文档库 最新最全的文档下载
当前位置:文档库 › 图论最短路径分析及应用

图论最短路径分析及应用

图论最短路径分析及应用
图论最短路径分析及应用

最短路问题及其应用

1 引言

图论是应用数学地一个分支,它地概念和结果来源非常广泛,最早起源于一些数学游戏地难题研究,如欧拉所解决地哥尼斯堡七桥问题,以及在民间广泛流传地一些游戏难题,如迷宫问题、博弈问题、棋盘上马地行走路线问题等.这些古老地难题,当时吸引了很多学者地注意.在这些问题研究地基础上又继续提出了著名地四色猜想和汉米尔顿(环游世界)数学难题.

1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学地发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学等各个领域地问题时,发挥出越来越大地作用.在实践中,图论已成为解决自然科学、工程技术、社会科学、军事等领域中许多问题地有力工具之一.

最短路问题是图论理论地一个经典问题.寻找最短路径就是在指定网络中两结点间找一条距离最小地路.最短路不仅仅指一般地理意义上地距离最短,还可以引申到其它地度量,如时间、费用、线路容量等.

最短路径算法地选择与实现是通道路线设计地基础,最短路径算法是计算机科学与地理信息科学等领域地研究热点,很多网络相关问题均可纳入最短路径问题地范畴之中.经典地图论与不断发展完善地计算机数据结构及算法地有效结合使得新地最短路径算法不断涌现.

2 最短路

2.1 最短路地定义

对最短路问题地研究早在上个世纪60年代以前就卓有成效了,其中对赋权图()0

w≥地有效算法是由荷兰著名计算机专家E.W.Dijkstra在1959年首次提出地, ij

该算法能够解决两指定点间地最短路,也可以求解图G中一特定点到其它各顶点地最短路.后来海斯在Dijkstra算法地基础之上提出了海斯算法.但这两种算法都不能解决含有负权地图地最短路问题.因此由Ford提出了Ford算法,它能有效地解决含有负权地最短路问题.但在现实生活中,我们所遇到地问题大都不含负权,所以我们在()0

w≥地情况下选择Dijkstra算法.

ij

定义①1若图G=G(V,E)中各边e都赋有一个实数W(e),称为边e地权,则称这

种图为赋权图,记为G=G(V ,E,W).定义②2若图G=G(V ,E)是赋权图且()0W e ≥,()e E G ∈,若u 是i v 到j v 地路

()W u 地权,则称()W u 为u 地长,长最小地i v 到j v 地路()W u 称为最短路.

若要找出从i v 到n v 地通路u ,使全长最短,即()()min ij e u

W u W e ∈=∑.

2.2 最短路问题算法地基本思想及基本步骤

在求解网络图上节点间最短路径地方法中,目前国内外一致公认地较好算法有迪杰斯特拉(Dijkstra)及弗罗伊德(Floyd)算法.这两种算法中,网络被抽象为一个图论中定义地有向或无向图,并利用图地节点邻接矩阵记录点间地关联信息.在进行图地遍历以搜索最短路径时,以该矩阵为基础不断进行目标值地最小性判别,直到获得最后地优化路径.Dijkstra 算法是图论中确定最短路地基本方法,也是其它算法地基础.为了求出赋权图中任意两结点之间地最短路径,通常采用两种方法.一种方法是每次以一个结点为源点,重复执行Dijkstra 算法n 次.另一种方法是由Floyd 于1962年提出地Floyd 算法,其时间复杂度为()3O n ,虽然与重复执行Dijkstra 算法n 次地时间复杂度相同,但其形式上略为简单,且实际运算效果要好于前者.Dijkstra 算法基本步骤:

令:},,,{,1},{32n i v v v s i v s ===-

并令:{

-

∈∞==s

v v T v W j j ,)(0

)(1

1、对-

∈s v j ,求).(})(),{T(v min j j i v T w v W ij =+ 2、求)}({min j s

v v T j ∈得)T(v k ,使)}({min )(j s

v k v T v T j ∈=

令)()(k k v T v W =

3、若n k v v =则已找到1v 到n v 地最短路距离)(k v W ,否则令k i =从-

s 中删去i v 转1

这样经过有限次迭代则可以求出1v 到n v 地最短路线,可以用一个流程图来表示:

第一步 先取0)(1=v W 意即1v 到1v 地距离为0,而)(j v T 是对)(j v T 所赋地初值.

第二步 利用)(1v W 已知,根据})(),{T(v min j ij w v W i +对)(j v T 进行修正. 第三步 对所有修正后地)(j v T 求出其最小者)(k v T .其对应地点k v 是1v 所能一步到达地店j v 中最近地一个,由于所有0)(≥u W .因此任何从其它点j v 中转而到达k v 地通路上地距离都大于1v 直接到k v 地距离)(k v T ,因此)(k v T 就是1v 到

k v 地最短距离,所以在算法中令)()(k k v T v W =并从s 中删去k v ,若k=n 则)()(n k v T v W =就是1v 到n v 地最短路线,计算结束.否则令k i v v =回到第二部,

计算运算,直到k=n 为止.这样每一次迭代,得到1v 到一点k v 地最短距离,重复上述过程直到

n k v v =.

Floyd 算法地基本原理和实现方法为:如果一个矩阵[]ij d D =其中0>ij d 表示i 与j 间地距离,若i 与j 间无路可通,则ij d 为无穷大.i 和j 间地最短距离存在经

过i 和j 间地k 和不经过k 两种情况,所以可以令,,,3,2,1n k =n(n 为节点数).检查ij d 与kj ik d d +地值,在此,ik d 与kj d 分别为目前所知地i 到k 与k 到j 地最短距离,因此,kj ik d d +就是i 到j 经过k 地最短距离.所以,若有kj ik ij d d d +>就表示从i 出发经k 再到j 地距离要比原来地i 到j 距离短,自然把i 到j 地ij d 写成

kj ik d d +.每当一个k 搜索完,ij d 就是目前i 到j 地最短距离.重复这一过程,最后

当查完所有k 时,ij d 就为i 到j 地最短距离.3 最短路地应用

例2 从北京(Pe )乘飞机到东京(T)、纽约(N)、墨西哥城(M)、伦敦(L)、巴黎(Pa)五城市做旅游,每城市恰去一次再回北京,应如何安排旅游线,使旅程最短?各城市之间地航线距离如下表:

解:编写程序如下: clc,clear

a(1,2)=56;a(1,3)=35;a(1,4)=21;a(1,5)=51;a(1,6)=60; a(2,3)=21;a(2,4)=57;a(2,5)=78;a(2,6)=70; a(3,4)=36;a(3,5)=68;a(3,6)=68; a(4,5)=51;a(4,6)=61; a(5,6)=13; a(6,:)=0; a=a+a'; c1=[5 1:4 6];

L=length(c1);

flag=1;

while flag>0

flag=0;

for m=1:L-3

for n=m+2:L-1

if

a(c1(m),c1(n))+a(c1(m+1),c1(n+1))

flag=1;

c1(m+1:n)=c1(n:-1:m+1);

end

end

end

end

sum1=0;

for i=1:L-1

sum1=sum1+a(c1(i),c1(i+1));

end

circle=c1;

sum=sum1;

c1=[5 6 1:4];%改变初始圈,该算法地最后一个顶点不动

flag=1;

while flag>0

flag=0;

for m=1:L-3

for n=m+2:L-1

if a(c1(m),c1(n))+a(c1(m+1),c1(n+1))<...

a(c1(m),c1(m+1))+a(c1(n),c1(n+1))

flag=1;

c1(m+1:n)=c1(n:-1:m+1);

end

end

end

end

sum1=0;

for i=1:L-1

sum1=sum1+a(c1(i),c1(i+1));

end

if sum1

sum=sum1;

circle=c1;

end

circle,sum

版权申明

本文部分内容,包括文字、图片、以及设计等在网上搜集整理.

版权为个人所有

This article includes some parts, including text, pictures, and design. Copyright is personal ownership.SixE2。

用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本

文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.6ewMy。

Users may use the contents or services of this article for personal study, research or appreciation, and other

non-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.kavU4。

转载或引用本文内容必须是以新闻性或资料性公共免费信息为

使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.y6v3A。

Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.M2ub6。

最短路径分析(代码)

最短路径分析(源码) using System; ArcEngine using ESRI.ArcGIS.Carto; using ESRI.ArcGIS.Geometry; using ESRI.ArcGIS.Geodatabase; using https://www.wendangku.net/doc/5012149409.html,workAnalysis;//12 namespace GisEditor { ///

/// 最短路径分析 /// public class ClsPathFinder { private IGeometricNetwork m_ipGeometricNetwork; private IMap m_ipMap; private IPointCollection m_ipPoints; private IPointToEID m_ipPointToEID; private double m_dblPathCost =0; private IEnumNetEID m_ipEnumNetEID_Junctions; private IEnumNetEID m_ipEnumNetEID_Edges; private IPolyline m_ipPolyline; #region Public Function //返回和设置当前地图 public IMap SetOrGetMap { set{ m_ipMap = value;} get{return m_ipMap;} } //打开几何数据集的网络工作空间 public void OpenFeatureDatasetNetwork(IFeatureDataset FeatureDataset) { CloseWorkspace(); if (!InitializeNetworkAndMap(FeatureDataset)) Console.WriteLine( "打开network出错"); } //输入点的集合 public IPointCollection StopPoints { set{m_ipPoints= value;} get{return m_ipPoints;}

(完整版)八年级最短路径问题归纳小结

八年级数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.

在直线l 上求一点P ,使PB PA -的值最大. 作直线AB ,与直线l 的交 点即为P . 三角形任意两边之差小于 第三边.PB PA -≤AB . PB PA -的最大值=AB . 【问题11】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作B 关于l 的对称点B '作直线A B ',与l 交点即 为P . 三角形任意两边之差小于 第三边.PB PA -≤AB '. PB PA -最大值=AB '. 【问题12】“费马点” 作法 图形 原理 △ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小. 所求点为“费马点”,即满足∠APB =∠BPC =∠ APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求. 两点之间线段最短. P A +PB +PC 最小值=CD . 【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有 一点P ,使PD +PE 的和最小,则这个最小值为( ) A .3 B .26 C .3 D 6 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32+ D .4 l B A l P A B l A B l B P A B' A B C P E D C B A A D E P B C

最短路径分析

分类号 密级 编号 2015届本科生毕业论文 题目基于AHP决策分析法和Dijkstra 算法的最短路径 学院资源与环境工程学院 姓名杜玉琪 专业地理科学 学号20111040205 指导教师王荣 提交日期2015年5月8日

原创性声明 本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果。学位论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处。除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。 本声明的法律责任由本人承担。 论文(设计)作者签名: 指导老师签名: 签名日期: 2013 年 5 月18 日 目录

0 引言 (3) 1 研究区概况 (4) 2.数据来源与研究方法 (4) 2.1数据来源 (4) 2.2研究方法 (5) 2.2.1AHP决策分析方法 (5) 2.2.2Dijkstra算法 (6) 3实例分析 (7) 3.1 基于AHP对3A级景区决策分析 (7) 3.1.1层次结构模型的构造 (7) 3.1.2模型计算过程 (8) 3.1.3结果分析 (10) 3.2基于Dijkstar算法对3A级景点旅游路线的设计 (10) 3.2.1旅游路线模型构造 (10) 3.2.2模型计算与分析 (13) 4结语 (13) 参考文献 (14) 致谢 (15) 基于AHP决策分析法和Dijkstar算法的最短路径分析

——以天水市3A级旅游景点为例 杜玉琪 (天水师范学院资源与环境工程学院甘肃天水741000) 摘要:随着西部旅游业的发展,旅游最佳路线的选择变得越来越重要。本文运用AHP决策分析的方法进行综合评价分析天水市众多旅游景点中的麦积石窟、伏羲庙、玉泉观、南郭寺、大象山、武山水帘洞、清水温泉,这7个3A级景点各自的旅游价值。再通过Dijkstar算法,对上述旅游景点的最短旅游路线的选择进行研究,最终为不同要求的游客提供出最佳的旅游路线。 关键字:AHP决策分析;Dijkstar算法;最短路径分析;天水市 Based on the AHP decision analysis method and the analysis of Dijkstar algorithm of the shortest path ——in tianshui 3 a-class tourist attractions as an example Abstract:With the development of the western tourism, tourism optimal route choice is becoming more and more important.This article applies the method of AHP decision analysis on comprehensive evaluation analysis of the numerous tourist attractions tianshui wheat product, yuquan view, nanguo temple grottoes, fu xi temple, the elephant, wushan waterfall cave, water hot springs, the seven aaa scenic spot tourism value. Again through the Dijkstra algorithm, the choice of the tourist attractions of the shortest travel route, finally for different requirements of the best travel route for tourists. Key words: Analytic hierarchy process; Dijkstar; Shortest path; tianshui city 0 引言 随着西部旅游业如火如荼的发展,天水市自驾旅游开始被越来越多的人选择。自驾车旅游者追求以最少的花销走更远的路,看更优美的风景。因此设计出一条多景点间距离最短(或费用,时间最少)的旅游线路是自驾车游客的现实需求[1]。而对于旅游景点的评价及旅游线路的选择问题,是旅游学术界一直关注的课题。众多学者所采用的方法,大体可归纳为主观定性评价和客观定量评价。景点评价方法在我国开展的时间并不长,主要侧重定性描述,较缺乏定量

gis计算最短路径的Dijkstra算法详细讲解

最短路径之Dijkstra算法详细讲解 1最短路径算法 在日常生活中,我们如果需要常常往返A地区和B 地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。算法具体的形式包括: (1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。 (2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。 (3)确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。 (4)全局最短路径问题:求图中所有的最短路径。 用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。最常用的路径算法

有:Dijkstra算法、A*算法、Bellman-Ford算法、Floyd-Warshall算法、Johnson算法。 本文主要研究Dijkstra算法的单源算法。 2Dijkstra算法 2.1 Dijkstra算法 Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。 Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。 2.2 Dijkstra算法思想 Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U 表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S 中的顶点为中间顶点的当前最短路径长度。 2.3 Dijkstra算法具体步骤 (1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。 (2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 (3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u 的距离值,修改后的距离值的顶点k的距离加上边上的权。 (4)重复步骤(2)和(3)直到所有顶点都包含在S中。 2.4 Dijkstra算法举例说明 如下图,设A为源点,求A到其他各顶点(B、C、D、E、F)的最短路径。线上所标注为相邻线段之间的距离,即权值。(注:此图为随意所画,其相邻顶点间的距离与图中的目视长度不能一一对等)

最短路径流程图及算法详解

:算法的设计思想 本算法采用分支定界算法实现。构造解空间树为:第一个城市为根结点,与第一个城市相邻的城市为根节点的第一层子节点,依此类推;每个父节点的子节点均是和它相邻的城市;并且从第一个根节点到当前节点的路径上不能出现重复的城市。 本算法将具有最佳路线下界的节点作为最有希望的节点来展开解空间树,用优先队列实现。算法的流程如下:从第一个城市出发,找出和它相邻的所有城市,计算它们的路线下界和费用,若路线下界或费用不满足要求,将该节点代表的子树剪去,否则将它们保存到优先队列中,并选择具有最短路线下界的节点作为最有希望的节点,并保证路径上没有回路。当找到一个可行解时,就和以前的可行解比较,选择一个较小的解作为当前的较优解,当优先队列为空时,当前的较优解就是最优解。算法中首先用Dijkstra算法算出所有点到代表乙城市的点的最短距离。算法采用的下界一个是关于路径长度的下界,它的值为从甲城市到当前城市的路线的长度与用Dijkstra算法算出的当前城市到乙城市的最短路线长度的和;另一个是总耗费要小于1500。 伪代码 算法AlgBB() 读文件m1和m2中的数据到矩阵length和cost中 Dijkstra(length) Dijkstra(cost) while true do for i←1 to 50 do //选择和node节点相邻的城市节点 if shortestlength>optimal or mincost>1500 pruning else if i=50 optimal=min(optimal,tmpopt)//选当前可行解和最优解的 较小值做最优解 else if looped //如果出现回路 pruning //剪枝 else 将城市i插入到优先队列中 end for while true do if 优先队列为空 输出结果 else 取优先队列中的最小节点 if 这个最小节点node的路径下界大于当前的较优解 continue

ArcGIS_7 最短路径问题分析与应用

综合实习7:最短路径问题分析与应用 1.背景 在现实中,最短路径的求取问题可以拓展为许多方面的最高效率问题,最短路径不仅指一般意义上的距离最短,还可以是时间最短、费用最少、线路利用率最高等标准。 2.目的 学会用ArcGIS10进行各种类型的最短路径分析,理解网络分析原理。 3.数据 GeoDatabase地理数据库:City.mdb。 数据库中包含一个数据库:City,其中含有城市交通网net、商业中心及家庭住址place、网络节点city_Net_Junctions等要素。 4.要求 根据不同的要求,获得到达指定目的地的最佳路径,并给出路径的长度;找出距景点最近的某设施的路径。 在网络中指定一个商业中心,分别求出在不同距离、时间的限制下从家到商业中心的最佳路径。 给定访问顺序,按要求找出从家出发,逐个经过访问点,最终到达目的地的最佳路径。 研究阻强的设置对最佳路径选择的影响。 5.操作步骤 启动ArcMap,打开city.mdb,双击city数据库,加载数据。 对点状要素place符号化:以HOME字段,1值为家,0值为商业中心。 (1)无权重最佳路径的生成 1)在几何网络分析工具条上,选择旗标工具,将旗标放在“家”和想要取得“商业中心”点上。 2)选择分析|选项命令,打开“分析选项”对话框,确认“权重”和“权重过滤器”标签项全部是“无(None)”,这种情况下进行的最短路径分析是完全按照这个网络自身的长短来确定。 3)在“追踪任务”文本框中选择“网络路径分析”。单击“解决”按钮。显示出最短路径(图7-1),这条路径的总成本显示在状态栏中。

图7-1 无权重参照的最短路径的显示 (2)加权最佳路径生成 1)在几何网络分析工具条上,点选旗标工具,将旗标分别放在“家”和想去的某个“商业中心”的位置上。 2)选择“分析|选项”命令,打开“分析选项”对话框(图7-2)进入“权重”标签页,在边的权重(Edge weights)上,全部选择长度(length)权重属性。 图7-2 长度权重属性设置

矢量数据的空间分析-以最短路径分析为例

兰州交通大学开放性实验 基于ArcGIS的地理分析 实 验 报 告 实验名称:矢量数据的空间分析-以最短路径分析为例 学生姓名:张鑫港 学生学号:201408301 指导老师:朱睿 时间:2016年5月1日 1.实验背景 最短路径的分析问题在现实生活中有着广泛的应用,可以有助于提高效率,减少资源的消耗,故对最短路径的研究有着重要的意义。

2. 实验目的 通过本练习,掌握ArcGIS最短路径分析的方法,深入理解网络分析的原理。 3. 实验要求 通过分析能够得到到达指定目的地的路径选择方案及根据不同的权重得到不同的最佳路径,并给出路径的长度(总成本)。 (1)在网络中指定一个点,分别求出在不同距离、时间的限制下从指定的另一点到此点的最短路径。 (2)给定访问顺序,按要求找出逐个经过中间位置最终到达目的地的最佳路径。 (3)研究阻抗的设置对最佳路径选择的影响。 4. 实验操作步骤 1)无权重最佳路径的选择 无权重最短路径,即说明路径的长短是此网络分析的唯一标准。 此时计算出的是距离上最短的路径,左下角显示出此网络的总成本,本例中显示为20,即为总共经过20个路口的含义。(以下图中都可显示总成本,不再一一说明) 2)加权最佳路径的选择 加权最佳路径的选择,可以是距离、时间、速度等的加权,要根据分析的具体情况决定以何属性加权。以下以时间加权与距离加权为例说明。

时间加权 距离加权 加权的意义,既为网络分析提供分析依据,即以何作为计算因素来进行分析。 3)按要求和顺序能够逐个通过目标点的路径的实现 如果在一个网络分析中按照一定的顺序依次标定所要经过的点位,此时可以同时赋予权重(本图中以距离权重为例),则可以得到按指定顺序行进的最优路径。 4)阻强问题 权重是通过边线或连接的成本,它只能基于长整型或双精度型数据类型创建。在本例 阻强问题指的是点状要素或线状要素因为某些突发事件而不可运行时,原先获取的最优路径就可能会被修正。本例中同时设置了点要素障碍与边要素障碍,可以看出设置阻碍后最优路线的修正。

最短路径问题

最短路径问题 摘要 在图论当中,任意两点间的最短路径问题,运用Dijkstra 算法,Flord 算法,匈牙利算法等都可以就解决这类相关问题,本文主要就是运用图论相关知识,来分析问题的。 在问题一中,需要为货车司机选择一条从地点1到地点11的最短时间问题,其实际归结为求一个两点间最短路径问题,运用运筹学中的网络模型相关知识,建立了一个一个0-1线性模型,并最终求的其结果,最短时间为21,货车司机的运输路线为1891011v v v v v →→→→。 运用Floyd 算法解决问题二,并且运用Matlab 软件编程,Floyd 算法与Matlab 软件编程所得出的结果一致,最后得出了一个最短航程表,及任意两点间的最短航程图。 本文的最大亮点在于将问题二进行更深一步的拓展,从问题实际出发,从公司的差旅费用最小出发,利用Mtlab 软件编程的出了公司到个城市间差旅费用最小图,从而更能为公司节省成本。 任意城市间差旅费用最小 其次是本文结果的准确性,问题一运用Lingo 软件编程,和WinQSB 软件,所得出结果都是一致的,问题二更是运用Floyd 算法,Matlab 软件编程,WinQSB 软件,大大地保证了结果的准确性,并且十分恰当地运用WinQSB 软件将作图功能,把每一提的最短路径都清晰的描绘出来,更加直观地将结果展现出来。 关键字:Matlab Lingo WinQSB Floyd 算法 0-1规划

一、 问题重述 问题一需要解决的问题是在一个城市交通网络中(图一),如何从地点1找到一条时间最短路径通往地点11,在这个城市交通网络中,有单向道,也有双向道,即如何处理一个有向图与无向图结合的图论问题,并且是一个两点间的最短路径问题: 图(一) 问题二阐述的是某公司员工往来于六个城市间,给出了这六个城市间的直达航班票价(表二),需要为这家公司提供出这六个城市间任意两点间的最小航班费用表 05040251050015202515010204020100102525201005510 2525550∞ ?? ??∞???? ∞∞?????? ∞?? ∞?? 表(二) 二、问题分析

前N条最短路径问题的算法及应用

第36卷第5期2002年9月 浙 江 大 学 学 报(工学版) Jo ur nal o f Zhejiang U niv ersity(Eng ineer ing Science) Vol.36No.5Sep.2002 收稿日期:2001-10-24. 作者简介:柴登峰(1974-),男,浙江江山人,博士生,从事遥感图像处理、地理信息系统方面研究.E-mail:chaidf@z https://www.wendangku.net/doc/5012149409.html, 前N 条最短路径问题的算法及应用 柴登峰,张登荣 (浙江大学空间信息技术研究所,杭州浙江310027) 摘 要:现有最短路径问题指的是狭义最短路径问题,针对该问题而设计的算法只能求得最短的一条路径.前N 条最短路径拓宽了最短路径问题的内涵(即不仅要求得最短路径,还要求得次短、再次短…第N 短路径),是广义最短路径问题.在图论理论基础上分析问题之后,设计了一个递归调用Dijkstr a 算法的新算法,该算法可以求取前N 条最短路径,而且时间、空间复杂度都为多项式阶.该算法已经成功应用于一个交通咨询系统中,自然满足实时应用需要. 关键词:最短路径;N 条最短路径;网络分析;地理信息系统;交通咨询系统 中图分类号:P 208;O 22 文献标识码:A 文章编号:1008-973X (2002)05-0531-04 Algorithm and its application to N shortest paths problem CHAI Deng-f eng,ZHAN G Deng-rong (I nstitute of Sp ace and I n f ormation T echnical ,Zhej iang U niv er sity ,H angz hou 310027,China ) Abstract :As the shor test path denotes one path ,algorithms designed for shor test path problem can g et only one path .N shortest paths are N paths including the shortest one ,the one inferior to the shortest one,eto.After reviewing the application of shortest poth pro blem ,an N shortest paths problem w as put fo rw ard and described.Gr aph theo ry w as used to analy ze the problem and results in fo ur theoretical con-clusions .T hen ,algo rithm recursively calling the Dijkstra algor ithm was desig ned and analy zed .Bath time co nplexity and space conplex ity are poly nom ial order.The algo rithm w as tested by ex periment and applied to a traffic consultatio n system of Guang zhou City ,it can meet the need of r eal-time application.Key words :sho rtest path;N shor test paths;netw ork analysis;tr affic consultation system ;GIS 20世纪中后期,随着计算机的出现和发展,图论的理论和应用研究得到广泛重视,图论作为一个数学分支的地位真正得到了确立.现在,图论的应用已经深入到众多领域,GIS 网络分析就是图论在地理信息领域的重要应用[3] ,此外,还有城市规划、电子导航、交通咨询等等. 最短路径问题是图论中的一个典范问题[1],主要研究成果有Dijkstra 、Floy d 等优秀算法[1,2],Dijk-stra 还被认为是图论中的好算法[1] .目前的研究工作主要集中于算法实现的优化改进与应用方面[3,4].最短路径问题通常有两类[2]:一类是求取从某一源点到其余各点的最短路径;另一类是求取每一对顶 点之间的最短路径.它们从不同的角度描述问题,但有一个共同的缺陷:这里的最短路径指两点之间最 短的那一条路径,不包括次短、再次短等等路径.在此不妨称以上两类问题为狭义最短路径问题,为此设计的算法只能求得最短的一条路径,而不能得到次短、再次短等等路径. 实际上,用户在使用咨询系统或决策支持系统时,希望得到最优的决策参考外,还希望得到次优、再次优等决策参考,这同样反映在最短路径问题上.因此,有必要将最短路径问题予以扩充,成为N 条最短路径问题,即不但要求得到最短路径,还要得到次短、再次短等路径.这称之为广义最短路径问题.

图论中最短路径问题

图论最短路径问题 在消防选址中的应用 【摘 要】 最短路径问题是图论解决的典型实际问题之一,可用来解决管路铺设、线路 安装、厂区布局和设备更新等实际问题。介绍了图论最短路径问题及其算法,并应用图论最短路径问题的分析方法,解决城市消防站的选址问题。 【关键词】 最短路径;Floyd 算法;消防 1 引言 图论是运筹学的一个重要分支,旨在解决离散型的优化问题,近年来发展十分迅速。在人们的社会实践中,图论已成为解决自然科学、工程技术、社会科学、生物技术以及经济、军事等领域中许多问题的有力工具之一。图论中的“图”,并不是通常意义下的几何图形或物体的形状图,也不是工程设计图中的“图”,而是以一种抽象的形式来表达一些确定的对象,以及这些对象之间具有或不具有某种特定关系的一个数学系统。也就是说,几何图形是表述 物体的形状和结构,图论中的“图”则描述一些特定的事物和这些事物之间的联系。它是数学中经常采用的抽象直观思维方法的典型代表。 2 图论基本概念 2.1 图的定义 有序三元组),,(?E V G =称为一个图,其中: (1)),,,(21n V V V V =是有穷非空集,称为顶点集,其元素叫做图的顶点; (2)E 称为边集,其元素叫做图的边; (3)?是从边集E 到顶点集V 的有序或者无序对集合的影射,称为关联函数。 2.2 图的分类 在图G 中,与V 中的有序偶),(j i V V 对应的边e 称为图的有向边(或弧),而与V 中顶点的无序偶对应的边e 称为图形的无向边,每一条边都是无向边的图,叫做无向图,记为 ),(E V G =;每一条边都是有向边的图叫做有向图,记为),(E V D =;既有无向边又有有 向边的图叫做混合图。 2.3 权 如果图G 中任意一条边),(j i V V 上都附有一个数ij W ,则称这样的图G 为赋权图, ij W 称为边),(j i V V 上的权。

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例 一.摘要 (3) 二.网络最短路径问题的基础知识 (5) 2.1有向图 (7) 2.2连通性................... 错误!未定义书签。 2.3割集....................... 错误!未定义书签。 2.4最短路问题 (8) 三.最短路径的算法研究.. 错误!未定义书签。 3.1最短路问题的提出 (9) 3.2 Bellman最短路方程错误!未定义书签。 3.3 Bellman-Ford算法的基本思想错误!未定义书签 3.4 Bellman-Ford算法的步骤错误!未定义书签。 3.5实例....................... 错误!未定义书签。 3.6 Bellman-FORD算法的建模应用举例错误!未定义 3.7 Dijkstra算法的基本思想 (9) 3.8 Dijkstra算法的理论依据 (9) 3.9 Dijkstra算法的计算步骤 (9) 3.10 Dijstre算法的建模应用举例 (10) 3.11 两种算法的分析错误!未定义书签。

1.Diklstra算法和Bellman-Ford算法 思想有很大的区别错误!未定义书签。 Bellman-Ford算法在求解过程中,每 次循环都要修改所有顶点的权值,也就 是说源点到各顶点最短路径长度一直 要到Bellman-Ford算法结束才确定下 来。...................... 错误!未定义书签。 2.Diklstra算法和Bellman-Ford算法 的限制.................. 错误!未定义书签。 3.Bellman-Ford算法的另外一种理解错误!未定 4.Bellman-Ford算法的改进错误!未定义书签。 摘要 近年来计算机发展迅猛,图论的研究也得到了很大程度的发展,而最短路径 问题一直是图论中的一个典型问题,它已应用在地理信息科学,计算机科学等 诸多领域。而在交通路网中两个城市之间的最短行车路线就是最短路径问题的 一个典型例子。 由于最短路径问题在各方面广泛应用,以及研究人员对最短路径的深入研究, 使得在最短路径问题中也产生了很多经典的算法。在本课题中我将提出一些最 短路径问题的算法以及各算法之间的比较,最后将这些算法再应用于实际问题

初中最短路径问题

最短路径问题(珍藏版) 【问题概述】最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结 点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查. 【十二个基本问题】 【问题 1】 作法 图形 原理 在直线 l 上求一点 P ,使 PA +PB 值最小. 连 AB ,与 l 交点即为 P . 两点之间线段最短. PA +PB 最小值为 AB . 【问题 2】“将军饮马” 作法 图形 原理 在直线 l 上求一点 P ,使 PA +PB 值最小. 作 B 关于 l 的对称点 B ' 连 A B ',与 l 交点即为 P . 两点之间线段最短. PA +PB 最小值为 A B '. 【问题 3】 作法 图形 原理 在直线l 1 、l 2 上分别求点 M 、N ,使△PMN 的周长最小. 分别作点 P 关于两直线的 对称点 P '和 P ',连 P 'P '与两直线交点即为 M ,N . , 两点之间线段最短. PM +MN +PN 的最小值为线段 P 'P ''的长. 【问题 4】 作法 图形 原理 在直线l 1 、l 2 上分别求点 M 、N ,使四边形 PQMN 的周长最小. 分别作点 Q 、P 关于直线 l 1 、l 2 的对称点 Q '和 P ' 连 Q 'P ',与两直线交点即为 M ,N . 两点之间线段最短. 四边形 PQMN 周长的最小值为线段 P 'P ''的长.

AE 最短路径分析

ArcEngine 最短路径分析 using System; using ESRI.ArcGIS.Carto; using ESRI.ArcGIS.Geometry; using ESRI.ArcGIS.Geodatabase; using https://www.wendangku.net/doc/5012149409.html,workAnalysis; namespace GisEditor { ///

/// 最短路径分析 /// public class ClsPathFinder { private IGeometricNetwork m_ipGeometricNetwork; private IMap m_ipMap; private IPointCollection m_ipPoints; private IPointToEID m_ipPointToEID; private double m_dblPathCost =0; private IEnumNetEID m_ipEnumNetEID_Junctions; private IEnumNetEID m_ipEnumNetEID_Edges; private IPolyline m_ipPolyline; #region Public Function //返回和设置当前地图 public IMap SetOrGetMap { set{ m_ipMap = value;} get{return m_ipMap;} } //打开几何数据集的网络工作空间 public void OpenFeatureDatasetNetwork(IFeatureDataset FeatureDataset) { CloseWorkspace(); if (!InitializeNetworkAndMap(FeatureDataset)) Console.WriteLine( "打开network出错"); } //输入点的集合 public IPointCollection StopPoints { set{m_ipPoints= value;} get{return m_ipPoints;} }

云南大学 杨克成老师 Arcgis 网络分析中文版 最短路径、最短路径、服务区选择

实验十、网络分析(道路网络分析) 一、实验目的 网络分析是GIS空间分析的重要功能分。有两类网络,一为道路(交通)网络,一为实体网络(比如,河流、排水管道、电力网络)。此实验主要涉及道路网络分析,主要内容包括: ●最佳路径分析,如:找出两地通达的最佳路径。 ●最近服务设施分析,如:引导最近的救护车到事故地点。 ●服务区域分析,如:确定公共设施(医院)的服务区域。 通过对本实习的学习,应达到以下几个目的: (1)加深对网络分析基本原理、方法的认识; (2)熟练掌握ARCGIS下进行道路网络分析的技术方法。 (3)结合实际、掌握利用网络分析方法解决地学空间分析问题的能力。 二、实验准备 软件准备:ArcMap, 要求有网络分析扩展模块的许可授权 数据准备: Shape文件创建网络数据集(高速公路:Highways, 主要街道:Major Streets, 公园:Parks,湖泊:Lakes,街道:Streets) Geodatabase网络数据集:NetworkAnalysis.mdb:包含:街道图层:Streets 仓库图层:Warehouses 商店图层:Stores 在ArcMap中加载启用NetWork Anylyst网络分析模块: 执行菜单命令[工具Tools]>>[Extensions], 在[Extensions]对话框中点击[Network Analyst] 启用网络分析模块,即装入Network Analyst空间分析扩展模块。 道路网络分析步骤 1. 创建分析图层 2. 添加网络位置 3. 设置分析选项 4. 执行分析过程显示分析结果 三、实验内容及步骤 (一) 最佳路径分析 根据给定的停靠点,查找最佳路径(最省时的线路)

图论最短路径分析及应用

最短路问题及其应用 1 引言 图论是应用数学地一个分支,它地概念和结果来源非常广泛,最早起源于一些数学游戏地难题研究,如欧拉所解决地哥尼斯堡七桥问题,以及在民间广泛流传地一些游戏难题,如迷宫问题、博弈问题、棋盘上马地行走路线问题等.这些古老地难题,当时吸引了很多学者地注意.在这些问题研究地基础上又继续提出了著名地四色猜想和汉米尔顿(环游世界)数学难题. 1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学地发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学等各个领域地问题时,发挥出越来越大地作用.在实践中,图论已成为解决自然科学、工程技术、社会科学、军事等领域中许多问题地有力工具之一. 最短路问题是图论理论地一个经典问题.寻找最短路径就是在指定网络中两结点间找一条距离最小地路.最短路不仅仅指一般地理意义上地距离最短,还可以引申到其它地度量,如时间、费用、线路容量等. 最短路径算法地选择与实现是通道路线设计地基础,最短路径算法是计算机科学与地理信息科学等领域地研究热点,很多网络相关问题均可纳入最短路径问题地范畴之中.经典地图论与不断发展完善地计算机数据结构及算法地有效结合使得新地最短路径算法不断涌现. 2 最短路 2.1 最短路地定义 对最短路问题地研究早在上个世纪60年代以前就卓有成效了,其中对赋权图()0 w≥地有效算法是由荷兰著名计算机专家E.W.Dijkstra在1959年首次提出地, ij 该算法能够解决两指定点间地最短路,也可以求解图G中一特定点到其它各顶点地最短路.后来海斯在Dijkstra算法地基础之上提出了海斯算法.但这两种算法都不能解决含有负权地图地最短路问题.因此由Ford提出了Ford算法,它能有效地解决含有负权地最短路问题.但在现实生活中,我们所遇到地问题大都不含负权,所以我们在()0 w≥地情况下选择Dijkstra算法. ij 定义①1若图G=G(V,E)中各边e都赋有一个实数W(e),称为边e地权,则称这

C源码ArcEngine最短路径分析

C源码ArcEngine最短路径分析ArcEngine 最短路径分析(源码)几何网络 using System; using ESRI.ArcGIS.Carto; using ESRI.ArcGIS.Geometry; using ESRI.ArcGIS.Geodatabase; using https://www.wendangku.net/doc/5012149409.html,workAnalysis; namespace GisEditor { ///

/// 最短路径分析 /// public class ClsPathFinder { private IGeometricNetwork m_ipGeometricNetwork; private IMap m_ipMap; private IPointCollection m_ipPoints; private IPointToEID m_ipPointToEID; private double m_dblPathCost =0; private IEnumNetEID m_ipEnumNetEID_Junctions; private IEnumNetEID m_ipEnumNetEID_Edges; private IPolyline m_ipPolyline; #region Public Function //返回和设置当前地图

public IMap SetOrGetMap { set{ m_ipMap = value;} get{return m_ipMap;} } //打开几何数据集的网络工作空间 public void OpenFeatureDatasetNetwork(IFeatureDataset FeatureDa taset) { CloseWorkspace(); if (!InitializeNetworkAndMap(FeatureDataset)) Console.WriteLine( "打开network出错"); } //输入点的集合 public IPointCollection StopPoints { set{m_ipPoints= value;} get{return m_ipPoints;} } //路径成本 public double PathCost { get {return m_dblPathCost;} }

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例 一.摘要 (2) 二.网络最短路径问题的基础知识 (3) 2.1有向图 (5) 2.2连通性.............................................................................................. 错误!未定义书签。 2.3割集.................................................................................................. 错误!未定义书签。 2.4最短路问题 (6) 三.最短路径的算法研究............................................................................. 错误!未定义书签。 3.1最短路问题的提出 (6) 3.2 Bellman最短路方程...................................................................... 错误!未定义书签。 3.3 Bellman-Ford算法的基本思想.................................................... 错误!未定义书签。 3.4 Bellman-Ford算法的步骤............................................................ 错误!未定义书签。 3.5实例.................................................................................................. 错误!未定义书签。 3.6 Bellman-FORD算法的建模应用举例............................................ 错误!未定义书签。 3.7 Dijkstra算法的基本思想 (6) 3.8 Dijkstra算法的理论依据 (6) 3.9 Dijkstra算法的计算步骤 (6) 3.10 Dijstre算法的建模应用举例 (7) 3.11 两种算法的分析........................................................................... 错误!未定义书签。 1.Diklstra算法和Bellman-Ford算法思想有很大的区别 ...... 错误!未定义书签。 Bellman-Ford算法在求解过程中,每次循环都要修改所有顶点的权值,也就是说 源点到各顶点最短路径长度一直要到Bellman-Ford算法结束才确定下来。错误!未定义书签。 2.Diklstra算法和Bellman-Ford算法的限制.......................... 错误!未定义书签。 3.Bellman-Ford算法的另外一种理解........................................ 错误!未定义书签。 4.Bellman-Ford算法的改进........................................................ 错误!未定义书签。

相关文档
相关文档 最新文档