文档库 最新最全的文档下载
当前位置:文档库 › 专题117——震惊,史上最全双曲线二级结论大全

专题117——震惊,史上最全双曲线二级结论大全

专题117——震惊,史上最全双曲线二级结论大全
专题117——震惊,史上最全双曲线二级结论大全

双曲线

1.122PF PF a -=

2.标准方程22

221x y a b -= 3.11

1PF e d =>

4.点P 处的切线PT 平分△PF 1F 2在点P 处的内角.

5.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以实轴为直径的圆,除去实轴的两个端点.

6.以焦点弦PQ 为直径的圆必与对应准线相交.

7.以焦点半径PF 1为直径的圆必与以实轴为直径的圆外切.

8.设P 为双曲线上一点,则△PF 1F 2的内切圆必切于与P 在同侧的顶点.

9.双曲线22

221x y a b

-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线

交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b

+=.

10.若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)上,则过0P 的双曲线的切线方程是

00221x x y y

a b

-=. 11.若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切

点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y

a b

-=.

12.AB 是双曲线22

221x y a b -=(a >0,b >0)的不平行于对称轴且过原点的弦,M 为AB 的

中点,则2

2OM AB b k k a

?=.

13.若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是

22

00002222x x y y x y a b a b

-=-. 14.若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是

22002222x x y y x y a b a b

-=-. 15.若PQ 是双曲线22

221x y a b

-=(b >a >0)上对中心张直角的弦,则

122222

121111(||,||)r OP r OQ r r a b +=-==. 16.若双曲线22

221x y a b

-=(b >a >0)上中心张直角的弦L 所在直线方程为

1Ax By +=(0)AB ≠,则(1) 22

2211A B a b -=+

;(2) L =.

17.给定双曲线1C :22

2

2

22

b x a y a b -=(a >b >0), 2C :222

2

2

2

2

22

()a b b x a y ab a b

+-=-,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点

M 2222

02

222(,)a b a b x y a b a b

++---. (ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'

P 点.

18.设00(,)P x y 为双曲线22

221x y a b

-=(a >0,b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1,

PP 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是2

12211m b k k m a

+?=?-.

19.过双曲线22

221x y a b

-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交

双曲线于B,C 两点,则直线BC 有定向且20

20

BC b x k a y =-(常数).

20.双曲线22

221x y a b

-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点

12F PF γ∠=,则双曲线的焦点角形的面积为122cot 2

F PF S b γ?=,

2(cot )2

b P

c γ± .

21.若P 为双曲线22

221x y a b

-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦

点, 12PF F α∠=, 21PF F β∠=,则

tan t 22c a co c a αβ-=+(或tan t 22

c a co c a βα

-=+). 22.双曲线22

221x y a b

-=(a >0,b >o )的焦半径公式:1(,0)F c - , 2(,0)F c

当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.

当00(,)M x y 在左支上时,10||MF ex a =--,20||MF ex a =-+.

23.若双曲线22

221x y a b

-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1

<1时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 1与PF 2的比例中项.

24.P 为双曲线22

221x y a b

-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线左支内一定

点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 在左支时,等号成立. 25.双曲线22

221x y a b -=(a >0,b >0)上存在两点关于直线l :0()y k x x =-对称的充要条

件是2222

0222()0a b a x k k a b k b +??>≠≠± ?-??

且.

26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应

焦点的连线必与切线垂直. 27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦

双曲线教案完整篇

2.3.1双曲线及其标准方程 教学目标: 1.知识与技能 掌握双曲线的定义,标准方程,并会根据已知条件求双曲线的标准方程. 2.过程与方法 教材通过具体实例类比椭圆的定义,引出双曲线的定义,通过类比推导出双曲线的标准方程. 3.情感、态度与价值观 通过本节课的学习,可以培养我们类比推理的能力,激发我们的学习兴趣,培养学生思考问题、分析问题、解决问题的能力. 教学重点:双曲线的定义、标准方程及其简单应用 教学难点:双曲线标准方程的推导 授课类型:新授课 教具:多媒体、实物投影仪 教学过程: 一.情境设置 1.复习提问: (由一位学生口答,教师利用多媒体投影) 问题 1:椭圆的定义是什么? 问题 2:椭圆的标准方程是怎样的? 问题3:如果把上述椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?它的方程又是怎样的呢? 2.探究新知: (1)演示:引导学生用《几何画板》作出双曲线的图象,并利用课件进行双曲线的模拟实验,思考以下问题。 (2)设问:①|MF 1|与|MF 2 |哪个大? ②点M到F 1与F 2 两点的距离的差怎样表示? ③||MF 1|-|MF 2 ||与|F 1 F 2 |有何关系? (请学生回答:应小于|F 1F 2 | 且大于零,当常数等于|F 1 F 2 | 时,轨迹是以 F 1、F 2 为端点的两条射线;当常数大于|F 1 F 2 | 时,无轨迹) 二.理论建构 1.双曲线的定义 引导学生概括出双曲线的定义: 定义:平面内与两个定点F 1、F 2 的距离的差的绝对值等于常数(小于<|F 1 F 2 |)

的点轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。(投影) 概念中几个关键词:“平面内”、“距离的差的绝对值”、“常数小于21F F ” 2.双曲线的标准方程 现在我们可以用类似求椭圆标准方程的方法来求双曲线的标准方程,请学生思考、回忆椭圆标准方程的推导方法,随即引导学生给出双曲线标准方程的推导(教师使用多媒体演示) (1)建系 取过焦点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立平面直角坐标系。 (2) 设点 设M (x ,y )为双曲线上任意一点,双曲线的焦距为2c (c>0),则F 1(-c ,0)、F 2(c ,0),又设点M 与F 1、F 2的距离的差的绝对值等于常数2a (2a <2c ). (3)列式 由定义可知,双曲线上点的集合是P={M|||MF 1|-|MF 2||=2a }. 即: (4)化简方程 由学生板演,教师巡视。化简,整理得: 移项,两边平方得 两边再平方后整理得 由双曲线定义知 这个方程叫做双曲线的标准方程,它所表示的双曲线的焦点在x 轴上,焦 ()(), 22 22 2a y c x y c x =+-- ++()()a y c x y c x 22 22 2±=+-- ++()2 22y c x a a cx +-±=-()() 2 2222222 a c a y a x a c -=--) 0,0(1)0(,0,2222 2222222>>=->=->-∴>>b a b y a x b b a c a c a c a c 代入上式整理得设即

双曲线及其标准方程(教学设计)

双曲线及其标准方程 教学目标:1、熟练地掌握双曲线的定义、标准方程; 2、了解双曲线标准方程的推导方法。 教学重点:双曲线方程的推导; 教学难点:求双曲线的标准方程 教学过程: 复习引入 提问:椭圆的定义是什么? 思考:如果将椭圆定义中的“和”改为“差”,又可以得到什么样的轨迹? 讲授新知 一、双曲线的定义: 平面内,与两定点21,F F 的距离之差 等于 的点的轨迹叫双曲线。 符号语言为: 其中:① 两定点21,F F ——双曲线的焦点; ② c F F 221=——双曲线的焦距。 注意:c a 220<< 讨论:(1)若a a MF MF 2221-=-或,则点M 的轨迹是什么? (2)若c a 22=,则点M 的轨迹是什么? (3)若c a 22>,则点M 的轨迹是什么? (4)若02=a ,则点M 的轨迹是什么? 二、双曲线的标准方程 提问:1、求曲线的方程有哪些步骤? 2、需要注意哪些问题? 3、建系时,焦点在x 轴上和焦点在y 上,双曲线的标准方程有什么不同? 4、如何判断双曲线的焦点在哪个轴上? 例1、如果方程11 22 2=+-+m y m x 表示焦点在x 轴上的双曲线,求m 的取值范围。

变式1:如果方程 11 22 2=+-+m y m x 表示焦点在y 轴上的双曲线,求m 的取值范围。 变式2:如果方程 11 22 2=+-+m y m x 表示双曲线,求m 的取值范围 练习:求适合下列条件的双曲线的标准方程: (1)3,4==b a ,焦点在x 轴上; (2)焦点为()()6,,5,0,5021的距离差的绝对值为到双曲线上一点, F F P -; 思考:如何求经过两点()() 3,72,627--, 的双曲线方程. 小结:1、本节课我们主要学习了哪些内容? 2、有哪些需要注意的内容? 作业:P54:A 组2、5

(完整版)高中高考数学所有二级结论《完整版》

高中数学二级结论 1.任意的简单n 面体内切球半径为 表 S V 3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C 推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的 4 2倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点 5.导数题常用放缩1+≥x e x 、1ln 11-≤≤-<- x x x x x 、)1(>>x ex e x 6.椭圆)0,0(122 22>>=+b a b y a x 的面积S 为πab S = 7.圆锥曲线的切线方程求法:隐函数求导 推论:①过圆2 22)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+-- ①过椭圆)0,0(122 22>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx ①过双曲线)0,0(122 22>>=-b a b y a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx 8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆02 2 =++++F Ey Dx y x 的切点弦方程为02 20000=+++++ +F E y y D x x y y x x ①椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b y y a x x ①双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-b y y a x x ①抛物线)0(22 >=p px y 的切点弦方程为)(00x x p y y += ①二次曲线的切点弦方程为02 22000000=++++++++F y y E x x D y Cy x y y x B x Ax 9.①椭圆)0,0(122 22>>=+b a b y a x 与直线)0· (0≠=++B A C By Ax 相切的条件是22222C b B a A =+ ②双曲线)0,0(122 22>>=-b a b y a x 与直线)0· (0≠=++B A C By Ax 相切的条件是22222C b B a A =- 10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、

双曲线及其标准方程教案

2.3.1双曲线及其标准方程第一课时 《双曲线及其标准方程》 一.教学目标 ?知识与技能目标 了解双曲线的定义,几何图形,标准方程 ?过程与方法目标 类比椭圆的定义,标准方程,得到双曲线的定义,标准方程,并注意两者的比较 ?情感与态度目标 体会运动变化的观点,数形结合的思想方法 二.教材分析: 1、教学分析:学生已经掌握曲线与方程的基础,通过实例给出双曲线的定义,进而去推导双曲线的标准方程,由于前面学习了椭圆的相关知识,这一块对于学生来说是比较熟悉的内容,可让他们自行推导,课本的例1很好的结合了双曲线的定义来考察学生对概念理解的程度,例2将双曲线应用在实际生活当中,后面的探究内容可以充分发挥出学生的主导地位,分析和发现轨迹方程的求法。 2.教学重点:双曲线的定义,标准方程 3.教学难点:双曲线标准方程的推导 三、教学过程: (一)导入新课 1.回顾椭圆的定义,标准方程

2.提出问题: 平面内到两定点的距离的差为常数的点的轨迹是什么? 3.实验探究上述问题 学生动手实验 P .52拉链演示 4.多媒体演示 (二)推进新课 1.双曲线的定义: 平面内与两个定点1F ,2F 的距离的差的绝对值为常数(小于21F F )的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。 即以曲线上的点M 满足:a MF MF 221=-(a 为定值,a F F 221>) 思考:(1)若a F F 221=,点M 的轨迹是什么? (2)若a F F 221<,点M 的轨迹是什么? 2.双曲线标准方程的推导 以焦点在x 轴的双曲线为例,类比椭圆标准方程的推导过程,按求曲线方程的一般步骤求解。 得到双曲线的标准方程为12222=-b y a x 说明: (1)12222=-b y a x 或12222=-b x a y 均称为双曲线的标准方程; (2)c b a ,,三者的关系:222b a c +=,注意与椭圆中c b a ,,三者关

高中数学二级结论贴吧整理

高中数学二级结论 1.任意的简单n面体内切球半径为3V/S表V是简单n面体的体积,S表是简单n面体的表面积, 2.在任意三角形内都有tanAtanBtanC=tanA+tanB+tanC,至于有什么用,,,:三个tan加起来如果是负的那就是钝角三角形了 3.矩阵和矩阵逆的行列式,特征值都互为倒数, 4.斜二测画法画出的图形面积变小了,为原来的√2/4倍 5.过椭圆准线上一点作椭圆切线,两切点所在直线必过椭圆相应焦点,椭圆准线广义称极线,那个是极线的性质之一 6.在做导数题的时候要熟练以下不等式便于放缩等。。。e^x≥x+1 lnx≤x-1 泰勒基数展开,这个常用,一般前一问有提示 7.球的体积:V(r)=(4/3pi)r^3 求导:V'R=4pir^2=表面积,,,神奇!:这个我们老师的解释是,球的体积可以看成无穷个表面积的积分,所以体积的微分就应该是表面积 8.椭圆的面积S=派ab 应该很难用上,直接换元,转换成圆,再换回去就行了 9.圆锥曲线切线,隐函数求导高考不让用:用于秒杀选择填空,大题找思路以及验证等x 不用处理 10.来个非常有用的,。过椭圆x2/a2+y2/b2上任意一点(x0,y0)的切线方程为xx0/a2+yy0/b2既用xx0替换x2用yy0替换y2。双曲线也一样这个椭圆切线的结论可以用的,同理圆、双曲线、抛物线的切线方程都可以直接用 11.来个比较少用,但是选择填空一考到你可以捞大把时间的⊙▽⊙。。。。过椭圆外一点(x0,y0)作椭圆的两条切线,过两切点的直线方程为xx0/a2+yy0/b2=1 这个叫做切点弦方程 12.分享个最最有用的。。椭圆x2/a2+y2/b2=1与直线Ax+By+C=0相切的条件是A2a2+B2b2=C2至于椭圆焦点在y轴上的情况,,。欢迎讨论把a、b换个位置就行了个最屌,双曲线的话上面的+号变-号,秒出答案 13.设双曲线方程x^2/a^2-y^2/b^2=1,双曲线焦点到渐近线距离为b 14.托密勒定理有道证明题用过这个 15.椭圆焦点三角形设顶角为A.焦点三角形面积为b平方tanA/2,双曲线是cot 16. 1.函数f(x)满足f(a+x)+f(b-x)=c的充要条件是函数关于((a+b)/2,c/2)中心对称 2.函数f(x)满足f(a+x)=f(b-x)的充要条件是函数关于x=(a+b)/2轴对称 3.L*Hospital*s rule 4.三角形中射影定理:a=bcosC+ccosB 5.任意三角形内切圆半径r=2S/(a+b+c) 6.任意三角形外切圆半径R=abc/4S=a/2sinA 7.Euler不等式:R>2r 8.海伦公式的变式:设三角形内切圆分三角形三边为不相邻的线段x,y,z则 S=sqrt(xyz(x+y+z))=1/4*sqrt(∑a∏(a+b-c)) 9.边角边面积公式:S=a^2sinBsinC/2sin(B+C) 10.各种三角恒等式 11.各种三角不等式: 1)在锐角三角形中成立不等式:∑sinA>∑cosA 2)嵌入不等式:x^2+y^2+z^2>=∑2yzcosA,x,y,z为实数 12.权方和不等式

圆锥曲线常见结论

椭圆与双曲线的对偶性质--(必背的经典结论) 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个 端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形 的面积为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双 曲线的焦点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相 应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M , A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线22 221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 0202y a x b K K AB OM =?,即020 2y a x b K AB =。 12. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b -=-. 13. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b -=-.

最新整理初三数学九年级数学竞赛双曲线专题教案.docx

最新整理初三数学教案九年级数学竞赛双曲线专题 教案 2.双曲线图象上的点是关于原点O成中心对称,在》0时函数的图象关于直线轴对称;在《0时函数的图象关于直线轴对称. 3.自变量的取值是不等于零的全体实数,双曲线向坐标轴无限延伸但不能接近坐标轴. 例题求解 例1已知反比例函数的图象与直线和过同一点,则当时,这个反比例函数的函数值随的增大而(填增大或减小). 思路点拨确定的值,只需求出双曲线上一点的坐标即可. 注:(1)解与反比函数相关问题时,充分考虑它的对称性(关于原点O中心称,关于轴对称),这样既能从整上思考问题,又能提高思维的周密性. (2)一个常用命题: 如图,设点A是反比例函数()的图象上一点,过A作AB⊥轴于B,过A作AC⊥轴于C,则 ①S△AOB=; ②S矩形OBAC=. 例2如图,正比例函数()与反比例函数的图象相交于A、C两点,过A作AB ⊥轴于B,连结BC,若S△ABC的面积为S,则() A.S=1B.S=2C.S=D.S= 思路点拨运用双曲线的对称性,导出S△AOB与S△OBC的关系. 例3如图,已知一次函数和反比例函数()的图象在第一象限内有两个不同的公共点A、B.

(1)求实数的取值范围; (2)若△AOB面积S=24,求的值. ( 荆门市中考题) 思路点拨(1)两图象有两个不同的公共点,即联立方程组有两组不同实数解; (2)S△AOB=S△COBS-S△COA,建立的方程. 例4如图,直线分别交、轴于点A、C,P是该直线上在第一象限内的一点,PB⊥轴于B,S△ABP=9. (1)求点P的坐标; (2)设点R与点P在同一个反比例函数的图象上,且点R在直线PB的右侧,作PT⊥轴于F,当△BRT与△AOC相似时,求点R的坐标. 思路点拨(1)从已知的面积等式出发,列方程求P点坐标;(2)以三角形相似为条件,结合线段长与坐标的关系求R坐标,但要注意分类讨论.例5如图,正方形OABC的面积为9,点O为坐标原点,点A在轴上,点C 在轴上,点B在函数(,)的图象上,点P(,)是函数(,)的图象上的任意一点,过点P分别作轴、轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC 不重合部分的面积为S. (1)求B点坐标和的值; (2)当时,求点P的坐标; (3)写出S关于m的函数关系式. 思路点拨把矩形面积用坐标表示,A、B坐标可求,S矩形OAGF可用含的代数式表示,解题的关键是双曲线关于对称,符合题设条件的P点不惟一,故思考须周密. 注:求两个函数图象的交点坐标,一般通过解这两个函数解析式组成的方程

双曲线二级结论大全

双曲线 1.122PF PF a -= 2.标准方程22 221x y a b -= 3.11 1PF e d => 4.点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 5.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以实轴为直径的圆,除去实轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相交. 7.以焦点半径PF 1为直径的圆必与以实轴为直径的圆外切. 8.设P 为双曲线上一点,则△PF 1F 2的内切圆必切于与P 在同侧的顶点. 9.双曲线22 221x y a b -=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线 交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b +=. 10.若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是 00221x x y y a b -=. 11.若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切 点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b -=. 12.AB 是双曲线22 221x y a b -=(a >0,b >0)的不平行于对称轴且过原点的弦,M 为AB 的 中点,则2 2OM AB b k k a ?=. 13.若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b -=-. 14.若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是 22002222x x y y x y a b a b -=-. 15.若PQ 是双曲线22 221x y a b -=(b >a >0)上对中心张直角的弦,则 122222 121111(||,||)r OP r OQ r r a b +=-==. 16.若双曲线22 221x y a b -=(b >a >0)上中心张直角的弦L 所在直线方程为 1Ax By +=(0)AB ≠,则(1) 22 2211A B a b -=+ ;(2) L =

双曲线的定义及其标准方程教案

圆锥曲线教案双曲线的定义及其标准方程教案 教学目标 1.通过教学,使学生熟记双曲线的定义及其标准方程,理解双曲线的定义,双曲线的标准方程的探索推导过程. 2.在与椭圆的类比中获得双曲线的知识,培养学生会合情猜想,进一步提高分析、归纳、推理的能力. 3.培养学生浓厚的学习兴趣,独立思考、勇于探索精神及实事求是的科学态度. 教学重点与难点 双曲线的定义和标准方程及其探索推导过程是本课的重点.定义中的“差的绝对值”,a与c的关系的理解是难点. 教学过程 师:椭圆的定义是什么椭圆的标准方程是什么 (学生口述椭圆的两个定义,标准方程,教师利用投影仪把椭圆的定义、标准方程和图象放出来.) 师:椭圆的两个定义虽然都是由轨迹的问题引出来的,但所采用的方法是不同的.定义二是在认识上已经把椭圆和方程统一起来,在掌握了坐标法基础上利用坐标方法建立轨迹方程.这是通过方程去认识轨迹曲线.定义中设定的常数 2a,|F1F2|=2c,它们之间的变化对椭圆有什么影响 生:当a=c时,相应的轨迹是线段F1F2.当a<c时,轨迹不存在.这是因为a、c的关系违背了三角形中边与边之间的关系. 师:如果把椭圆定义中的“平面内与两个定点F1、F2的距离的和”改写为“平面内与两个定点F1、F2的距离的差”,那么点的轨迹会怎样它的方程又是怎样的呢 (师生共同做一个简单的实验,请同学们把准备好的实验用具拿出来,一起做实验.教师把教具挂在黑板上,同时板书:平面内与两个定点F1、F2的距离之差为常数的点的轨迹是什么曲线边画、边操作、边说明.) 师:做法是:适当选取两定点F1、F2,将拉锁拉开一段,其中一边的端点固定在F1处,在另一边上截取一段AF2(<F1F2),作为动点M到两定点F1和F2距离之

圆锥曲线二级结论(1)

一、焦点三角形周长 【知识讲解】 1、椭圆焦点三角形 直线l 过左焦点1F 与椭圆交于A 、B 两点,则2ABF ?的周长为a 4。 2、双曲线焦点三角形 直线l 过左焦点1F 与双曲线左支交于A 、B 两点,则a AB B F A F 422=-+。 【典型例题】 1.设椭圆19 252 2=+y x 的左、右焦点分别为1F 、2F ,P 是椭圆上任意一点,则21F PF ?的周长为()。 2.过双曲线19 162 2=-y x 的左焦点1F 的弦AB 长为6,则2ABF ?的周长是()。【变式训练】 1.已知1F 、2F 是椭圆112 162 2=+y x 的左右焦点,直线l 过点2F 与椭圆交于A 、B 两点,且7||=AB ,则1ABF ?的周长是( )。2.若1F 、2F 是双曲线18 2 2=-y x 的两个焦点,点P 在该双曲线上,且21F PF ?是等腰三角形,则21F PF ?的周长为( )。 二、通径公式 【知识讲解】

1、椭圆通径:过焦点且与长轴垂直的弦,通径长为a b 2 2。2、双曲线通径:过焦点且与实轴垂直的弦,通径长为a b 22。【典型例题】 1.设椭圆)0(122 22>>=+b a b y a x 的左右焦点分别是21,F F ,P 是椭圆上的点,且满足212F F PF ⊥,?=∠3021F PF ,则椭圆的离心率为( )。2.过双曲线18 2 2=-y x 的右焦点作x 轴的垂线交双曲线于A ,B 两点,则|AB|=()。【变式训练】 1.已知21,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若2ABF ?为等边三角形,则这个椭圆的离心率是( )。2.过双曲线18 2 2=-y x 的右焦点作x 轴的垂线交双曲线于A ,B 两点,若|AB|=16,则这样的直线有()条。 三、焦半径公式 1、椭圆焦半径公式(1) 0201,ex a PF ex a PF -=+=,其中e 为离心率,0x 为P 点横坐标。 2、双曲线焦半径公式(1) |||,|0201ex a PF ex a PF -=+=,其中e 为离心率,0x 为P 点横坐标。 【典型例题】 1.已知椭圆)0(122 22>>=+b a b y a x 的左右焦点分别是21,F F ,若椭圆上存在一点P 使得||23||21PF e PF =,则该椭圆离心率的取值范围是()。 2.已知双曲线112 42 2=-y x 上一点M ,其横坐标为3,则M 到右焦点的距离是()。 【变式训练】

2.3.1双曲线及其标准方程公开课教学设计

§2.3.1双曲线及其标准方程 海南华侨中学王芳文 1.教学背景 1.1 学生特征分析 我授课班级是海南侨中理科班,方法储备上,学生经过学习,已经基本适应高中数学学习规律,但是学习方法还是停留在简单模仿,反复练习层次上,对知识的生成与发展,区别与联系认识不深,缺少抽象概括及分析综合能力。 知识储备上,学生已经系统的学习了直线方程,圆的方程以及椭圆的相关知识,学生熟知椭圆的定义,会根据题目条件求简单的椭圆的标准方程。但是由于接触学习椭圆的时间还相对较短,对椭圆的基本性质了解不深,而且理性思维比较欠缺,且计算能力的短板约束使得在处理直线与椭圆等综合问题时还存在困难。把新问题转化为已解决问题的能力有待提高,缺乏选择、调整解决问题策略的能力。 1.2教师特点分析 自己教学中的优势:注重问题引导、思路分析、善于与信息技术的整合、善于鼓励学生,能对学生进行有效指导。 不足:课堂教学语言相对不够准确简练、板书不够清晰美观。 1.3 学习内容分析 1、内容分析:学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对其研究内容的进一步深化和提高。如果双曲线研究的透彻、清楚,那么抛物线的学习就会顺理成章。所以说本节课的作用就是纵向承接椭圆定义和标准方程的研究,横向为双曲线的简单性质的学习打下基础。从高考大纲要求和课程标准角度来讲,双曲线的定义、标准方程作为了解内容,在高考的考查当中以选择、填空为主。正因如此,学生在学习过程当中对双曲线缺少应有的重视,成为了学生的一个失分点。而且由于学生对椭圆与双曲线的区别与联系认识不够,无法做到知识与方法的迁移,在学习双曲线时极易与椭圆混淆。在教学中要时刻注意运用类比的方法,让学生充分的类比体会椭圆与双曲线的异同点,使得椭圆与双曲线的学习能相互促进。 2、例题分析: 温故:帮助学生复习椭圆的定义,提出问题。 探究:如图,实验操作:1.取一条拉链,拉开一部分;

双曲线的几何性质的教案

双曲线的几何性质 一、教学目标 (一)知识教学点 使学生理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征. (二)能力训练点 在与椭圆的性质的类比中获得双曲线的性质,从而培养学生分析、归纳、推理等能力. (三)学科渗透点 使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决双曲线中的弦、最值等问题. 二、教材分析 1.重点:双曲线的几何性质及初步运用. (解决办法:引导学生类比椭圆的几何性质得出,至于渐近线引导学生证明.) 2.难点:双曲线的渐近线方程的导出和论证. (解决办法:先引导学生观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线.) 3.疑点:双曲线的渐近线的证明. (解决办法:通过详细讲解.) 三、活动设计 提问、类比、重点讲解、演板、讲解并归纳、小结. 四、教学过程 (一)复习提问引入新课 1.椭圆有哪些几何性质,是如何探讨的? 请一同学回答.应为:范围、对称性、顶点、离心率,是从标准方程探讨的.

2.双曲线的两种标准方程是什么? 再请一同学回答.应为:中心在原点、焦点在x轴上的双曲线的标 下面我们类比椭圆的几何性质来研究它的几何性质. (二)类比联想得出性质(性质1~3) 引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,教师引导、启发、订正并板书).<见下页> (三)问题之中导出渐近线(性质4) 在学习椭圆时,以原点为中心,2a、2b为邻边的矩形,对于估计 仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图2-26)有什么指导意义?这些问题不要求学生回答,只引起学生类比联想. 接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么? 下面,我们来证明它:

椭圆与双曲线二级结论

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴 为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.

高中数学——双曲线教案设计

《 2.2.1 双曲线及其标准方程》 教学设计 《2.2.1 双曲线及其标准方程》 教学设计

教学目标: (1)理解双曲线的定义,掌握双曲线标准方程. (2)通过定义及标准方程的挖掘与探究,使学生进一步体验类比、数形结合等思想方法的运用,提高学生观察问题、探究问题、归纳问题的能力. (3)亲历双曲线及其标准方程的获得过程,体会数学的理性与严谨,感受数学美的熏陶. 教学重点:理解双曲线的定义,掌握双曲线的标准方程. 教学难点:双曲线标准方程的推导与化简. 教学方法:启发式与探究式相结合. 教学过程与操作设计: (一)创设情景,引入课题 1、知识回顾 问题1:椭圆的定义是什么? 问题2:若把椭圆定义中的“与两定点的距离之和”改为“距离之差”,这时轨迹又是什么呢? 也就是:平面内与两定点 F、2F距离的差等于一个非零常数的点的轨迹是 1 什么图形? 【设计意图】 通过一个知识冲突的教学情景,由和到差,不仅加强新旧知识的联系,而且通过学生类比和与差,促进学生思考,激发他们的求知欲望. 2、观察动画、动手作图 取出生活中常见的一条拉链,随着拉链的拉开闭合,通过观察,引导学生思考拉链拉开的两部分长度的内在联系.通过播放这个拉链的演示实验,让学生观察动画,了解双曲线的画法,再由学生画另一支曲线.最后教师给出这两条曲线合起来叫双曲线,其中每一条叫双曲线的一支,顺利引入课题. 【设计意图】 通过观察动画和动手作图,使学生从空洞的数学分析转化为感受图形的实际变化.这一环节使学生体会双曲线定义的获得过程,培养了学生观察、归纳能力.

(二)探究发现,挖掘新知 1、定义的归纳 (1)提出问题1:这条曲线上的点满足的条件?同样使学生找到另一条曲线上的点满足的条件. 提出问题2:用一个数学式子表达这两条曲线上的点满足的条件. 根据讨论总结出:1、(1)|MF1|-|MF2|=|F2F|= 2a (2)|MF2|-|MF1|=|F1F|= 2a 2、| |MF1|-|MF2| | = 2a 2a是定值, 2a< |F1F2|. 通过以上分析,由学生归纳双曲线定义. 【设计意图】 通过自主探究,体会双曲线任一点所满足的条件,提高学生分析问题、归纳问题的能力. (2)通过椭圆和双曲线的定义的学习,知道它们是满足一定条件的点的轨迹,让学生发现两个定义的区别.教师总结学习定义的作用,可以用来判断曲线的形状. 【设计意图】 通过师生、生生的交流合作,使学生理解双曲线定义.学会利用定义判断曲线形状. 2、标准方程的推导 (1)学习了双曲线定义后给出两组图片,一组是学生熟悉的热电厂冷却塔和广州新电视塔,它们的外形与轴截面的交线是双曲线.另一组是飞机导航的双曲线定位法和创建的双曲线型交通结构. 【设计意图】 这些图片使学生感受到数学美,体会数学的实用性,对双曲线进一步形成清晰的感性认知,为推导双曲线标准方程的理性认知打下基础.(2)了解了双曲线的定义后,我们下面来研究一下双曲线的标准方程怎样推导,请大家类比椭圆方程的推导过程,说出双曲线标准方程推导步骤是什么(请学生回答教师给予点评) 【设计意图】

高中数学二级结论

1高中数学二级结论 1.任意的简单n 面体内切球半径为 表 S V 3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C 推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的 4 2倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点 5.导数题常用放缩1+≥x e x 、1ln 11-≤≤-<- x x x x x 、)1(>>x ex e x 6.椭圆)0,0(122 22>>=+b a b y a x 的面积S 为πab S = 7.圆锥曲线的切线方程求法:隐函数求导 推论:①过圆2 22)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为2 00))(())((r b y b y a x a x =--+-- ②过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx ③过双曲线)0,0(12222>>=-b a b y a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx 8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆02 2 =++++F Ey Dx y x 的切点弦方程为02 20000=+++++ +F E y y D x x y y x x ②椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b y y a x x ③双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-b y y a x x ④抛物线)0(22 >=p px y 的切点弦方程为)(00x x p y y += ⑤二次曲线的切点弦方程为02 22000000=++++++++F y y E x x D y Cy x y y x B x Ax 9.①椭圆)0,0(122 22>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+ ②双曲线)0,0(122 22>>=-b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =- 10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、

《双曲线及其标准方程》教学设计

《双曲线及其标准方程》教学设计 一、设计理念 1.课标解读: 《普通高中数学课程标准》(实验)中指出:(1)高中数学课程应设立“数学探究”等学习活动,为学生形成积极主动的、多样的学习方式进一步创造有利的条 件,以激发学生的数学学习兴趣。(2)高中数学课程应注重提高学生的数学思维 能力,在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归 纳类比、抽象概括、符号表示、运算求解、反思与建构等思维过程,提高学生对 客观事物中蕴涵的数学模式进行思考和做出判断的能力(3)高中数学课程实施应 重新审视基础知识、基本技能和能力的内涵,删减繁琐的计算、人为技巧化的难 题和过分强调细枝末节的内容。(3)高中数学课程提倡实现信息技术与课程内容 的有机整合,整合的基本原则是有利于学生认识数学的本质;提倡利用信息技术 来呈现以往教学中难以呈现的课程内容,加强数学教学与信息技术的结合。(4)高中数学课程应建立合理、科学的评价体系;评价既要关注学生数学学习的结果, 也要关注数学学习的过程;过程性评价应关注对学生理解数学概念、数学思想等 过程的评价,关注对学生在学习过程中表现出来的与人合作的态度、表达与交流 的意识的评价。 基于课表理念的指导,本节课教学方法选择以问题探究、练习为主、以讲授法辅。教学过程侧重知识的自主建构和应用,重视信息技术在教学中的辅助作用。 2.高考解读: 解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题是解析几何的基本特点和性质。因此,在解题的过程中计算占了很大的比例,对

运算能力有较高的要求,但计算要根据题目中曲线的特点和相互之间的关系进行, 所以曲线的定义和性质是解题的基础。解析几何试题除考查概念与定义、基本元 素与基本关系外,还突出考查函数与方程的思想、数形结合的思想等思想方法。 3.教材解读: 本节课的教学内容是《数学选修2-1》第二章《圆锥曲线与方程》§3.1“双曲线及其标准方程”,教学课时为1课时。圆锥曲线是一个重要的几何模型,有许多 几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用,同时,圆 锥曲线也是体现数形结合思想的重要素材,而双曲线是三种圆锥曲线中最复杂的 一种,作为最后一种圆锥曲线来学习充分考虑到了知识学习由易到难的教学要求。 双曲线可以与椭圆类比学习,主要内容是:①探求轨迹(双曲线);②学习双曲线概念;③推导双曲线标准方程;④学习标准方程的简单求法,在学习过程中应注 意双曲线与椭圆的区别与联系。 二、教学目标: 1.知识与技能: (1)能理解并掌握双曲线的定义,了解双曲线的焦点、焦距; (2)能掌握双曲线的标准方程,能够根据双曲线的标准方程确定焦点的位置。 (3)能根据已知条件求双曲线的标准方程。 2.过程与方法: (1)经历双曲线轨迹的探究,培养观察能力和探索发现能力。 (2)在双曲线定义和标准方程的学习过程中培养类比推理能力、归纳能力,体会求轨迹方程过程中数形结合等数学思想方法的运用。 3.情感、态度与价值观:

双曲线及其标准方程(教案)

《双曲线及其标准方程》 [教案] 常德市一中王第教学目标: 1.通过教学,使学生熟记双曲线的定义及其标准方程,理解双曲线的定义,体会双曲线标准方程的探索推导过程. 2. 使学生在学会知识的过程中,进一步熟练用坐标法建立曲线方程,培养学生等价转化、数形结合等数学思想,提高学生分析问题、解决问题的能力. 3. 通过对定义与方程的探索、评价,优化学生的思维品质,培养学生运动变化、辨证统一的思想. 教学重点与难点 双曲线的定义和标准方程及其探索推导过程是本课的重点. 定义中“差的绝对值”、a与c的大小关系的理解与标准方程的建立是难点. 教学方法:实验发现法、电化教学法、启导法、类比教学法 教学用具:CAI课件、演示教具 课时安排:一课时 教学过程: 一、课题导入 师:椭圆的定义是什么? (学生口述椭圆的定义,教师利用CAI课件把椭圆的定义和图象放出来.) 师:椭圆定义是由轨迹的问题引出来的,我们把满足几何条件|PF1|+|PF2|=2a(常数)(2a>|F1F2|)的动点P的轨迹叫椭圆.下面,我们来做这样一个实验: (同学分组实验:利用拉链演示双曲线的生成过程,导入课题) 师:通过这个实验,我们发现笔尖画出了这样两条特殊的曲线,这是一类什么曲线呢?这就是我们今天要研究的“双曲线及其标准方程”(板书课题) 二、定义探究 师:我们知道满足几何条件|PF1|+|PF2|=2a(常数)的动点P的轨迹是椭圆,那双曲线应该是点P满足什么几何条件的轨迹呢?

(引导学生从刚才的演示实验中寻找答案: |PF 1|-|PF 2|=2a 或|PF 2|-|PF 1|=2a ) 师:是不是有以上规律呢?为了更直观的体现我们刚才的实验过程,下面我们来验证一下. (播放双曲线flash 生成动画,验证几何条件) 师:实验证明当点P 满足以上几何条件时,我们得到的轨迹确实是双曲线,如果 |PF 1|>|PF 2|,则得到曲线的右支,如果|PF 2|>|PF 1|则得到曲线的左支, 能否用一个等式将两几何条件统一起来呢? (引导学生思考,此时只需在|PF 1|-|PF 2|=2a 左边加上绝对值) 师:作为此时差的绝对值2a 与|F 1F 2|大小关系怎样? (结合图象,学生分析:应该有2a 〈|F 1F 2|) (在上述讨论的基础上引导学生类比椭圆定义概括出双曲线的定义,教师板书) 三、方程推导 师:平面解析几何的基本思想是利用代数的方法来研究几何问题,借助于曲线的方程来揭示曲线的性质.下面我们来探究双曲线的方程.首先请回忆椭圆的标准方程是什么? (学生口述教师板书椭圆的标准方程) 师:椭圆的标准方程我们是借助于椭圆的定义用坐标法建立起来的,在此我们完全可以仿效求椭圆标准方程的方法探求双曲线方程. (学生在草稿纸上试着完成,教师板书方程的推导过程) 建立直角坐标系,设双曲线上任意一点的坐标为P(x 、y),|F 1F 2|=2c ,并设F 1(-c,0),F 2(c,0). 由两点间距离公式,得 |PF 1|=22)(y c x ++,|PF 2|=22)(y c x +- 由双曲线定义,得 |PF 1|-|PF 2|=±2a 即

相关文档
相关文档 最新文档