检测手段,该领域的研究工作已经初步揭示出细胞之间在基因组结构(genetic architecture)与遗传变异性(genetic variability)方面的差异,这也反映出基因组并非一成不变的天然本质。

Flemming在1882年时发表的文章中绘制的单细胞基因组染色体模式图。

其实单细胞基因组分析这个项目很早就出现了,早在1882年就有人报告了昆虫唾液腺的单细胞图像,该图展示了多线染色体(polytene chromosomes)的带状结构。到了1935年,Calvin Bridges又发表了一幅类似的果蝇(Drosophila)细胞基因组图片,从这幅图中可以看出个体之间、品系之间,以及种系之间都存在大范围的基因组重排(genomic rearrangements)现象。最近研究人员也开展了大量的单细胞研究工作,使用的主要技术手段包括PCR和其它生化扩增技术。其中比较知名的工作包括在20年前开展的对单个精子细胞(single sperm cell)进行的重组热点(recombination hot-spot)研究,以及现在在人工辅助生殖工作中常规开展的胚胎植入前的胚胎单细胞遗传诊断工作

(preimplantationgeneticdiagnoses)。既然单细胞检测技术已经发展了一个多世纪了,为什么现在才突然火起来呢?

我们认为这应该与最近取得突破的单细胞基因组测序工作有关。这主要包括以下三个方面:技术进步使全基因组及转录组扩增的效率大幅度提高;DNA测序技术的跨越式发展使得测序的通量更高,测序的成本更低;微流体技术(microfluidics)和荧光活化细胞分选技术(fluorescence-activated cell sorting)等不断涌现的新型单细胞试验技术。最近这5年,全世界各个实验室里出现了一大批单细胞研究论文,包括单细胞基因表达研究、单细胞基因组分析研究,以及商业化的服务等,这些工作对新技术的推广起到了非常重要的作用。单细胞基因组分析现在就是一个非常有影响力的技术,而且涉及了很多的方面,比如微生物生态学(microbial ecology)、肿瘤、产前诊断以及人类基因组结构及变异等。接下来我们将重点介绍这几个方面的最新进展,以及未来可能的发展方向。

3.1 单细胞生物的单细胞测序

微生物生态学是最适合进行单细胞基因组测序的研究项目,因为据估计,绝大多数(99%的物种)微生物都是无法进行人工培养的。这些不能培养的微生物被科学家们形象地称作生物界的―暗物质(dark matter)‖,因为我们只能根据对标志基因(marker-gene)序列的检测来间接地―观察‖这些暗物质。虽然元基因组技术(metagenomic approaches)有助于我们了解这种复杂环境里的基因组成情况,但是物种与基因之间的关系还是不得而知,因此只有借助单细胞基因组技术才能够了解单细胞生物(unicellular organism)与自身基因组功能之间的关系。这也说明我们现有的基因组数据库还相当欠缺,有大量的遗传与进化多样性信息都没有被收入在内。

科学家们开展的第一个不能人工培养的单细胞生物基因组测序工作就是针对人类牙菌斑(human tooth plaque)上的细菌开展的。最近几年已经发表了十几篇有关不能人工培养的单细胞生物基因组方面的论文,随着单细胞研究技术与测序技术的进一步发展,我们相信这方面的工作会以指数扩增形式迅速发展起来。随着这些数据的不断积累,我们也会陆续发现更多新的、以前未知的微生物功能和微生物代谢产物(metabolites),发现更多与人类身体健康相关的新物种,甚至有可能彻底改变生命之树的结构,颠覆真核生物、细菌和古细菌之间传统的进化学关系。

微生物在形态学(morphology)、生理学(physiology)和基因型(genotype)方面的多样性也给单细胞分析技术带来了不小的挑战。在我们选择单细胞分析技术、试验反应和化学试剂时,需要考虑每一种样品的特殊性。比如,微生物试验经常需要非常严格的裂解条件,而且不同的微生物往往需要不同的试验条件,这就会增加试验操作的复杂程度。由于在核酸扩增之前并不一定需要进行DNA纯化操作,所以扩增试剂就需要能够与细胞裂解试剂兼容。复杂的裂解及扩增操作流程比较适合微孔板试验和需要用到整合技术的微流体设备的试验操作,因为这些操作都可以实现自动化。有意思的是,当反应体系缩小到纳升(nanoliters)时,生化扩增仪的表现反而会更好。相对简便的操作规程比较适合反相乳液液滴系统(reverse emulsion liquid-droplet systems)试验,使用这种系统可以快速地进行数万个独立的微反应。到目前为止,几乎所有的单细胞微生物测序结果全都使用了同一个全基因组扩增反应,即多重置换扩增技术(multiple displacement amplification, MDA)。该技术是一种等温的扩增技术(isothermal amplification),使用随机引物,主要依赖的是?29 DNA聚合酶的链置换功能。

3.2 人类单体型(human haplotypes)研究

人类基因组分析工作已经从确定所有人的―平均‖参考序列(reference sequence)快速进入个体基因组测序时代,看起来单细胞技术似乎也帮不上太多的忙。但是我们人类基因组中有一些部分使用传统技术进行分析还是有比较大的难度的。比如人体内的每一个细

胞里都含有两套基因组,其中一套来自父亲,另外一套来自母亲,这就叫做单体型现象,而每一个单倍体基因组(haploid genome)中的变异都会对基因的表达、蛋白质的功能,以及疾病造成非常大的影响。

人白细胞抗原(human leukocyte antigen, HLA)编码基因变异就是非常典型的例子,HLA 基因单体型信息是骨髓移植工作中非常重要的一项信息,不过这只适用于非常复杂的杂合突变(heterozygous mutation)——在一个基因位点上发生了两个突变。如果这两个突变都位于同一个单体(一条染色体),那么可能是无害的,但是如果分别位于两个不同的单体,那么就极有可能是有害的。现有的技术还无法在基因组的层面上进行这种单体区分(haplotype determination)。传统的、进行单体区分最精确的方法需要对一个家系(family pedigree)进行测序,主要是对父母进行测序。很明显,在临床上大规模开展这种工作是不现实的。

不过单细胞染色体分离技术(Single-cell chromosome isolation)帮了我们的大忙,这是第一种全基因组单体型测量技术(genome-wide haplotype measurement),能够对完整的染色体进行单体鉴定。该技术出现之后很快就与其它技术搭配起来,比如只需要用到少量细胞(不过对于男性精子细胞来说可能需要的细胞数量会多一些)的单细胞测序技术(single-cell sequencing approach)等。我们希望这些技术,以及确定基因组片段单体型的长读长测序技术(long-read sequencing technologies)能够得到更进一步的应用,以促进我们对人类基因组的认识和了解。HLA编码区是我们人类基因组中多态性最明显的一个区域,该区域与人类免疫系统关系密切,也与多种人类疾病有非常直接的联系,所以一直都是研究的热点。不过由于HLA的单体型太过复杂,所以迄今为止也只对少数几个人的HLA区域进行过单体型测序。

单细胞基因组研究工作涉及的另外一个领域就是对各种人的重组方式(recombination pattern)的研究。所谓重组指的是精子细胞和卵子细胞内分别遗传自父系和母系的两条染色体大片段各自断裂,然后相互再连接,形成一个全新的基因组的过程,这也是造成人类遗传多样性的最主要原因。我们知道,整个基因组内的重组几率并不是完全一样的,即存在所谓的―重组热点‖,这些位置发生重组的几率要比基因组内其它区域更高。单细胞基因组分析工作的最早成果之一就是发现在不同的个体之间,这些重组热点也会有所差异,这些热点对于某些人而言的确是热点,但是对于另外一部分人来说其实也不是那么热。最近,单细胞研究技术已经被用于分析全基因组重组模式

(genome-wide recombination pattern),以及单个精子细胞的突变率等,世界上也有了第一个针对不同个体的全基因组热点行为研究(genome-wide hot-spot behavior)。我们希望未来的单个精子细胞基因组研究也能够涉及重组突变(recombination mutant),比如对携带罕见PRDM9等位基因的个体开展研究;以及针对与不孕不育疾病(sterility and infertility)相关的、可用于临床诊断的减数分裂功能紊乱(meiotic dysfunction)的研究。

3.3 体细胞突变研究

越来越的人开始慢慢认识到个体基因组测序的意义和价值,不过目前的个体基因组序列指的还是人体内所有细胞基因组的―平均‖序列。科学家们在几十年之前就已经发现,人体某些(种)细胞之间是存在基因组差异的,比如属于我们人体免疫系统的B淋巴细胞就是一个很好的例子。每一种B细胞都会严格表达一种特定的抗体,这些B细胞基因组里的基因是绝对不会被重编程(reprogram)的。正如前面已经介绍过的,生殖细胞在减数分裂和遗传重组的过程中也会出现分化和差异。在细胞不断的分裂过程中,以及在可移动的遗传元件(mobile genetic elements)的转移过程中也会慢慢积累各种突变,这些突变都具有非常重要的意义,不过我们目前对此了解得还不是特别清楚。

这些不断积累的突变与衰老,尤其是与肿瘤有非常密切的关系,所以衰老和肿瘤这两个

研究领域一定会是单细胞基因组分析技术大显身手的舞台。到目前为止,已经有科研人员利用单细胞研究技术对人体精子细胞和永生化细胞系细胞进行过研究,他们直接检测了这些细胞的自发突变速率(de novo mutation rate)。还有人用这些技术对造血干细胞进行检测,以确定这些造血干细胞的突变程度,判断正常的造血干细胞转化成急性髓性白血病(acute myelogenous leukemia)肿瘤细胞之后的突变程度是不是有了一个大幅度的提升,并借此了解这些白血病肿瘤细胞的演变规律,判断乳腺癌细胞的克隆结构(clonal structure)等。

在成体神经组织里也存在嵌合型突变(Mosaic variation),这些突变与阿尔茨海默病(Alzheimer's disease)等神经退行性病变有关。最近,有科研人员利用单细胞MDA等基因组分析技术在诱导性多潜能干细胞(induced pluripotent stem cell)分化的神经细胞和尸检获得的脑细胞(postmortem brain cell)中发现了大段的(达到MB级别的)基因拷贝变异(copy number variation)。也有人利用单细胞MDA技术和以PCR为基础的全基因组扩增技术发现了L1逆转座子(retrotransposition)是促使大脑细胞内出现体细胞嵌合突变的潜在因素,而且还用这种方法发现在不到1/3的脑细胞里存在的突变也同样能够诱发严重的疾病,比如半侧巨脑症(hemimegalencephaly)等。荧光原位杂交技术(?uorescence in situ hybridization)也被用来研究小鼠大脑中部分非整倍体(aneuploid)的神经元细胞与小鼠衰老之间的关系。这是一个让人着迷的研究领域,有各种证据表明嵌合型体细胞突变与机体发育相关,也具有一定的功能,在正常的成熟神经组织里一样能够发现这些突变。这可能就是―正常的‖神经表型之间的差异能够导致神经疾病的原因,这些差异也可能与心理疾病相关,而且突变会随着年龄增长越来越多。

3.4 何时需要单细胞测序

什么时候进入单细胞基因组测序项目才合算呢?肿瘤基因组是一种高度异质性的核酸,而且突变的速度非常快,所以对肿瘤组织进行单细胞基因组测序是最合适的。虽然大批量的肿瘤组织测序并没有让科研人员们清楚地认清肿瘤组织的亚克隆组成情况,可是如果再使用单细胞基因组测序技术,我们就可以获得更详细的信息,明确基因组中核酸序列存在高度异质性情况的基因组位点。这种分阶段的技术极大地降低了测序成本,因而增加了对某个肿瘤组织进行测序时可以进行单细胞测序的细胞数目和测序次数。

虽然目前我们还不能确定,对某个肿瘤组织进行多次、大量的单细胞全基因组测序在经济上是否划算,但是对基因组中的重要部分进行分析,或者用测序深度较浅的方法(shallow sequencing)进行低分辨率测序,了解细胞里的基因拷贝数变异情况,也能够得到同样的结果。其实Bridges在80年前开展果蝇基因组研究时就是这么干的。还有一种办法可以代替这种分阶段策略,而且只需一步,那就是对多个单细胞进行全外显子组测序,这样一方面能够了解到肿瘤组织的―总体‖外显子组情况,另外也可以发现肿瘤组织内部的亚克隆组成情况,而且成本要比全肿瘤测序(whole-tumor sequencing)经济得多。

3.5 植入前测序

单细胞测序有时是我们发现罕见、或独特细胞的唯一手段。胚胎植入前遗传诊断(Preimplantation genetic diagnosis, PGD)是接受体外受精(in vitro fertilization)等人工辅助生殖技术帮助的夫妻常用的一项技术,在胚胎被植入母体之前,医生们会从体外培养的胚胎中提取一个细胞,对其进行基因组分析。不过对之前开展的临床试验进行荟萃分析(meta analyses)发现,PGD并不是筛查遗传疾病的有效手段,因为在随机对照实验中发现,许多更先进的技术成功率更高,而且生出孩子的几率几乎会高出一倍。应用微阵列比较基因组杂交(array comparative genomic hybridization)等全基因组分析方法可以在胚胎植入前以更高的分辨率对胚胎的基因组进行检测。我们希望这些更高分辨率的基因组分析技术能够尽快应用到PGD临床实践工作当中,能够对胚胎进行结构异常、甚至是

点突变的检测。所得的这些数据就可以帮助临床医生们进行更加精细的判断,以了解哪一些胚胎更加健康,可以生下一个健康可爱的宝宝。

3.6 单细胞技术的未来

测序的成本肯定还会不断地降下去。近十年来也诞生了很多生化DNA扩增技术,而且现在又出现了多种单细胞试验手段。然而,目前还没有哪一种核酸扩增技术是绝对的赢家,如果真的出现这样一种技术,那对所有人都会是个意外的大惊喜。但是很难说哪一种核酸扩增技术是最好的技术,因为有很多参数需要考虑。尤其是以下这几点,比如样本类型、反应方式、方便程度(恒温反应还是变温反应,一步法还是多步法)、成本(商品化的还是自制的)、可靠程度(脱靶情况、污染品扩增、扩增时的均一性和误差、扩增技术的覆盖度、错误率,以及嵌合等人工误差)以及最终的得率等。

另外,在比较这些不同的扩增技术时,一定要使用在统计学上相关样品的单细胞样品进行评价,而且一定要避免反应体积、反应方式、裂解条件、污染、样品特异性的差异和细胞间的随机差异所带来的影响。因此,只有针对这些因素做好对照才能找出最好的扩增技术。

另外,还需要开发出自动化的单细胞分离和基因组扩增技术。现有的技术能够处理数百个数量级为单位的细胞,我们可以使用商业化的细胞分选仪完成细胞分选工作,也可以用机械手完成细胞裂解和核酸扩增反应,还可以用微流体设备自动完成上面这一整套操作。自动化和小型化是未来单细胞测序仪的发展方向,这是因为只有分析足够多的样本才能够充分认识样品里的遗传多样性。我们希望芯片技术、微流体技术,以及微型零件加工制造技术(microfabricated approach)都能够有创新性的发展。这样将会极大地提高处理的通量,同时也能够大幅度降低测试成本(降低几个数量级),还可以简化反应步骤,如此便可以在一次实验中对数万个细胞进行单细胞分析。我们相信这只是个时间问题。

单细胞基因组分析技术实际上是多项技术共同发展的结果,而且涉及了生命科学领域里多个基础领域,这将有助于我们解决生命科学领域里的多个重大问题。我们希望随着核酸扩增技术和反应类型的不断发展和多样化,单细胞测序技术的影响力能够进一步扩大,应用到更多的领域,以帮助我们更好地认识和了解整个生命系统。

4. 生物学及医学开始进入单细胞转录组学研究时代

最近的技术进步使得单细胞RNA测序成为了可能。探索性研究已经让我们见识了分化的动态变化过程,细胞对各种刺激做出的反应,以及转录的随机本质。我们正在步入一个单细胞转录组学时代,该研究方向会对生物学和医学产生深刻的影响。

我们现在提到的转录组学(transcriptome)主要源于近二十年来在生物学研究工作中成为主流的群体观测工作(population-level observation)。我们一直习惯于这样一种研究思路,即对整体组织或某个条件下的基因表达倍增情况(明显的或细微的)进行比较,但是细胞之间的实际差异可能会更明显。某些细胞可能会产生非常明显的改变,可是另外一些细胞却―无动于衷‖,如此一来,即便那部分发生改变的细胞的变动幅度再大,也会被―沉默的大多数‖细胞给掩盖掉和稀释掉。实际上,早在60年前就已经发现,刺激单细胞会得到―全‖或―无‖这两种截然不同的结果,可如果对一大群细胞进行研究就会得到一个渐进的、可定量式的反应结果。

很明显,对单细胞的基因表达情况进行检测和分析非常有助于我们了解细胞的行为,以及明确都有哪些细胞参与了组织发育、成熟和病变的过程。为了达到这个目的,就需要对单个细胞进行长期的转录组学研究。但是实验技术直到最近才发展到能够对单细胞进行RNA测序的水平,科学家们才能够借助这项技术了解单细胞在基因表达方面有意义的差异。现在也出现了非常详细的实验指南,帮助科研人员构建测序文库,而且FluidigmC1

等商业化的单细胞全自动制备系统也极大地降低了广大科研人员涉足这个领域的门槛。单细胞实验操作技术的广泛应用将对我们产生深远的影响,也将帮助我们加深对细胞状态、转录本质以及基因表达调控,乃至对疾病病理进程的认识。

4.1 信噪比问题

单细胞转录组研究工作主要依赖逆转录反应(reversetranscription)。首先,将待研究的RNA逆转录成cDNA,然后再通过PCR反应或体外转录反应(invitrotranscription)进行扩增,最后对扩增产物进行深度测序。不过其中扩增反应非常容易出错,也容易丢失信息。这是由于单个细胞里含有的RNA非常少,所以需要对这些微量的核酸进行大量扩增,以致这个扩增反应产生了大量的偏差。虽然技术噪声会干扰科研人员对低丰度的RNA分子进行高分辨率的测序,但是当前经过改进的实验操作流程已经可以让我们获得足够多的单细胞转录组信息。比如,在单细胞转录组学研究工作中有一个屡次被提及的问题,那就是在未对细胞进行分类的情况下,如何根据细胞的类别或状态对细胞进行准确的、可重复的分类。与细胞类别,或者发育阶段相关的基因表达模式是一个比较可靠的判断依据,远比与细胞周期等动态进程相关的生理变量或者技术噪声值得信赖。另外,有人已经对不同细胞里成百上千个基因的表达差异进行过研究,证实这种单细胞研究技术的确能够发现有意义的信息。最近开展的更深入的研究工作将进一步提高单细胞测序研究的信噪比,因为我们将进一步提高逆转录和PCR反应的效率,也可以采用分子标签(molecular barcoding)策略来控制核酸扩增反应中出现的偏差。

4.2 单细胞转录组学研究工作中存在的挑战

科研人员们基于几种不同的目的开发出了现有的单细胞RNA测序技术。比如可以对转录子全长序列进行测序,这样就能够了解整个基因和各种转录子亚型(transcript isoform)的序列信息,也有利于我们发现并监测单核苷酸多态性(single-nucleotide polymorphisms)和其它突变的情况。而主要依赖标签,只对转录子5'或3'端进行测序的策略则可以在牺牲全长序列信息的前提下为我们提供与转录子丰度相关的信息,有利于大规模开展分子定量研究。

不过整个单细胞测序界全都在追求同一个目标,那就是用一种经济、高通量的技术对细胞里所有的RNA进行全长序列测序。其中在进行核酸扩增之前如何减少RNA的丢失率,提高RNA逆转录成cDNA的效率是需要重点突破的技术难关,也是有助于提高RNA检测成功率的关键所在。另外一个同样重要的技术就是如何对单细胞进行分离、分类及分选,而且是在不给细胞基因表达情况带来任何扰动的前提下从整块组织中分离得到单个的细胞样品。另外,科研人员们还希望能够在不考虑转录子长度的情况下,同时对poly(A)+ RNA和poly(A)–RNA,以及各种RNA修饰体(比如m6A)进行检测。

我们现在已经发现,在单细胞测序研究工作中,细胞转录过程有一大特点,会给我们的研究带来非常大的麻烦,那就是我们在对细胞群体的研究工作中发现的细胞基因表达规律在单细胞的水平上其实一点都不可靠,任何随机的扰动都有可能使该基因在某些细胞里不表达,或者表达量很低,但也有可能变得很高。这种多变性可能是因为细胞内的基因表达是一个随机的分子进程,所以在单个细胞内,基因的转录就是一个或全或无的概率性事件。科学家们已经对原核生物和单细胞的真核生物进行过大量的研究,对基因转录的这种随机本质有了非常深刻的认识和了解,现在越来越多的证据表明,哺乳动物细胞内其实也是一样的。因此,我们在开展单细胞转录组学研究工作时也需要注意这一点。比如,标准的基因表达差异试验(differential expression test)可能就不太适于进行单细胞研究,因为在这些被研究的细胞当中,可能有一部分细胞里就没有相应基因的表达。现在已经出现了适于这类研究工作的试验策略,可以将转录子丰度差异与细胞基因表达比例差异结合起来进行观察。

到目前为止,开展单细胞转录组研究时还是需要单细胞悬液(比如组织解离液或者细胞培养悬液)做检测样品,但这种样品不能反映细胞在组织里的空间组织结构信息,除非我们知道这些细胞取自组织的哪一个部位。RNA原位杂交(RNA in situ hybridization)技术可以部分体现这种空间组织结构信息,能够了解组织里某些特定细胞里特定基因的表达情况。不过现在也有人在开发能够同时了解空间结构信息与转录组信息的单细胞研究技术,比如芯片式的多路测序技术(array-based multiplexing strategy)或原位测序技术(in situ sequencing)等。这类技术出现之后将帮助我们了解正在发育中的、成熟之后的、或者病变组织内的单细胞转录组情况,让我们对生命与疾病有更深入的了解,发现转录组与细胞间相互作用、组织极性形成以及局部差异之间的关系。

4.3 单细胞测序技术与生物学的关联

对单个细胞内的基因表达情况进行研究将彻底颠覆我们对基因表达调控的认识和理解,也将解决很多长久以来一直困扰着我们的生物学难题。比如细胞聚集在一起是由细胞种类决定的,还是因为在发育的过程当中,根据细胞的表达谱而决定的。如果是根据细胞基因的表达情况来决定的,那么在对足够多的单细胞进行测序之后我们就可以准确无误地重建出(这也叫反向工程学技术)任何细胞(图1)。如果被研究的细胞数量足够多,而且已经彻底解决了试验误差的问题,那么这种研究就可以发现组织里的所有细胞类型,包括那些尚未被发现的新型细胞。同一个群体的细胞也可以被用来发现特定细胞类型的基因表达谱,此时也一样是以测序结果为依据,也同样在事前不知道哪些组织或细胞里会表达哪种标记基因的前提下。因此,单细胞RNA测序是一种以试验结果为基础的,可以对细胞种类进行定量分析的研究手段。

图1对组织和不同的细胞进行单细胞转录组分析。首先将健康组织和病变组织解离,制成单细胞悬液,然后利用单细胞RNA测序技术,以及获得的基因表达谱信息对细胞进行单独的聚类分析,最后可以得到一张细胞聚类分析图。根据此图可以了解组织的细胞构成情况,甚至还可以发现以往不知道的未知细胞。如此丰富的信息还可以用来解决其它生物学问题,比如同种细胞和组织内,或者不同的细胞或组织间的基因表达情况和基因表达调控情况等。

单细胞转录组学研究还可以提供高质量的细胞转录组图谱,这不仅针对稳定的细胞状态,也同时针对复杂多变的细胞状态,比如细胞分化或重编程时的状态。不过要达到这种研究目的,就必须对覆盖整个阶段的、数量足够多的单细胞进行测序研究,这样才能在事后的数据分析工作中重点关注其中的某一个阶段(比如开始出现不同分化方向的那个时刻),得到有价值的研究成果。样品量还反映了我们预计会得到多少细胞种类,或者有多少生物学事件会发生。当然,这也取决于人类基因组当中基因转录的幅度究竟有多大,因为有多个研究发现,人类基因组当中很多基因只发生了很少的转录,平均1万个细胞里只发现了一个转录子拷贝。这种转录子可能是在很少量的细胞里高度表达(比如平均在10万个细胞里有一个细胞内的拷贝数超过了10个),或者是在大量的细胞里都维持非常低的表达水平,即所谓的渗漏表达。对大量的细胞(数千个)进行研究可能会解决这个问题,也有助于我们认识细胞内整体的转录水平和整个细胞的基因表达调控网络。对人体组织和细胞进行RNA测序分析已经证明,RNA研究手段可以用于各种转录组学及蛋白质组学研究。进行组织比对时发现,大量的差异都是非常细微的,但是发现可变剪接(alternative splicing)情况、多腺苷酸化(polyadenylation)情况和转录起始位点的选择,在单细胞层面上都是一种全(开)或无(关)模式,这也与之前的单细胞研究结果相吻合。针对可变多腺苷酸化调控机制的研究发现,在增殖比较活跃的细胞里,以及体外培养的转化细胞里,转录子3'端非编码区都比较短。单细胞RNA测序技术尤其适用于对体内的肿瘤细胞进行分析,因为针对一堆转化细胞、间质细胞和其它浸润细胞单独

提取转录产物进行分析,可以了解各种转录产物的丰度和亚型信息。对离散的肿瘤组织和健康组织进行单细胞转录组分析还可以精确地确定与转化状态相

单细胞测序

单细胞测序-I 单细胞测序(single cell sequencing)被《自然-方法》(nature method)杂志评为了2013年度生物技术。2017年10月美国政府启动了以单细胞测序为基础的“人类细胞图谱计划”,这是可以与“人类基因组计划”相媲美的又一个伟大工程。 要了解单细胞测序,我们首先需要了解下何为测序? “单细胞测序技术”是基于“第二代测序技术” 上世纪70年代末,Sanger发明了双脱氧链终止法也叫做Sanger测序法,Sanger测序法为基础的DNA测序技术我们把他称作“第一代测序技术”。“人类基因组计划”就是基于“第一代测序技术”完成的,共花费了30亿美元和耗时15年的时间。“第一代测序技术”成本高和低通量的问题,逐渐满足不了生命科学领域发展的需求。经过不断的技术开发和改进,以Illumina公司为代表的“第二代测序技术”大大降低了测序的成本并且大幅度提高了测序通量,所以也被称作“高通量测序技术”。 过去10几年“第二代测序技术”得到了快速发展,甚至突破“摩尔定律”的发展规律,如今完成一个人类的全基因组价格只需要1000美元和几个工作日。随着“第二代测序技术”的迅猛发展,使得对于每个细胞单独测序成为了可能。正是“第一代测序技术”的技术革命完成了“人类基因组计划”,同样的“第二代测序技术”掀起的技术革命正在推动着“人类细胞图谱计划”的进行。 当我们了解了“单细胞测序”就是以“二代测序技术”为基础的测序技术,那么下一步就需要了解下什么是细胞?为什么我们要进行单细胞测序? 人体的每个细胞都是独一无二的 细胞是人体结构和功能的基本单位,每个人大约有40亿-60亿个独立的细胞。如果把一个人体全部细胞比作地球上的所有人类的话,那么我们的细胞就像地球上每个独立的个人,正如地球上的每个人都是独一无二的,人体的每个细胞也是独一无二的。人类生命最初只有一个受精卵细胞,从胚胎发育到个体成熟,人体内的细胞数量增加的同时,细胞与细胞间的差异也越来越大,即使来自同一个组织的细胞,最终有的分化成了神经元而有的细胞则变成了神经胶质细胞。单细胞测序技术就是通过测序技术获得不同细胞间的遗传信息,从基因遗传水平解开细胞与细胞间的遗传信息异质性问题。 根据上面的对介绍,我们可以对“单细胞测序技术”下一个定义:单细胞测序技术是通过“第二代测序技术”对每个单独的细胞进行测序,获取每个独立细胞的遗传信息。

单细胞测序技术

单细胞测序技术 单细胞测序技术是一种能够在单细胞水平上对基因组或转录组进行高通量测序和分析的新技术。与传统的高通量测序相比,单细胞测序不仅可以分析相同表型细胞的异质性,还可以获得难培养微生物和有价值的临床样本的遗传信息,具有广阔的应用前景。 细胞是生命的单位。目前,基因检测主要是从组织中提取DNA进行测序。实验结果通常是细胞群体中信号的平均表达,是细胞群体的整体表征,或仅代表在数量上占优势的细胞信息。单个细胞的独特细胞特征往往被忽略。 大量研究发现,在同一器官或组织中,同一类型的细胞也表现出明显的异质性,而且每个细胞都有自己独特的表达模式。例如,实体肿瘤样本中超过一半的RNA来自非癌细胞(成纤维细胞、淋巴细胞、巨噬细胞等),这使得癌细胞的信号被隐藏。因此,不可能使用单个单元来表示关键信息。 另一方面,传统高通量测序方法,难以应用在对自然界中难培养的微生物的研究、罕见循环肿瘤细胞的转录组分析、胚胎发生最早期的分化特征研究、肿瘤的非均质性和微进化研究等精确程度较高的研究领域[1]。随着细胞分选和测序技术进步,单细胞测序技术应运而生。 (一)单细胞测序技术颇受关注 《Nature Methods》杂志将单细胞研究方法列为未来几年最值得关注的技术领域之一。《Science》杂志将单细胞测序列

为年度最值得关注的六大领域榜首。 (二)单细胞测序技术流程 1. 单细胞分离 针对单个细胞研究时,首先将单个细胞进行分离,并确保其生物完整性不被破坏。目前常用的单细胞分离方法有连续稀释法、显微操作法、激光捕获显微切割术、拉曼镊子技术、荧光激活细胞分选术和微流控技术等。 2. 细胞溶解与基因组获取 对细胞进行溶解来获取基因组(DNA或RNA),这步骤非常关键,应尽量保证基因组的完整性。目前细胞溶解的方法可以分为3大类: 物理法、化学法和生物酶降解法。 3. 全基因组扩增 由于单个细胞中的基因含量无法达到测序仪的检测线,因此需要对基因组进行扩增,目前方法都是利用DNA 聚合酶和不同形式的引物来进行扩增的,包括特异性的、简并的或杂合的引物。 4.测序与数据分析 对单个细胞进行测序,并对所得的数据结果进行分析。 二 单细胞测序技术应用现状 单细胞测序技术能够快速确定成千上万个细胞的精确基因表

单细胞测序技术概览

单细胞测序技术概览 2013年,单细胞测序技术开始成为科研界主流关注的焦点。 前言 2013年,单细胞测序技术(single-cell sequencing)荣膺《自然-方法》年度技术。单细胞测序技术有助于我们剖析细胞的异质性。它可以揭示肿瘤细胞基因组中发生的突变及结构性变异,而这些突变和变异往往有着极高的突变率。有了这些信息,我们就可以描述肿瘤细胞的克隆结构,并追踪疾病的进展及扩散范围。本文将介绍2013年单细胞测序技术在人类早期发育、癌症以及神经科学研究等几个重点领域的最新应用成果。 1. 单细胞测序技术简介 本节将概述如何获得一个单细胞的基因组及转录组。 单细胞基因组及转录组测序所需要的测序样本量要比单细胞中本身所含有的基因组及转录组分子高出好多个数量级,所以这对核酸扩增技术(amplification technology)也是一大考验。面对如此微量的分子,任何降解、样品损失、或者污染都会对测序质量带来非常严重的影响。而且多重扩增又容易带来试验误差,比如基因组或转录组覆盖不均一、背景噪声以及定量不准确等问题。 最近所取得的技术进步有望部分解决上述问题,使单细胞测序技术能够走进更多的实验室,解决更多领域的科学问题。比较罕见的细胞、异质性的样本、与遗传嵌合或突变相关的表型、不能人工培养的微生物,这些都是单细胞测序技术能够一展所长的研究平台。使用单细胞测序技术能够发现克隆突变(clonal mutation)、隐藏的细胞类型,或者在大块组织样品研究工作中被―稀释‖或平均掉的转录特征。

1.1 选择恰当的细胞 说到分离单细胞,显微操作(micromanipulation)无疑是一项非常精确的技术,而且利用毛细管(microcapillary)可以直接吸取细胞内容物,但是这项操作也需要耗费大量人力。很多组织解离之后都能够制成单细胞悬液,这种单细胞悬液很容易操作,而且可以用细胞分选器(cellsorter),根据细胞表面表达的特异性分子标志物对细胞进行分类富集操作。这种策略也被用来分离非常微量的循环肿瘤细胞。 1.2 单细胞转录组策略 现在有很多单细胞RNA测序操作流程可供选择,不过不管采用何种策略,首先都需要通过逆转录反应,利用RNA合成出cDNA。然后才会有所区别,比如有一些方法是对整个转录子进行测序,有一些方法只针对转录子的5'和3'端进行测序。不论采用何种方法,目的都只有一个,那就是捕获原始的RNA分子,然后均一的、准确地对其进行扩增。核酸的捕获效率主要受到逆转录反应的影响,不过我们可以使用更小的反应体系,选择更好的逆转录酶来进行改善。另外,采用模板转换技术(template switching)也能够保证被捕获的绝大部分转录子都是全长片段。减少反应循环数也能够改善核酸扩增反应,还可以借助―抑制PCR (suppression PCR)‖技术减少引物扩增,或者将取自不同样品的cDNA(这些cDNA都是分别做好标记的)混合到一起,提高起始反应模板浓度,用体外转录技术进行线性扩增(linear amplification)。另外,还可以利用特有的分子识别序列(molecular identifier sequences)对每一个RNA分子进行标记,这样即便在经历了非均一的扩增之后,我们还是能够对原始的RNA分子数量进行绝对定量。 1.3 单细胞基因组策略 全基因组扩增(whol e-genome amplification)的起始反应产物更少,只有一个DNA分子。这样在扩增反应时就难免出现不均一的问题,即可能在基因组中某些位点会扩增多次,而另外一些位点则无法扩增。解决这个问题最常用的办法就是多重置换扩增技术(multiple displacement amplification, MDA),即使用随机引物,让这些引物与基因组广泛结合,同时使用一种特定的聚合酶,这种聚合酶能够置换与它自身附着在同一模板上的DNA链片段,形成一种反复分支结构(iterative branching structure),扩增出大段的DNA。早期循环对整个扩增反应的均一性起到了决定性作用。有一种扩增技术采用了一种独特的引物,这样能够生成闭合环状的扩增子(amplicon),而且这种扩增产物不会再进一步复制,等于是在进行PCR扩增反应之前先进行几轮线性扩增反应。将反应按比例扩大,同时对反应情况进行实时监控都有助于改善基因组扩增成功率低的问题,另外减少扩增次数,准备更少模板的测序文库也是一个比较值得发展的方向。

MALBAC单细胞全基因组测序详细解析

单细胞全基因组测序一直是生物学家梦想得到的结果。 但是其中必须解决的矛盾: 1. 线性扩增。如果用全基因组PCR扩增,因为PCR的扩增偏向性(bias),再加上PCR过程中较小的偏向性通过指数放大,其结果就会是严重的覆盖不均一,导致在许多地方只有很低的覆盖、甚至没有覆盖。所以,保证模板被线性地扩增,是首要问题。 2. 全基因组覆盖。常规的建库方法,因为补平、加A、接头连接效率的问题,起始DNA中有很大一部分会被浪费,没有形成有效文库分子(也就是两头都接好引物的DNA片段)。在单细胞测序中,这是不可接受的。 3. 高扩增效率。单细胞中的每个基因位置理论上都只有2个拷贝,而要从2个拷贝扩增到足够建立文库的DNA量,要经过许多次的扩增。这就需要很高的扩增效率。而一般的线性扩增很难有好的扩增效率 谢晓亮教授创新的MALBAC方法(multiple annealing andlooping-based amplification cycles),一举解决了上述3个问题,达到:1. 线性扩增,2. 近乎全覆盖,3. 高扩增效率(高产量),并且最终可以用于检测单细胞的CNV。 原理: 1. 第一步 A. 用5’端有27个统一序列,而3’端是8个随机序列的引物,作为扩增引物。用随机引物保证可以在模板链上的各处随机结合 B. 0℃淬火,再65℃等温扩增,得到第一轮的复制的产物 a. n个扩增产物(在图中标成蓝色),这些扩增产物都有在5’端有一个统一的引物 b. 1个原来的模板(在图中标成黑色) C. 用有前链移开功能的聚合酶(?29聚合酶)来进行扩增,这种酶的特点是会把酶前行方向上的前链从原来的模板链上进行解链、移开。利用这种特点,可以让模板上的每个点在第一轮反应中,都有机会得到n个拷贝 D.巧妙之处: a. 0℃淬火,在延伸开始之前,就把n个引物杂交到模板上 b. ?29聚合酶可以把前面的链给推开,结合前面的淬火步骤,一次复制出n个扩增子 2. 第2轮起的m轮扩增

单细胞测序技术

单细胞测序技术: 单细胞测序技术自2009年问世,2013年被Nature Methods 评为年度技术以来,越来越多地被应用在科研领域。 2015年以来,10X Genomics、Drop-seq、Micro-well、Split-seq等技术的出现,彻底降低了单细胞测序的成本门槛。 自此,单细胞测序技术被广泛应用于基础科研和临床研究。单细胞在许多领域都占有一席之地,对于癌症早期的诊断、追踪以及个体化治疗具有重要意义。 1 为什么要做单细胞测序? 初次听说单细胞测序技术,单细胞测序又是什么噱头?如果单细胞测序就能测一个细胞或几个细胞的话,这有什么意义?特别是对异质性高的肿瘤组织来讲,测一个细胞能代表什么? 无论是蠕虫,蓝鲸,还是人类,自然界所有的多细胞生命都是从单个细胞发育而来开始。 这样一个单细胞,鬼斧神工地构建出有机生命体所需的各种组织、器官、系统。每个新细胞在正确的时间,在正确的地方分裂、分化,并与相邻细胞协调精准发挥功能。 多细胞生命的发育过程,是自然界中最引人注目的壮举之一。尽管经过数十年的研究,生物学家仍然无法完全理解这一过程。 2018年4月26日,Science杂志发表三篇超重磅研究,来自哈佛医学院和哈佛大学的研究人员使用多种技术组合,包括对发育中

斑马鱼和青蛙胚胎数千个单细胞的基因测序,以精确的方式跟踪和描绘了组织和整个机体从单细胞发育的完整历程。 哈佛大学分子和细胞生物学教授Alexander Schier表示,“这几乎就像通过几颗星星看到了整个宇宙。” 使用单细胞测序技术,研究团队在胚胎发育的最初24小时内追踪单个细胞的命运,揭示出单个细胞基因开启或关闭的综合景观,以及胚胎细胞何时何地转变为新的细胞状态和类型。 这些发现就好比是勾勒出胚胎发育过程中产生不同细胞类型的遗传“配方”目录,为发育生物学的深入研究和疾病的认识,提供了前所未有的资源。 图|斑马鱼受精卵在4、6、8、10......小时(hpf)时的发育过程中不同器官细胞形成,最中心的深蓝色为受精卵,以时间为单位向外辐射。 “通过单细胞测序,我们可以在一天的时间里概括数十年来对细胞在生命早期阶段分化的艰苦研究。”哈佛医学院系统生物学助理教授Allon Klein表示,“通过我们开发的方法,我们正在绘制我们认为发育生物学的未来,发育生物学将会转变为定量的、大数据驱动的科学。” Alexander Schier表示,除了对生命早期阶段有所了解之外,这项工作还可以为大量疾病的新认识打开大门。“我们预见,任何复杂的生物学过程,只要是细胞随时间改变了基因表达,都可以使用这种方法重建,不仅仅是发育中的胚胎,还有癌症发生或大脑退化。”

20170301CTC单细胞mRNA测序技术路线

CTC单细胞mRNA测序技术路线 从这里之后的数据分析部分都没有哦~ 单细胞转录组mRNA测序 一、技术简介 单细胞转录组是指某个细胞在某一生理功能状态下所有转录的mRNA产物的集合,是基因组遗传信息传递和表达的重要步骤和过程。 单细胞转录组研究是基因功能及结构研究的基础和出发点,通过新一代高通量测序,能够全面快速地获得某一单个细胞在某一状态下的几乎所有转录本序列信息,已广泛应用于基础研究、临床诊断和药物研发等领域。 转录组测序针对的是有参考基因组的物种。与参考基因组比较,可以得到基因表达差异、可变剪接、融合基因等遗传调控信息。 二、MALBAC技术 1.运用Multiple Annealing and Looping Based Amplification Cycles, MALBAC多重退火环状循环 扩增技术,精确反转录某一单个细胞在某一状态下的几乎所有转录本序列信息mRNA并进行扩增。 解决了扩增对微量初始模板过大的扩增偏移,使得单细胞中90%的基因组能够被测序,样品起始量可低至0.5pg; 2.无物种的限定;要求mRNA有Poly A尾结构,GC%为35%-65%。 3.分辨率高:单碱基分辨率; 4.覆盖度高:能覆盖到几乎所有转录本片段序列;

5.检测范围广:从几个到数十万个拷贝精确计数,可同时鉴定及定量正常和稀有转录本; 三、技术参数 1.样品要求 样品类型:已分离的单细胞样本或去蛋白并进行DNase处理后的完整Total RNA; 样品需求量(单次):使用MALBAC进行微量扩增,样品建议为单细胞或总量≥10pg,最低起始量≥0.5pg; 2.测序策略 PE151。 推荐数据量 6G clean data以上。 3.项目执行周期 每个样品数据量6G以下,样品量小于10个,标准流程的执行周期约为50 个工作日; 样品数量多于10个时,项目的执行周期需根据项目的规模而定。 4.项目合格指标 产生不低于合同规定的clean data。 四、主要技术流程 单细胞裂解-MALBAC扩增-文库构建-高通量测序-数据处理-生物信息分析 五、信息分析 标准信息分析: 1.对原始数据去除接头序列、污染序列及低质量reads; 2.测序数据统计; 3.对于有参考基因组的转录组分析,须明确具体物种,因为即使有参考,很多物种SNP或Indel等注 释信息也不像人的那么全、那么规范。生物信息部需确定特定物种的某些分析是否可做。 单细胞转录组建库其实是:单细胞转录组扩增+基因组建库(扩增后产物是DNA)。单细胞不能做链特异性转录组测序。

单细胞测序

第一章单细胞测序技术概览 摘要: 2013年,单细胞测序技术开始成为科研界主流关注的焦点。前言2013年,单细胞测序技术(single-cell sequencing) 荣膺《自然-方法》年度技术。单细胞测序技术有助于我们剖析细胞的异质性。它可以揭示肿瘤细胞基因组中... 2013年,单细胞测序技术开始成为科研界主流关注的焦点。 前言 2013年,单细胞测序技术(single-cell sequencing)荣膺《自然-方法》年度技术。单细胞测序技术有助于我们剖析细胞的异质性。它可以揭示肿瘤细胞基因组中发生的突变及结构性变异,而这些突变和变异往往有着极高的突变率。有了这些信息,我们就可以描述肿瘤细胞的克隆结构,并追踪疾病的进展及扩散范围。本文将介绍2013年单细胞测序技术在人类早期发育、癌症以及神经科学研究等几个重点领域的最新应用成果。 1. 单细胞测序技术简介 本节将概述如何获得一个单细胞的基因组及转录组。 单细胞基因组及转录组测序所需要的测序样本量要比单细胞中本身所含有的基因组及转录组分子高出好多个数量级,所以这对核酸扩增技术(amplification technology)也是一大考验。面对如此微量的分子,任何降解、样品损失、或者污染都会对测序质量带来非常严重的影响。而且多重扩增又容易带来试验误差,比如基因组或转录组覆盖不均一、背景噪声以及定量不准确等问题。 最近所取得的技术进步有望部分解决上述问题,使单细胞测序技术能够走进更多的实验室,解决更多领域的科学问题。比较罕见的细胞、异质性的样本、与遗传嵌合或突变相关的表型、不能人工培养的微生物,这些都是单细胞测序技术能够一展所长的研究平台。使用单细胞测序技术能够发现克隆突变(clonal mutation)、隐藏的细胞类型,或者在大块组织样品研究工作中被―稀释‖或平均掉的转录特征。 1.1 选择恰当的细胞 说到分离单细胞,显微操作(micromanipulation)无疑是一项非常精确的技术,而且利用

单细胞测序技术大比拼

单细胞测序技术大PK 随着“人类细胞图谱”计划的开展,单细胞测序技术已经进入2.0时代,尤其,基于微液滴或者微流控芯片技术的高通量单细胞分选平台的出现,引领生命科学研究进入单细胞生物学时代。 目前,国内外以及各种文献报道的单细胞测序技术让人眼花缭乱,不知该如何选择。其实,国内外大规模单细胞技术的平台主要有C1?单细胞全自动制备系统、ICELL8 Single-Cell System、Illumina?Bio-Rad?Single-Cell Sequencing Solution、BD Rhapsody? S ingle-Cell Analysis System和10X Chromium Single Cell Gene Expression Solution这五种,接下来小编就带你一一了解下: 10X GENOMICS技术简介 ChromiumTM Single Cell 3′Solution是基于10 X Genomics平台,能够一次性分离、并标记500–10000个单细胞,并能在单细胞水平进行检测的技术,其通过微流控系统,将单细胞或长片段DNA分子快速分配到油包水的微反应体系中,每个微反应体系中的单DNA 分子会获得唯一的特异性分子标签,制备生成的测序文库可以在illumina平台进行测序,并由10x Genomics提供数据分析及可视化软件,测序实验及分析流程可以和illumina系统无缝衔接。 10×genomics技术一次可以同时得到大量大细胞数据,但只能得到mRNA信息,LncRNA 大部分信息丢失,UMI技术能很好去除认为分析引入duplication及PCR引入SNP位点。同样对RNA质量要求高,降解同样会引起5’端信息丢失。 10X GENOMICS单细胞转录组测序优缺点 10x Genomics单细胞转录组测序优点 1、简单便捷:集单细胞分选、扩增、建库于一体;

单细胞全基因组测序

单细胞全基因组测序 单细胞全基因组测序技术是在单细胞水平对全基因组进行扩增与测序的一项新技术。其原理是将分离的单个细胞的微量全基因组DNA进行扩增,获得高覆盖率的完整的基因组后进行高通量测序用于揭示细胞群体差异和细胞进化关系。 从方法学角度来看,获得高覆盖率高保真性的全基因组扩增产物是准确全面的测序结果的保障。多重置换扩增(multiple displacement amplification,MDA)利用随机引物和等温扩增可以获得高保真的DNA大片段,但该方法的主要缺陷在于非平衡的基因组覆盖率、扩增偏倚、嵌合序列及非特异扩增等[1]。尽管各种改进的策略正在逐步减少这些缺陷,高覆盖率、高保真性及高特异性的扩增仍然是亟待解决的问题。另外,还有科研人员利用DOP-PCR进行全基因组扩增(whole-genome amplification,WGA)及DNA测序对单个乳腺癌细胞进行了拷贝数变异的分析,进而推断出细胞的群体结构和肿瘤的进化过程。但是由于该方法的基因覆盖率较低,而且不能在单个核苷酸的分辨率上评价单个肿瘤细胞的遗传学特征,故并不能检测在肿瘤发展过程中发挥重要作用的单个核苷酸的改变。2012年,哈佛大学谢晓亮院士在《Science》发表了单细胞全基因组扩增新技术MALBAC(Multiple Annealing and Looping Based Amplification Cycles,简称MALBAC),即多次退火环状循环扩增技术[2][3]。不同于以往的非线性或指数型扩增方法,MALBAC技术利用特殊引物,使得扩增子的结尾互补而成环,从而很大程度上防止了DNA的指数性扩增,从而解决了基因组扩增对微量初始模板过大的扩增偏倚,并使基因组测序的模板需求量从μg级降至单细胞水平。MALBAC技术原理如下: 图1:MALBAC技术原理

单细胞测序技术大比拼

单细胞测序技术大PK随着“人类细胞图谱”计划得开展,单细胞测序技术已经进入2、0时代,尤其,基于微液滴或者微流控芯片技术得高通量单细胞分选平台得出现,引领生命科学研究进入单细胞生物学时代。 目前,国内外以及各种文献报道得单细胞测序技术让人眼花缭乱,不知该如何选择。其实,国内外大规模单细胞技术得平台主要有C1?单细胞全自动制备系统、ICELL8 Single—CellSystem、Illumina?Bio-Rad?Single-Cell Sequencing Solution、BD Rhapsody? S ingle—Cell AnalysisSystem与10X Chromium Single Cell Gene Expression Solution这五种,接下来小编就带您一一了解下: 10X GENOMICS技术简介 ChromiumTM Single Cell 3′Solution就是基于10 X Genomics平台,能够一次性分离、并标记500–10000个单细胞,并能在单细胞水平进行检测得技术,其通过微流控系统,将单细胞或长片段DNA分子快速分配到油包水得微反应体系中,每个微反应体系中得单DNA分子会获得唯一得特异性分子标签,制备生成得测序文库可以在illumina平台进行测序,并由10x Genomics提供数据分析及可视化软件,测序实验及分析流程可以与illumina系统无缝衔接。 10×genomics技术一次可以同时得到大量大细胞数据,但只能得到mRNA信息,LncRNA大部分信息丢失,UMI技术能很好去除认为分析引入duplication及PCR引入SNP 位点。同样对RNA质量要求高,降解同样会引起5'端信息丢失. 10X GENOMICS单细胞转录组测序优缺点 10xGenomics单细胞转录组测序优点 1、简单便捷:集单细胞分选、扩增、建库于一体; 2、细胞通量高:每个样本细胞数可达500—10000个;

单细胞测序技术

单细胞测序技术 全自动实验室样品处理工作平台Biomek? 4000真正实现了操作管理的智能化、流程设计的模块化、台面布局的灵活性和操作界面的图形化;其功能强大,简单高效,实验结果精确可靠,使科研人员脱离了繁杂的实验操作;标准化的实验流程的建立减少了人为误差,不断升级的实验操作和应用使得现在和将来的多种实验应用成为可能。Biomek? 4000基于模块化设计,您可以根据不断变化的实验需求变换台面布局;可更换的台面布局、不断升级的实验操作和应用使得现在和将来的多种实验应用成为可能。其Biomek软件的操作界面直观、简单,无论您是自动化的初次使用者,还是经验丰富的专家,建立、编辑或者运行自动化程序都毫不费力。 Biomek? 4000自动化液体处理工作站真正实现了操作管理的智能化、流程设计的模块化、台面布局的灵活性和操作界面的图形化,功能强大,简单高效,实验结果精确可靠,使科研人员脱离了繁杂的实验操作,建立标准化的实验流程,将更多的精力投入到实验方案的设计:Biomek? 4000基于模块化设计,您可以根据不断变化的实验需求变换台面布局;可更换的台面布局、不断升级的实验操作和应用使得现在和将来的多种实验应用成为可能。其Biomek软件的操作界面直观、简单,无论您是自动化的初次使用者,还是经验丰富的专家,建立、编辑或者运行自动化程序都毫不费力。

Biomek? 4000实验室自动化工作站可轻松精准地完成移液、梯度稀释、分液以及合并液体等液体处理工作,满足客户不断变化的需求,被广泛应用于生物工程、DNA质粒纯化、药物筛选、ELISA反应、PCR前处理、DNA测序处理、临床检验样品处理及血站系统高通量样品分析工作。其自动化的操作过程可有效减少人为操作的误差,提高实验的重复性,降低液体处理等工作中的样品处理成本,满足广大客户目前和将来科研的广泛需求。

人类单细胞基因组测序

单细胞测序 随着现代生物学的发展,基于细胞群体的研究已无法解决细胞异质性的难题。单细胞测序通过对单个细胞进行基因组或转录组测序,解决了1)用组织样本无法获得不同单个细胞的异质性信息、2)样本量太少无法进行常规测序的难题,为科学家研究解析单个细胞的行为、机制、与机体的关系等提供了新方向。 2011 年,《Nature Methods》杂志将单细胞测序列为年度值得期待的技术之一[1];2013 年,《Science》杂志将单细胞测序列为年度最值得关注的六大领域榜首[2],单细胞测序已成为科研热点。 目前,单细胞测序主要涉及全基因组DNA、外显子、mRNA以及lincRNA(同时获得lincRNA和mRNA的序列和表达信息)四个方面。 技术路线 技术参数

产品优势 最严格的数据指控标准 诺禾建立了新一代高通量测序平台,包括10台Hiseq X 测序仪,10台Hiseq 2500,从样品检测到文库构建采用最严格的指控标准,从源头保证了数据的可靠性。采用国际认可的全基因组扩增技术 DNA 水平:诺禾致源采用多次退火环状循环扩增技术(MALBAC),MALBAC 扩增具有低偏倚性。最新《Science》 文章比较MALBAC 与MDA 扩增技术,发现MALBAC 扩增后的数据与混合建库的数据质量更为接近(如图1)[3]。该技 术应用于单精子测序,研究成果 [4]已在《Science》杂志发表。RNA 水平:诺禾致源采用SMARTer 扩增技术(美国Clontech 公司原装试剂盒),能够对单个细胞、微量细胞(几个到几千个)和微量Total RNA(10 pg-10 ng)中含PolyA 尾的RNA 全长进行准确而高效地扩增,扩增后的cDNA 片段适用于Illumina 建库测序平台,为单细胞样本的RNA-seq 分析提供了利器。 图2 SMARTer 扩增无3'和5'端偏好性 定制化信息分析 针对不同项目,除了进行标准信息分析外,通过和合作伙伴共同探讨,制定可行的个性化信息分析方案,整合各种主流软件,优化分析结果,以确保结果的准确性及创新性。 丰富的项目经验 团队成员作为通讯作者参与了多项单细胞测序研究,包括单精子全基因组测序[4],单细胞转录组测序[5],相关研究成 果在《Science》,《Nature Structural & Molecular Biology》顶级科学期刊上发表。 图1 MALBAC 扩增与 MDA 扩增后的数据比较

最新单细胞测序技术被评为年度技术

最新单细胞测序技术被评为年度技术 时近岁末,各大杂志接连进行了年终盘点,12月30日的《Nature Methods》也盘点了年度技术,选出了13年最受关注,影响广泛的技术成果:单细胞测序(single-cell sequencing)。 在题为“Method of the Year 2013”的重要评论文章中,作者指出每个细胞都是独一无二的,它占据着特定的空间位置,在它的复制基因组中携带着独特的错误,易受到编程及诱导的基因表达改变的影响。然而,大多数的DNA和RNA测序针对的都是组织样本或细胞群,这使得细胞之间的生物差异有可能被平均值所掩盖或是被误认做为技术噪音。 单细胞技术为仔细分析这种异质性提供了一条新途径。单细胞DNA测序可以揭示出往往具有高突变率的癌细胞基因组中的变异和结构改变。可以利用这一信息来阐明克隆结构,追踪疾病的演化和扩散。这些方法也揭示出了诸如大脑等体细胞组织中惊人水平的嵌合现象。 细胞之间RNA水平上的差异则更大,即便是那些看似相同的细胞群,比如基于细胞表面标志物纯化出来的免疫细胞。单细胞转录组分析可以鉴别出细胞内的生物相关差异,甚至是在根据标记基因或细胞形态有可能无法区分这些细胞之时,并可以一种无偏倚的方式用于细胞分群。 单细胞测序的另一个优点是,它使得分析稀有细胞变得更为容易。它

还可以在基因组水平上对来自非常特异时空条件下的细胞,包括从环境中取样的微生物细胞进行分析。在临床上,单细胞测序还可以帮助对体外受精胚胎进行植入前筛查;基于少见的循环肿瘤细胞进行癌症诊断。 将范围缩小至细胞水平所面对的一个中心挑战就是,如何捕获微量的模板并对其进行扩增生成高通量测序所需的足够材料。在大量扩增过程中维持保真度及避免偏差并非是一件轻而易举之事,但其对于确保充分的序列覆盖度、准确的定量及检测序列变异却至关重要。近期一些改良的实验方案和商业产品使得单细胞测序方法更易于为研究人员所采用。微流体和微孔板技术也在提高可重现性和规模。 另外,在本期《Nature methods》的专题中还发表了一系列展望、技术新闻和评论文章,对于单细胞测序的一些基本流程、因素、应用领域及深远影响和意义,以及其他一些单细胞研究方法如原位杂交、单细胞表观基因组分析、细胞计数和质谱法进行了概述和讨论。 Once considered a technical challenge reserved for a few specialized labs, single-cell transcriptome and genome sequencing is becoming robust and broadly accessible w w.c e l s e r v i c e.c n. Exciting insights from recent studies are revealing the potential to understand biology at the unitary resolution of life, and last year marked a turning point in the widespread adoption of these methods to address a variety of research questions. For these reasons, single-cell sequencing is our

单细胞基因测序

Highthroughput with microfluidic droplet barcoding The application of single-cell genome sequencing to large cell populations has beenhindered by technical challenges in isolating single cells during genome preparation. Herewe present single-cell genomic sequencing (SiC-seq), which uses droplet microfluidics toisolate, fragment, and barcode the genomes of single cells, followed by Illumina sequencingof pooled DNA. We demonstrate ultra-high sequencing throughput of >50,000 cells per runin a synthetic community of Gram negative and Gram-positive bacteria and fungi. Thesequenced genomes can be sorted in silico based on characteristic sequences. We use thisapproach to analyze the distributions of antibiotic resistance genes, virulence factors, andphage sequences in microbial communities from an environmental sample. The ability toroutinely sequence large populations of single cells will enable the de-convolution of geneticheterogeneity in diverse cell populations. Main: Organisms are living expressions of their genomes and, hence, genome sequencing is apowerful way to study how they grow and function. Organisms are phenotypically diverse,and this diversity is mirrored by heterogeneity at the genomic level and plays important rolesin populations as a whole, particularly among populations of single cells. A commonchallenge when applying single cell sequencing to heterogeneous systems is that they oftencontain massive numbers of cells: a centimeter-sized tumor can contain hundreds of millionsof cancer cells1, while a milliliter of seawater can contain millions of microbes2. Moreover,each cell has a tiny quantity of DNA, making it challenging to accurately amplify andsequence single

单细胞测序技术

细胞: 细胞(英文名:cell)并没有统一的定义,比较普遍的提法是:细胞是生物体基本的结构和功能单位。已知除病毒之外的所有生物均由细胞所组成,但病毒生命活动也必须在细胞中才能体现。 一般来说,细菌等绝大部分微生物以及原生动物由一个细胞组成,即单细胞生物,高等植物与高等动物则是多细胞生物。细胞可分为原核细胞、真核细胞两类,但也有人提出应分为三类,即把原属于原核细胞的古核细胞独立出来作为与之并列的一类。研究细胞的学科称为细胞生物学。 单细胞测序技术: 单细胞测序技术自2009年问世,2013年被Nature Methods 评为年度技术以来,越来越多地被应用在科研领域。 2015年以来,10X Genomics、Drop-seq、Micro-well、Split-seq等技术的出现,彻底降低了单细胞测序的成本门槛。 自此,单细胞测序技术被广泛应用于基础科研和临床研究。单细胞在许多领域都占有一席之地,对于癌症早期的诊断、追踪以及个体化治疗具有重要意义。 1 为什么要做单细胞测序? 初次听说单细胞测序技术,单细胞测序又是什么噱头?如果单细胞测序就能测一个细胞或几个细胞的话,这有什么意义?特别是对异质性高的肿瘤组织来讲,测一个细胞能代表什么?

无论是蠕虫,蓝鲸,还是人类,自然界所有的多细胞生命都是从单个细胞发育而来开始。 这样一个单细胞,鬼斧神工地构建出有机生命体所需的各种组织、器官、系统。每个新细胞在正确的时间,在正确的地方分裂、分化,并与相邻细胞协调精准发挥功能。 多细胞生命的发育过程,是自然界中最引人注目的壮举之一。尽管经过数十年的研究,生物学家仍然无法完全理解这一过程。 2018年4月26日,Science杂志发表三篇超重磅研究,来自哈佛医学院和哈佛大学的研究人员使用多种技术组合,包括对发育中斑马鱼和青蛙胚胎数千个单细胞的基因测序,以精确的方式跟踪和描绘了组织和整个机体从单细胞发育的完整历程。 哈佛大学分子和细胞生物学教授Alexander Schier表示,“这几乎就像通过几颗星星看到了整个宇宙。” 使用单细胞测序技术,研究团队在胚胎发育的最初24小时内追踪单个细胞的命运,揭示出单个细胞基因开启或关闭的综合景观,以及胚胎细胞何时何地转变为新的细胞状态和类型。 这些发现就好比是勾勒出胚胎发育过程中产生不同细胞类型的遗传“配方”目录,为发育生物学的深入研究和疾病的认识,提供了前所未有的资源。 图|斑马鱼受精卵在4、6、8、10......小时(hpf)时的发育过程中不同器官细胞形成,最中心的深蓝色为受精卵,以时间为单位向外辐射。

单细胞测序技术

单细胞测序,即在单个细胞水平上对基因组进行测序,将基因测序应用到单个细胞水平,对于识别细胞的类型和功能、特定细胞的健康或状态的变化和变异非常重要,在神经生物学、生殖系传播、器官生长和癌症生物学等领域得到了广泛的应用。 单细胞测序技术是一种可以在单细胞水平上对基因组或转录组进行高通量测序分析的新技术。与传统的高通量测序相比,单细胞测序不仅可以分析表型相同的细胞的异质性,还可以获得难以培养的微生物的遗传信息和珍贵的临床样本信息,具有广阔的应用前景。细胞是生命的单位。 目前,基因检测大多是从组织中提取DNA进行测序。实验结果往往是细胞群体中信号表达的平均值,是细胞群体的整体表征,或者只代表数量上占优势的细胞的信息。单个细胞的独特细胞特性通常被忽略。 然而,大量研究发现,同一器官或组织中的同种细胞也表现出明显的异质性,并且每个细胞都有自己独特的表达模式。例如,实体瘤样本的总RNA有一半以上来自非癌细胞(成纤维细胞、淋巴细胞、巨噬细胞等),因此癌细胞的信号可能会被隐藏起来。因此,用均值来刻画单个细胞是不合适的,而且可能会丢失许多关键信息。 另一方面,传统的高通量测序方法难以应用于自然界难以培养的微生

物研究、稀有循环肿瘤细胞的转录组分析、胚胎发生最早阶段的分化特征研究、肿瘤异质性和微进化研究等研究领域。随着细胞分选和测序技术的发展,单细胞测序技术应运而生。 (1)单细胞测序技术备受关注。 《自然方法》(Nature Methods)杂志将单细胞研究方法列为未来几年最值得关注的技术领域之一。《科学》杂志将单细胞测序评为本年度最值得关注的六个领域之首。 (2)单细胞测序工艺流程。 1.单细胞分离。 研究单个细胞时,首先要分离单个细胞,确保其生物完整性不被破坏。目前常用的单细胞分离方法有连续稀释法、微操作法、激光捕获微切割法、拉曼镊子法、荧光激活细胞分选法和微流控技术。 2.细胞裂解和基因组获取。 溶解细胞获得基因组(DNA或RNA)是一个关键步骤,要尽可能保证基因组的完整性。目前,细胞裂解方法可分为三大类:物理法、化学法和生物酶降解法。 3.全基因组扩增。 由于单个细胞中的基因含量达不到测序仪的检测线,因此有必要对基

单细胞测序技术应用和发展现状研究

单细胞测序技术应用和发展现状研究 单细胞测序( Single-Cell Sequencing) 即从单个细胞水平上对基因组进行测序,把基因测序应用到单个细胞层面,对于识别细胞的类型、功能,特定细胞健康或状态的变化、变异至关重要,已广泛应用于神经生物学,种系传播,器官生长,癌症生物学等多个领域。 一、背景概况 单细胞测序技术是指能够在单个细胞的水平上,对基因组或转录组进行高通量测序分析的一项新技术。与传统高通量测序相比,单细胞测序不仅能够分析相同表型细胞的异质性,还能获取难以培养微生物的遗传信息以及珍贵的临床样本的信息,具有广阔的应用前景。细胞是生命的单位,目前大部分的基因检测均是从组织中抽提DNA 来进行测序,得到的实验结果往往是细胞群体中信号表达的均值,是对细胞群体进行整体表征,或者只代表其中在数量上占优势的细胞信息,单个细胞独有的细胞特性往往被忽略。而大量研究发现在同一器官或组织的相同类型细胞也表现出显着的异质性,每个细胞都有其独特的表达模式。例如实体瘤样本的总RNA,一半以上来源于非癌细胞(成纤维细胞、淋巴细胞、巨噬细胞等),使得癌细胞的信号可能被隐藏。因此,采用均值对单个细胞进行表征是不合适的,可能会丢失许多关键信息。另一方面,传统高通量测序方法,难以应用在对自然界中难培养的微生物的研究、罕见循环肿瘤细胞的转录组分析、胚胎发生最早期的分化特征研究、肿瘤的非均质性和微进化研究等精确程度较高的研究领域。随着细胞分选和测序技术进步,单细胞测序技术应运而生。 (一)单细胞测序技术颇受关注 《Nature Methods》杂志将单细胞研究方法列为未来几年最值得关注的技术领域之一。《Science》杂志将单细胞测序列为年度最值得关注的六大领域榜首。

单细胞测序在表观遗传学中的应用

单细胞测序在表观遗传学中的应用 (2018年10月) 单细胞测序(single cell sequencing)是指先分离纯化单个细胞,并提取该细胞的DNA 或RNA进行扩增后测序的技术1。该技术起步虽不太久,但已深受关注,被竞相用于研发和生产、医用2。相比于宏观组织样品的测序,单细胞测序对于细胞和组织的异质性具有更加明确的分辩,当然,难度也相对更高。 由于在某些组织或研究领域(如癌症、干细胞池等),细胞处于显著的动态发展中,细胞与细胞间差异巨大,而后续的显著变化(如成瘤、分化等)、组织的异质性,却往往来源于一个细胞克隆。从而,利用表观遗传学(epigenetics)这种非基因组核酸序列的功能差异,对基因组DNA序列的物理修饰,关联和构象进行研究,将它们与表观遗传记忆,细胞特性和组织特异性功能联系起来,来研究某一组织生理病理的变化就具有了极大的必要性3。此时,如果笼统考察组织块的表观遗传学改变,很容易模糊了幂律分布下细胞水平的差异4;相反,结合单细胞测序方法,可用来捕获DNA甲基化,染色质可及性,组蛋白修饰,染色体构象和复制动态以及非编码RNA修饰等,这些技术正迅速成为细胞可塑性和多样性研究的有力工具,可着眼于癌症、干细胞等早期的表观遗传学变化,对于理解病因、早期诊断、晚期控制等方面具有极高的价值,为基因调控和疾病预后提供了有价值的见解5。 单细胞分辨率下表征表观基因组的实验方法的快速发展,为更好地理解表观遗传机制及其与基因调控的错综复杂的关系提供了有力工具。在单细胞水平上,表征和区分表观遗传动力学是可行的;虽然单细胞分析不能替代介入分析,但可以与其结合以区分间接相关与直接相关;此外在单细胞水平上表征和区分表观遗传维持和重编程的动态也是可行的,单细胞表观基因组还可用于定义功能亚群和微环境,而不仅仅着眼于表观遗传调控本身,例如在研究肿瘤病理学及干细胞时,当RNA不能容易地和快速地提取或当转录所研究的细胞的转录状态不稳定或过于动态,基因组学和转录组学可能无法为手头的问题提供明确的答案时,单细胞表观基因组可能提供最佳的方法来研究种群内的单细胞,用来从全基因组水平全面且无偏倚的表征肿瘤病理学或干细胞微环境6,7。 尽管分离纯化单细胞难度较高,而且DNA的表观遗传修饰很难通过传统的聚合酶进行扩 1

相关文档