文档库 最新最全的文档下载
当前位置:文档库 › 2015年材料力学性能思考题大连理工大学.

2015年材料力学性能思考题大连理工大学.

2015年材料力学性能思考题大连理工大学.
2015年材料力学性能思考题大连理工大学.

一、填空:

1.提供材料弹性比功的途径有二,提高材料的,或降低。

2.退火态和高温回火态的金属都有包申格效应,因此包申格效应是

具有的普遍现象。

3.材料的断裂过程大都包括裂纹的形成与扩展两个阶段,根据断裂过程材料的宏观塑性变形过程,可以将断裂分为与;按照晶体材料断裂时裂纹扩展的途径,分为和;按照微观断裂机理分为和;按作用力的性质可分为和。

4.滞弹性是指材料在范围内快速加载或卸载后,随时间延长产生附加的现象,滞弹性应变量与材料、有关。

5.包申格效应:金属材料经过预先加载产生少量的塑性变形,而后再同向加载,规定残余伸长应力;反向加载,规定残余伸长应力的现象。消除包申格效应的方法有和。

6.单向静拉伸时实验方法的特征是、、必须确定的。

7.过载损伤界越,过载损伤区越,说明材料的抗过载能力越强。

8. 依据磨粒受的应力大小,磨粒磨损可分为、

、三类。

9.解理断口的基本微观特征为、和。10.韧性断裂的断口一般呈杯锥状,由、和三个区域组成。

11.韧度是衡量材料韧性大小的力学性能指标,其中又分为、

和。

12.在α值的试验方法中,正应力分量较大,切应力分量较小,应力状态较硬。一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;在α值的试验方法中,应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料;

13.材料的硬度试验应力状态软性系数,在这样的应力状态下,几乎所有金属材料都能产生。

14. 硬度是衡量材料软硬程度的一种力学性能,大体上可以分为

、和三大类;在压入法中,根据测量方式不同又分为

、和。

15. 国家标准规定冲击弯曲试验用标准试样分别为试样

和试样,所测得的冲击吸收功分别用

、标记。

16. 根据外加压力的类型及其与裂纹扩展面的取向关系,裂纹扩展的基本方式有、和。

17. 机件的失效形式主要有、、三种。

18.低碳钢的力伸长曲线包括、、、

、断裂等五个阶段。

19.内耗又称为,可用面积度量。

20.应变硬化指数反映了金属材料抵抗均匀塑性变形的能力,在数值上等于测量形成拉伸颈缩时的。应变硬化指数与金属材料的层错能有关,层错能低

者n值。冷加工状态n值。晶粒粗大材料n值。

21. 是材料抵抗无限次应力循环也不疲劳断裂的强度指标。

22. 应力状态软性系数:用试样在变形过程中的测得

和的比值表示。

23.微孔聚集型断裂是包括微孔、直至断裂的过程。

24.缺口试样的与等截面光滑试样的的比值。称为“缺口敏感度”。

25.机件在冲击载荷下的断口形式仍为、和。

26.包申格应变是在给定应力下,正向加载和反向加载两曲线之间的应变差。

27.由于缺口的存在,在载荷作用下,缺口截面上的应力状态将发生变化的现象,被称为“缺口效应”。

28. 洛氏硬度是在一定的实验力下,将120o角的压入工件表面,用所得的来表示材料硬度值的工艺方法。

28.低温脆性是随的下降,材料由转变为的现象。

29. 缺口敏感性是指材料因存在缺口造成的状态和而变脆的倾向。

31. 疲劳破坏形式按应力状态分为、、、及。按应力高低和断裂寿命分为

和。

32. 典型的疲劳断口具有、、三个特征区。

33. 疲劳条带是疲劳断口的特征,贝纹线是断口的特征。

34. 金属材料的疲劳过程也是裂纹的和过程。

35.金属材料抵抗疲劳过载损伤的能力,用或表示。

36.金属在和特定的共同作用下,经过一段时间后所发生的

现象,成为应力腐蚀断裂。

37.应力腐蚀断裂的最基本的机理是和。

38.由于氢和应力的共同作用而导致金属材料产生脆性断裂的现象叫做。

39.氢致脆断裂纹的拓展方式是式,这是与应力腐蚀裂纹式扩展方式是不同的。

40.钢的氢致延滞断裂过程可分为、、三个阶段。

41.典型氢脆类型包括、、、。

42. 机件正常运行的磨损过程一般分为、

、段三个阶段。减轻粘着磨损的主要措施有

、、。

43. 按磨损模型分为:、、、、

五大类。

44.韧窝是微孔聚集型断裂的基本特征。其形状视应力状态不同分为下列、、三类。其大小决定于第二相质点的、基体材料的和以及外加应力的大小和形状。

45. 磨损量的测定方法有和两种,单位摩擦距离单位压力下的磨损量称之为。

46. 国家标准规定了四种断裂韧性测试试样:、、

和。

47.过载持久值越高,说明材料在相同的过载荷下能承受的应力循环周次,材料的能力越强。

48. 按照蠕变速率的变化,可将蠕变过程可分为、

和三个阶段。

49. 金属材料的蠕变变形主要是通过、等机理进行的。

50.当试验温度低于某一温度t k时,材料由状态变为状态,冲击吸收功明显下降,断裂机制由型变为断口特征,断口由状变为状,这就是低温脆性。

51.韧脆转变温度t

,也是金属材料的指标,它反映了温度对材料的

k

影响。也是性能指标,是从韧性角度选材的重要依据之一,可用于抗脆断设计。

52. 金属材料在长时高温载荷作用下的断裂大多为断裂。在不同的应力和温度条件下,晶界裂纹的形成方式有、两种。

53. 金属材料蠕变断裂断口的宏观特征为:一是在断口附近产生,在变形区域附近有许多,使断裂机件表面出现现象;另一个特征是由于高温氧化,断口表面往往被一层覆盖。

54. 金属材料蠕变断裂断口的微观特征主要是冰糖状花样的。

55. 蠕变极限是表示材料在高温长时间载荷作用下的抗力指标,是选用高温材料,设计高温下服役机件的主要依据之一。

56. 描述材料的蠕变性能常采用、

、等力学性能指标。

57. 缺口偏斜拉伸试验过程中,试样在承受拉伸力的同时还承受力的作用,承受复合载荷,故其应力状态更,缺口截面上的应力分布更,因而,更能显示材料的缺口敏感性。

58. 要在同一材料上测得相同的布氏硬度,或在不同的材料上测得的硬度可以相互比较,压痕的形状必须,压入角应。

59.高温下材料晶内和晶界的强度均随温度升高而,但晶界的强度降低速度比晶内的降低速度。

60.根据剥落裂纹起始位置及形态不同,接触疲劳破坏分为、

和三类。

61. 是引起疲劳破坏的外力,它是指大小、方向均随时间变化的载荷。

62.紧凑拉伸试样预制裂纹后在固定应力比和应力范围条件下循环加载,

随的变化曲线即为疲劳裂纹扩展曲线。

63.疲劳裂纹不扩展的应力强度因子范围临界值,称为。

64.产生疲劳微观裂纹的主要方式有、和。

65.疲劳裂纹扩展第二阶段断口最重要的特征是具有。

66.驻留滑移带在加宽过程中,还会出现和,其成因可用柯垂耳-赫尔模型描述。

67.剪切断裂和解理断裂都是断裂。前者受剪切力作用是断裂,后者受正应力作用,属断裂。断裂性质完全不同。也就是说断裂既可能是韧性断裂也可能是脆性断裂。取决于材料的本性和力的作用方式。

68解理断裂是沿特定界面发生的脆性断裂,解理断裂实际上是沿一族相互平行的晶面解理而引起的。这些解理面称为。

69.若干相互平行的而且位于不同高度的解理面,从而形成解理断口的基本微观特征。

二、概念:

1.韧脆转变:

2.内耗:

3.解理裂纹:

4.弹性:

5.低温脆性:

6.低应力脆断:

7.过载持久值:

8.滞弹性:

9.穿晶裂纹:

10.疲劳缺口敏感性:

11.韧脆转变温度:

12.循环韧性:

13.解理刻面:

14.韧性:

15.小范围屈服:

16.有效裂纹长度:

17.缺口敏感度:

18.穿晶断裂:

19.解理断裂:

20.氢致延滞断裂

21.应力腐蚀

22.白点

23.接触疲劳

24.耐磨性

25.粘着磨损

26.约比温度

27.松弛稳定性

28.等强温度

29持久强度

30.蠕变极限

三、分析问答题

第一章

1.试分析金属材料在屈服阶段为何存在上下屈服点?

2.循环韧性有何工程意义?选择音叉需要选择循环韧性高的还是低的材料?

3. 何为拉伸断口三要素?影响宏观拉伸断口的形态的因素有哪些?

4、为什么材料的塑性要以延伸率和断面收缩率这两个指标来度量?它们在工程上各有什么实际意义?

5.包申格效应有何意义?工程中对机件会产生哪些影响?

6.试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?

7. 试述韧性断裂与脆性断裂的区别,为什么说脆性断裂最危险?

8. 常温静拉伸试验可确定金属材料的哪些性能指标?说出这些指标的符号定义、意义。

9.常用的标准试样有5 倍试样和10 倍试样,其延伸率分别用σ

5和σ

10

表示,说

明为什么σ

5>σ

10

10.试述多晶体金属产生明显屈服的条件,并解释bcc金属与fcc金属及其合金屈服行为不同的原因。

第二章

1. 布氏硬度与洛氏硬度可否直接比较?

2. 缺口对材料的拉伸力学性能有什么影响?

3. 布氏硬度与洛氏硬度的测量方法有何不同? HRA、HRB、HRC分别用于测量何种材料的硬度?

4、什么是“缺口效应”?它对材料性能有什么影响?

5.金属材料在受到扭转、单向拉伸、三向等拉伸、单向压缩、两向压缩、三向压缩应力作用时,其应力状态软性系数分别为多少?

6.缺口试样拉伸时应力分布有何特点?

7.试综合比较光滑试样轴向拉伸、缺口试样轴向拉伸和偏斜拉伸试验的特点

8. 今有如下工件需要测定硬度,试说明选用何种硬度试验法为宜?(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁,(4)硬质合金,(5)鉴别钢中的隐晶马氏体与残余奥氏体,(6)仪表小黄铜齿轮,(7)龙门刨床导轨,(8)氮化层,(9)火车圆弹簧,(10)高速钢刀具。

第三章

1. 试说明低温脆性的物理本质及其影响因素?

2.冲击韧性主要有哪些用途?

3.细化晶粒尺寸可以降低脆性转变温度或者说改善材料低温脆性,为什么?4.为什么通常体心立方金属显示低温脆性,而面心立方金属一般没有低温脆性?

5.试述冲击载荷作用下金属变形和断裂的特点。

6、什么是低温脆性、韧脆转变温度t k?产生低温脆性的原因是什么?体心立方和面心立方金属的低温脆性有何差异?为什么?

第四章

1. 说明K

I 和K

Ic

的异同。

2.为什么研究裂纹扩展的力学条件时不用应力判据而用其它判据?

3.试述应力场强度因子的意义及典型裂纹K

的表达式

4.试述K判据的意义及用途

5.试述裂纹尖端塑性区产生的原因及其影响因素,在什么条件下需考虑塑性区的

影响对K

进行修正?

6. 张开型、滑开型和撕开型哪种断裂方式最危险?

7.试述影响K

Ⅰc 和A

kV

的异同及其相互之间的关系

8.什么叫断裂韧性?它与应力场强度因子有何联系与区别?

第五章

1.轴对称循环应力的平均应力、应力幅和应力比分别为多少?

2. 疲劳宏观断口上的贝纹线与微观断口的条带有什么区别?

3.试述金属疲劳断裂的特点

4.试说明合金成分、显微组织、非金属夹杂物、表面粗糙度等对金属疲劳性能的影响规律

5.试述金属表面强化对疲劳强度的影响。

第六章

1.有一M24栓焊桥梁用高强度螺栓,采用40B钢调质制成,抗拉强度为1200MPa,承受拉应力650MPa。在使用中,由于潮湿空气及雨淋的影响发生断裂事故。观察断口发现,裂纹从螺纹根部开始,有明显的沿晶断裂特征,随后是快速脆断部分。断口上有较多腐蚀产物,且有较多的二次裂纹。试分析该螺栓产生断裂的原因,并考虑防止这种断裂的措施。

2.试述金属产生应力腐蚀的条件和机理。

3.试述区别高强度钢的应力腐蚀和氢致延滞断裂的方法。

4.何为氢致延滞断裂?为什么高强度钢的氢致研制断裂是在一定的应变速率和温度范围内出现?

第七章

1..粘着磨损产生的条件、机理及其防止措施

2.摩擦副材料的硬度一般较测试材料高,请问为何一般不能选择同种材料作摩擦副?

3.耐磨性一般如何测量?有哪些测定方法?

4.如何提高材料或零件的抗粘着磨损能力?

第八章

1.试说明材料的持久强度极限是如何由实验方法测得的?

2.试说明使材料产生稳态蠕变速率的蠕变极限是如何由实验方法测得的?

3.解释材料高温蠕变变形理论主要有哪些?蠕变断裂有哪几种形式?

4. 试分析晶粒大小对金属材料高温力学性能的影响。

5. 材料的高温性能包括哪些?

6.试述金属蠕变断裂的裂纹形成机理与常温下金属的裂纹形成机理有何不同?

四、计算

1. 通常纯铁的γs =2J/m 2,E=2×105MPa,a 0=

2.5×10-10m ,试求其理论断裂强度σm 。(4×104MPa)

2

1

0???

? ??=a E s m γσ

2. 若一薄板内有一条长3毫米的裂纹,且a 0=3×10-8mm , 试求脆性断裂时的断裂应力σc (设σm =E/10=2×105MPa )。(71.4MPa )

3. 有一材料E=2×1011N/m 2, γs =8N/m,试计算在 7×107N/m 2的拉力作用下,该材料的临界裂纹长度?(0.4mm )

21

?

??

? ??=a E s m γσ

4.一直径为2.5mm ,长为200mm 的杆,在载荷2000N 作用下,直径缩小为2.2mm, 试计算:

(1)杆的最终长度;(258.3mm)

(2)在该载荷作用下的真应力S 与真应变e ;(407.6MPam,0.291)

(3)在该载荷作用下的名义应力σ与名义应变δ。(526.2MPa,0.255)

5.某材料制成长50mm 、直径5mm 的圆形拉伸试样,当进行拉伸试验时,塑性变形阶段的外力F 与长度增量ΔL 的关系为 F (N) 6000, 14000 ΔL (mm) 1, 11.5

试求该材料的硬化系数和应变硬化指数。 (n =0.44,K =1659.59MPa)

e n K S Ke S n lg lg lg +=→=

6.有一大型板件,材料的σ0.2=1200MPa ,K IC =115MPa·m 1/2,探伤发现有20mm 长的横向穿透裂纹,若在平均轴向拉应力900MPa 下工作,试计算K I 及塑性区宽度R 0,并判断该件是否安全。(168.13 MPa.m 1/2,1.01mm )

20

)(11.0s

IC K R σ=

7.有一轴件平均轴向工作应力150MPa ,使用中发生横向疲劳脆性正断,断口分析表明有a=25mm 深的表面半椭圆疲劳区,根据裂纹a /c 可以确定Φ=1,测试材料的σ0.2=720MPa ,试估算材料的断裂韧度K IC 是多少?(46.23 MPa.m 1/2)

2

1

0???

? ??=a a c m σσ

8.铝合金三点弯曲试样,尺寸B:W:S=18:36:144,用千分尺测得的实际尺寸B=18.01mm ,W=36.06mm ,试样的屈服强度550MPa ,测试中所获得的F-V 曲线形状如图所示,为第二类曲线,最大载荷Fmax=8700N ,第一个高峰值为8360N ,用初始线段的斜率小于5%做割线截取时与F-V 曲线交点为8050N 。试样断裂后,从断口上测得的相对裂纹长度a/W=0.54;从附表查得,Y(a/W)=3.04,试求条件断裂韧度K Q 并进行有效性判断。(29.67 MPa.m 1/2,B>7.27mm )

9.低合金钢厚板的断裂韧性在-20℃时的G Ⅰc =5.1×10-2MPam ,G Ⅰc 值随温度成比例

地减小,每下降10℃,G Ⅰc 降低1.3×10-2

MPam ,如果这块板上有长度为10mm 的裂纹,问在-50℃时σc 的断裂应力是多少?( E=2×105MPa,ν=0.3)(409.86或者410.84MPa )

10.用某材料制造一批压力容器,此材料的屈服强度σs =1600 MPa ,断裂韧性K

Ⅰc =40 MPa.m

1/2

,经探伤检验发现某一容器沿轴向有一穿透裂纹,长度为2a=5mm ,此批容器的半径R=1100mm ,壁厚t=6mm ,试问:

如果2a=5mm 的这一压力容器必须承受的最大压强为8.34 MPa(85 个大气

V

F

10

.1/)1(max ≤Q F F 2

/5.2)2()(y Q K B σ≥

a K I πσ=

压),这个压力容器是否安全?(σ=1529MPa ,不安全K I =184.18 MPa.m 1/2)

11. 某汽车发动机连杆大头螺栓在工作时承受交变拉应力,最大拉力为59460N ,最小拉力为56900N ,螺栓螺纹处内径为11.29mm ,试求应力半幅σa 、平均应力σm 及应力循环对称系数r 。(3.198MPa,145.36MPa,0.96)

12.设有屈服强度为415 MPa ,断裂韧性为132 MPa.m 1/2 ,宽度分别100mm 、260 mm 的两块合金厚钢板。如果板都受500 MPa 的拉应力作用,并设板内都有长为46mm 的中心穿透裂纹,试问此两板内裂纹是否都扩展?(K I = 156* f(a/b), MPa.m 1/2)

13.物体内部有一圆盘状尖锐深埋裂纹,直径为2.5cmm ,当作用的应力为700 MPa 时,物体发生断裂事故,求:

(a)材料的断裂韧性是多少?(假定满足平面应变条件。)88.433 MPa.m 1/2

(b)若用这种材料制成一块厚度B=0.75cm ,裂纹半长a=3.75cm 的板作断裂韧性试验,问测得的断裂韧性值是否有效?(设材料的屈服强度为1100 MPa 。)(2.5(K IC /σs )2=16.2mm ,B<16.2mm 无效。)

(c)测得有效K IC 的厚度是多少?(16.875mm ) 7.5×1.5×1.5=16.875

14. 设某压力容器周向应力σ =1400MPa ,采用焊接工艺后可能有纵向表面裂纹(半椭圆)a=1mm,a/c=0.6.现可以选用的两种材料分别有如下性能:

A 钢σ0.2 =1700MPa, K Ⅰc =78 MPa.m 1/2 ;

B 钢σ0.2=2800 MPa ,K Ⅰc =47 MPa.m 1/2 。试从防止低应力断裂考虑,应选用哪种材料。

(提示:参考有关半椭圆表面裂纹,而且还要考虑到塑性修正的应力场强度因子K Ⅰ表达式)(A :可以使用K I =156 MPa.m 1/2K IC )

15. 有板件在脉动载荷下工作,σmax =200MPa,σmin =0,该材料的σb =670MPa, σ

0.2=600MPa,K Ic =104MPa·m

1/2

,Paris 公式中,C=6.9×10-12,n=3.0,使用中发现有0.1mm 和1mm 两处横向穿透裂纹,请估算板件的疲劳剩余寿命?(2.69×

2/

5.2)(s Q K B σ≥

105循环周次)

312)(109.6K dN

da

??=- ?

=

ac

a c dN

da da N 0

/

16.正火45钢的σb =610MPa ,σ-1=300MPa ,试用Goodman 公式绘制σmax (σmin )-σm 疲劳图,并确定σ-0.5,σ0,σ0.5等疲劳极限(σmax )。(402.2MPa,484.8MPa,343.6MPa)

)

1(1111)(21)

(21

111min max min max 1???? ?

?++-=+-=

+-==???

?

???????? ??-=---b m m a b m a r r r r tg σσσσσσσσσσασσσσa K I

πσ

=

17.某高强度钢的σ0.2=1400MPa ,在水介质中的K ISCC =21.3MPa ?m 1/2。裂纹扩展到第Ⅱ阶段的da/dt=2×10-6mm/s 。第Ⅰ阶段结束时K I =62MPa ?m 1/2,该材料制成的机件在水介质中工作,工作拉应力σ=400MPa ,探伤发现该机件表面有半径a 0=4mm 的半圆形裂纹,试粗略估算其剩余寿命。(a c =15.6mm,Φ2=2.46,67.13天)

m m

K a c Ic c s 6.154001.16246.21.1,7.01400

4002

22

2222=?==<=ππσφσσ

五、说明下列力学性能指标的意义:

500HBW5/750;HR30N ; HV ;HK ;HS ;A KV ;A KU , FATT50;NDT, FTE,FTP ;K Ic ;G Ic ;σ-1,σ

-1P

-1N

-1

,q f ,ΔK th ,da/dN, σ

scc

、K Ⅰscc 、K Ⅰhec 、da/dt 、sh σ;;

T ?

ε

σ;T τδσ/;T

τσ 。

六、判断正误,正确的在括号里打 ,错误的打

1.弹性模量E 表征了金属材料对弹性变形的抗力( )。

2.材料的真实相对伸长与真实相对断面收缩率在数值上是相等的( )。

3.穿晶断裂一定是韧性断裂( )。

4.疲劳断裂总是脆性断裂( )。

5.所谓解理面是指屈服强度最低的晶面( )。

6.应力状态软性系数越小,越容易产生脆性断裂( )。

7.随着加载速率的提高,材料的韧脆转变温度也提高( )。

8.金属的断裂韧性K Ic 随裂纹的扩展而增大( )。

9.贝纹线和疲劳条带都是疲劳断口的微观特征( )。

10.材料的缺口敏感度为1,说明缺口几乎不影响材料的疲劳强度( )。 11.退火态和高温回火态的金属都有包申格效应( )。 12.弹性模量E 主要取决于金属的本性,是组织不敏感因素( )。 13.解理断裂总是脆性断裂( )。

14.过载损伤是指金属在高于疲劳极限的应力水平下运转一定周次后,其疲劳极限或疲劳寿命的减损( )。

15.韧窝是微孔聚集型断裂断口微观形貌的基本特征( )。 16.提高材料的弹性模量能够提高材料弹性比功( )。 17. 硬度是衡量材料软硬程度的一种力学性能( )。 18.内耗可用弹性比功度量( )。

19.应变硬化指数随层错能降低而降低( )。 20冷加工状态应变硬化指数高( )。 21.晶粒粗大材料应变硬化指数高( )。

天=13.67s 108.5)004.00156.0(105.01021/6

9900=?=-?=?????

??==??-da dt da da t c

c

a

a a a

22.缺口试样的屈服强度与光滑试样的屈服强度的比值。称为“缺口敏感度”()。

23.应力腐蚀是指金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象()。

24.由于氢和应力的共同作用而导致金属材料产生脆性断裂的现象叫做氢致断裂()。

26.单位摩擦距离单位压力下的磨损量称之为比磨损量()。

27.材料的组织越不均匀,弹性后效越明显()。

28.疲劳寿命是指试样在交变循环应力或应变作用下直至发生破坏前所经受应力或应变的循环次数()。

29.金属材料的蠕变变形主要是通过晶界滑动和位错滑移等机理进行的()。

30. 金属材料蠕变断裂断口在变形区域附近有许多裂纹,使断裂机件内部出现龟裂现象()。

31.金属材料蠕变断裂断口一定因为高温氧化,在表面形成一层氧化膜()。

32. 金属材料蠕变断裂断口的微观特征通常是冰糖状花样的沿晶断裂形貌()。

33. 蠕变极限是表示材料在高温长时间载荷作用下的塑性变形抗力指标()。

34.材料的晶内和晶界的强度均随温度升高而降低()。

35.蠕变极限是指在约比温度以下,使试样在蠕变第二阶级产生规定稳态蠕变速率的最大应力()。

36.蠕变极限是指在给定温度和载荷条件下,使试样产生规定的蠕变应变的最大应力()。

37.蠕变就是高温时材料在长时间的载荷作用下缓慢地产生塑性变形的现象()。

38.滞弹性是指在外加载荷作用下,应变落后于应力现象,属于弹塑性变形()。

39.包申格效应是指原先经过少量塑性变形,卸载后同向加载,弹性极限增加;反向加载时弹性极限降低的现象()。

40.解理断裂沿一定的晶体学平面产生的快速穿晶断裂()。

41.驻留滑移带是指用已发生塑性变形的试样电解抛光后,对其重新循环加载时,又在原处再现的循环滑移带()。

42.布氏硬度是指用钢球或硬质合金球作为压头,采用单位压痕投影面积所承受的试验力计算而得的硬度()。

43.洛氏硬度不同标尺是可以相互比较的()。

44.维氏硬度是以两相对面夹角为136°的金刚石四棱锥作压头,采用单位投影面积所承受的试验力计算而得的硬度()。

45.冲击韧度是指材料在冲击载荷作用下吸收塑性变形功的能力()。

46.低温脆性可以作为选材的依据()。

47.小范围屈服是指塑性变形去尺寸较裂纹尺寸及净截面尺寸小一个数量级以下的屈服现象()。

48.材料的循环韧性越高,则机件依靠材料自身的消振能力越好()。

49.接触疲劳是指两接触面做滑动摩擦时,在交变接触压应力长期作用下,材料表面因疲劳损伤产生的小片金属剥落而使材料损失的现象

()。

50.弹性比功是指金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示()。

51.循环韧性是指金属材料在交变载荷下吸收不可逆变形功的能力()。

52.韧性是指金属材料断裂前吸收塑性变形功和断裂功的能力()。

53.疲劳贝纹线是疲劳区的微观特征,一般认为它是由载荷变动引起的,是裂纹前沿线留下的弧状台阶痕迹()。

54.疲劳条带是疲劳裂纹扩展宏观上具有略呈弯曲并相互平行的沟槽花样()。

55. 国内正在研发自己的民航飞机,要求其采用直径4mm铆钉连接,铆钉帽直径

6mm。现有两种铝合金材料,一种7050铝合金屈服强度K

=38 MPa.m1/2,初

Ⅰc

步确定其最小壁厚是4毫米,另一种7045铝合金K

=47 MPa.m1/2,请先确定

Ⅰc

其单位面积上所有压力。如果改用后一种铝合金,请确定其可能采用的最小厚度是多少?

材料力学性能课后题参考答案(DOC)

《工程材料力学性能》课后题参考答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 一、解释下列名词 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 1、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 2、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 3、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 4、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 6、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τ max 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σ b 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度 【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承受

大连理工大学材料力学专业有效复习范围

大连理工大学材料力学专业有效复习范围 海文考研专业课教研中心https://www.wendangku.net/doc/506034110.html,

一2009-2010真题剖析 综合来说,_材料力学土_专业课这几年的题型变化不大,主要有_计算(大小)_题型,难度略有增加,侧重于对知识的灵活运用。因此在复习时,不仅要理解知识点,同时要对需要掌握的内容详加整理。对于了解的知识点,复习的时候,只需按照课本思路理解即可。对于熟悉的知识点,复习的时候,要作一定的习题加以辅助。对于掌握的知识点,复习的时候,不仅需要记忆相关内容,而且要针对知识点和重点题型做详细的笔迹整理,同时做典型题摘抄工作,以便熟悉掌握。对于材料力学土,下划线部分尤其重要,因为大部分是计算题,这就需要认真与实际题型相联系,做到把题目的精髓提炼出来加以运用解题。 二初试参考书目 初试专业课《材料力学》总共包括__2__本书,第1本书包括_9__章,占总卷面的__65_%;第2本书包括_4__章,占总卷面的__35__%。 三各部分考试内容 下面我将主讲每本书的复习概要,同学可以做个标注: 1、第1本书《材料力学》:__65__% 章节章节名称重点难点必考点考试题型分值 第1章绪论及基本概念×× 第2章轴向拉伸与压缩√√小计算 6 第3章扭转√√小计算 6 6+10 第4章弯曲应力√√大、小计 算 第5章梁弯曲时的位移√√√大计算15 第6章简单超静定√√√大计算15 第7章应力应变状态和强度理论√√√大小计算8+15 第8章组合结构及部分连接件的计算√√√大小计算6+15 第9章压杆稳定√√√大计算15

附录截面的几何性质√√小计算8 2、第2本书《材料力学》:_35_% 章节章节名称重点难点必考点考试题型分值第1章弯曲问题的进一步研究√×小计算8 第2章考虑材料塑性的极限分析√√√大计算15 第3章能量法√√√大计算15 第4章应变分析√√×大或小计算12或6 第5章动荷载√√大或小计算15或6 5.3重点知识点汇总分析(大纲) 材料力学(土) 序号知识点细分 难易程度 (最大为★★★) 1 绪论 可变性固体的基本假设★ 2 杆件变化形式★ 3 轴向拉伸与压缩截面法★ 4 轴力及轴力图★ 5 拉压杆的变形,胡克定律★★ 6 拉压杆的应变能★★ 7 杆件强度条件★ 8 安全系数许用应力★ 9 扭转薄壁圆筒的扭转★

工程材料力学性能课后习题答案

《工程材料力学性能》(第二版)课后答案 第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料 能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限 (σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服 强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包申格效应,如何解释,它有什么实际意义? 答案:包申格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。

材料力学第五版课后习题答案

7-4[习题7-3] 一拉杆由两段沿n m -面胶合而成。由于实用的原因,图中的α角限于060~0范围内。作为“假定计算” ,对胶合缝作强度计算时,可以把其上的正应力和切应力分别与相应的许用应力比较。现设胶合缝的许用切应力][τ为许用拉应力][σ的4/3,且这一拉杆的强度由胶合缝强度控制。为了使杆能承受最大的荷载F ,试问α角的值应取多 大? 解:A F x =σ;0=y σ;0=x τ ατασσσσσα2s i n 2c o s 2 2 x y x y x --+ += ][22cos 12cos 22σα ασα≤+=+= A F A F A F ][22cos 1σα≤+A F ,][cos 2σα≤A F ασ2cos ][A F ≤,α σ2 max,cos ][A F N = ατασστα2c o s 2s i n 2 x y x +-= ][ 3][2sin στατα=≤= F ,σ][5.1A F ≤ ,σ][5.1max,A F T = 由切应力

强度条件控制最大荷载。由图中可以看出,当0 60=α时,杆能承受最大荷载,该荷载为: A F ][732.1max σ= 7-6[习题7-7] 试用应力圆的几何关系求图示悬臂梁距离自由端为m 72.0的截面上,在顶面以下mm 40的一点处的最大及最小主应力,并求最大主应力与x 轴之间的夹角。 解:(1)求计算点的正应力与切应力 MPa mm mm mm N bh My I My z 55.1016080401072.01012124 363=??????===σ MPa mm mm mm N b I QS z z 88.0801608012 160)4080(1010433 3*-=???????-== τ (2)写出坐标面应力 X (10.55,-0.88) Y (0,0.88) (3) 作应力圆求最大与最小主应力, 并求最大主应力与x 轴的夹角 作应力圆如图所示。从图中按 比例尺量得: MPa 66.101=σ MPa 06.03-=σ 0075.4=α 7-7[习题7-8] 各单元体面上的应力如图所示。试利用应力圆的几何关系求: (1)指定截面上的应力; (2)主应力的数值; (3)在单元体上绘出主平面的位置及主应力的方向。

材料力学性能考试题及答案

07 秋材料力学性能 一、填空:(每空1分,总分25分) 1.材料硬度的测定方法有、和。 2.在材料力学行为的研究中,经常采用三种典型的试样进行研究,即、和。 3.平均应力越高,疲劳寿命。 4.材料在扭转作用下,在圆杆横截面上无正应力而只有,中心处切 应力为,表面处。 5.脆性断裂的两种方式为和。 6.脆性材料切口根部裂纹形成准则遵循断裂准则;塑性材料切口根 部裂纹形成准则遵循断裂准则; 7.外力与裂纹面的取向关系不同,断裂模式不同,张开型中外加拉 应力与断裂面,而在滑开型中两者的取向关系则为。 8.蠕变断裂全过程大致由、和 三个阶段组成。 9.磨损目前比较常用的分类方法是按磨损的失效机制分为、和腐蚀磨损等。 10.深层剥落一般发生在表面强化材料的区域。

11.诱发材料脆断的三大因素分别是、和 。 二、选择:(每题1分,总分15分) ()1. 下列哪项不是陶瓷材料的优点 a)耐高温 b) 耐腐蚀 c) 耐磨损 d)塑性好 ()2. 对于脆性材料,其抗压强度一般比抗拉强度 a)高b)低c) 相等d) 不确定 ()3.用10mm直径淬火钢球,加压3000kg,保持30s,测得的布氏硬度值为150的正确表示应为 a) 150HBW10/3000/30 b) 150HRA3000/l0/ 30 c) 150HRC30/3000/10 d) 150HBSl0/3000/30 ()4.对同一种材料,δ5比δ10 a) 大 b) 小 c) 相同 d) 不确定 ()5.下列哪种材料用显微硬度方法测定其硬度。 a) 淬火钢件 b) 灰铸铁铸件 c) 退货态下的软钢 d) 陶瓷 ()6.下列哪种材料适合作为机床床身材料 a) 45钢 b) 40Cr钢 c) 35CrMo钢 d) 灰铸铁()7.下列哪种断裂模式的外加应力与裂纹面垂直,因而 它是最危险的一种断裂方式。

大连理工大学考研专业课 材料力学大纲

《材料力学》教学大纲 (4.5 学分,72 学时。课堂教学64学时,实验教学8学时) 适用专业:过程装备与控制工程(必修) 一、课程的性质和任务 材料力学是过程装备与控制工程专业(即专业目录修订前的化工设备与机械专业)的一门重要技术基础课。它是机械设计、过程机械、成套装备优化设计、压力容器安全评估、典型过程设备设计等各门后续专业课程的基础,并在许多工程技术领域中有着广泛的应用。本课程的任务是使学生掌握材料力学的基本概念、基本知识;训练学生对基本变形问题进行力学建模和基本计算的能力;使学生熟悉材料力学分析问题的思路和方法;培养学生自觉运用力学观点看待工程和日常生活中实际事物的意识。目的在于为学习本专业相关后继课程打好力学基础。 二、课程内容、基本要求与学时分配 1.引言。材料力学基本概念、教学任务、研究方法以及背景知识介绍。(2学时) 2.轴向拉伸和压缩。熟练掌握轴向拉伸与压缩的内力计算,截面法,轴力,轴力图。轴向拉伸(压缩)时横截面及斜截面上的应力。拉(压)杆的变形计算,胡克定律,叠加原理,杆系结点的位移计算。了解拉压杆的应变能及应变能密度的概念,材料在拉伸和压缩时的力学性质,掌握拉(压)杆的强度条件。(6学时) 3.剪切。熟练掌握剪切胡克定律,学会画剪力图。掌握用剪切强度和挤压强度条件进行简单设计和实用计算。(3学时) 4. 扭转。熟练掌握薄壁圆筒的扭转,外力偶矩,扭矩,扭矩图,等直圆杆扭转时横截面上的应力,切应力互等定理,等直圆杆扭转时的变形计算,了解斜截面上的应力及应变能计算,掌握强度条件和刚度条件的建立。(4学时) 5.弯曲内力。熟练掌握平面弯曲的概念,指定截面的剪力和弯矩计算,剪力方程和弯矩方程,剪力图和弯矩图,剪力-弯矩与分布荷载之间的微分关系,叠加法做弯矩图。(4学时) 6. 弯曲应力。纯弯曲及横力弯曲,梁横截面上正应力和切应力的计算。正应力强度条件和切应力强度条件,提高梁弯曲强度的措施。(5学时) 7. 截面几何性质计算。掌握截面的静矩,形心的位置,惯性矩和惯性积及它们的平行移轴公式,转轴公式。组合截面的惯性矩、惯性积计算,截面的形心主惯性轴和形心主惯性矩的计算。(2学时) 8.弯曲变形。熟练掌握梁的挠曲线近似微分方程,积分法计算挠度和转角,挠曲线大致形状的确定,叠加法计算挠度和转角,了解梁的刚度校核,提高梁刚度的措施,梁的弯曲应变能的计算。(7学时) 9.应力状态分析、强度理论。熟练掌握应力状态的概念,平面应力状态下应力分析解析法、应力圆,主应力、主平面、极值切应力,空间应力状态下最大正应力和最大切应力,广义胡克定律;了解体积应变,各

材料力学性能课后答案(时海芳任鑫)

第一章 1.解释下列名词①滞弹性:金属材料在弹性围快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力 ⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。 2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b (抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率) 4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。

5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。试分析这两种故障的本质及改变措施。答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。 6.今有45、40Cr、35CrMo 钢和灰铸铁几种材料,应选择哪种材料作为机床机身?为什么?答:应选择灰铸铁。因为灰铸铁循环韧性大,也是很好的消振材料,所以常用它做机床和动力机器的底座、支架,以达到机器稳定运转的目的。刚性好不容易变形加工工艺朱造型好易成型抗压性好耐磨损好成本低 7.什么是包申格效应?如何解释?它有什么实际意义?答:(1)金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包申格效应。(2)理论解释:首先,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,背应力反作用于位错源,当背应力足够大时,可使位错源停止开动。预变形时位错运动的方向和背应力方向相反,而当反向加载时位错运动方向和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。(3)实际意义:在工程应用上,首先,材料加工成型工艺需要考虑包申格效应。例如,大型精油输气管道管线的UOE 制造工艺:U 阶段是将原始板材冲压弯曲成U 形,O 阶段是将U 形板材径向压缩成O 形,再进行周边焊接,最后将管子径进行扩展,达到给定大小,

大连理工大学2017年考试大纲829材料力学(土)

大连理工大学2017年硕士研究生入学考试大纲科目代码:829 科目名称:材料力学 试题分为简答题、绘图题和计算题,其中基础部分(简单计算题)占60%,中等 难度(绘图题、简单的推导与证明题)占40%,综合计算题占50%,具体复习大纲如下: 《材料力学》(I) 一、材料力学的基本概念 1、可变形固体的性质及其基本假设 2、杆件变形的基本形式 二、轴向拉伸和压缩 1、轴向拉伸与压缩的基本概念 2、轴向拉压杆横截面上的内力、轴力图 3、轴向拉压杆内一点的应力 4、轴向拉压杆的变形、胡克定律 5、材料在拉伸和压缩时的力学性质 6、强度条件、应力集中的概念 三、扭转 1、薄壁圆筒扭转时横截面上的切应力

2、传动轴的外力偶矩、扭矩、扭矩图 3、等直圆杆扭转时横截面上的应力、强度条件 4、等直圆杆扭转时的变形、刚度条件 5、等直圆杆扭转时的应变能 6、等直非圆杆自由扭转时的应力和变形 四、弯曲应力 1、对称弯曲的概念及梁的计算简图 2、梁的剪力和弯矩、剪力图和弯矩图 3、平面刚架和曲杆的内力图 4、梁横截面上的正应力、正应力强度条件 5、梁横截面上的切应力、切应力强度条件 6、梁的合理设计 五、梁弯曲时的位移 1、梁的位移、挠度和转角 2、梁的挠曲线近似微分方程及其积分 3、按叠加原理计算梁的挠度和转角 4、梁的刚度校核、提高梁刚度的措施

5、梁内的弯曲应变能 六、简单超静定问题 1、超静定问题及其解法 2、拉压超静定问题 3、扭转超静定问题 4、简单超静定梁 七、应力状态和强度理论 1、平面应力状态的应力分析、主应力 2、空间应力状态的概念 3、应力与应变间的关系 4、空间应力状态下应变能密度 5、强度理论及其相当应力 6、各种强度理论的应用 八、组合变形及连接部分的计算 1、两个互相垂直平面内的弯曲 2、拉伸(压缩)与弯曲 3、扭转与弯曲

材料力学性能课后习题答案

1弹性比功: 金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性: 金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性: 金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.xx效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面: 这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性: 金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性: 指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶: 当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样: 解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。 9.解理面: 是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂: 穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂: 裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变: 具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性: 理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答: 主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。 1、试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?

材料力学课后习题答案

材料力学课后习题答案 欢迎大家来到,本人搜集整理了材料力学课后习题答案供大家查阅,希望大家喜欢。 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成1

个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的1种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 2、试述韧性断裂与脆性断裂的区别。为什么脆性断裂

材料力学课后习题答案

8-1 试求图示各杆的轴力,并指出轴力的最大值。 (1) 用截面法求内力,取1-1、2-2截面; (2) 取1-1 (3) 取2-2 (4) 轴力最大值: (b) (1) 求固定端的约束反力; (2) 取1-1 (3) 取2-2截面的右段; (4) 轴力最大值: (c) (1) 用截面法求内力,取1-1、2-2、 3-3截面; (2) 取1-1 (3) 取2-2截面的左段; (4) 取3-3截面的右段; (c) (d) N 1 F R F N 1 F R F N 2 F N 1 N 2

(5) 轴力最大值: (d) (1) 用截面法求内力,取1-1、2-2截面; (2) 取1-1 (2) 取2-2 (5) 轴力最大值: 8-2 试画出8-1所示各杆的轴力图。 解:(a) (b) (c) (d) 8-5 段的直径分别为d 1=20 mm 和d 2=30 mm F 2之值。 解:(1) (2) 求1-1、2-2截面的正应力,利用正应力相同; 8-6 题8-5图所示圆截面杆,已知载荷F 1=200 kN ,F 2=100 kN ,AB 段的直径d 1=40 mm ,如欲 使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。 解:(1) 用截面法求出1-1、2-2截面的轴力; (2) 求1-1、2-2截面的正应力,利用正应力相同; 8-7 图示木杆,承受轴向载荷F =10 kN 作用,杆的横截面面积A =1000 mm 2 ,粘接面的方位角 θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。 F N 3 F N 1 F N 2

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 8、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 9、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。【P32】 答: 2 12?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。

材料力学精选练习题答案

材料力学精选练习题答案 一、是非题 1.1 材料力学主要研究杆件受力后变形与破坏的规律。 1.内力只能是力。 1.若物体各点均无位移,则该物体必定无变形。 1.截面法是分析应力的基本方法。二、选择题 1.构件的强度是指,刚度是指,稳定性是指。 A. 在外力作用下构件抵抗变形的能力 B. 在外力作用下构件保持其原有的平衡状态的能力 C. 在外力作用下构件抵抗破坏的能力 1.根据均匀性假设,可认为构件的在各点处相同。 A. 应力 B. 应变 C. 材料的弹性常数 D. 位移 1.下列结论中正确的是 A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度 D. 内力必大于应力 参考答案:1.1 √ 1.× 1.√ 1.× 1.C,A,B 1.C 1.C 轴向拉压 一、选择题 1. 等截面直杆CD位于两块夹板之间,如图示。杆件与夹板间的摩擦力与杆件自重保持平衡。设杆CD两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q,杆

CD的横截面面积为A,质量密度为?,试问下列结论中哪一个是正确的? q??gA; 杆内最大轴力FNmax?ql;杆内各横截面上的轴力FN? ?gAl 2 ; 杆内各横截面上的轴力FN?0。 2. 低碳钢试样拉伸时,横截面上的应力公式??FNA适用于以下哪一种情况? 只适用于?≤?p;只适用于?≤?e; 3. 在A和B 和点B的距离保持不变,绳索的许用拉应力为[? ]取何值时,绳索的用料最省? 0; 0; 5; 0。 4. 桁架如图示,载荷F可在横梁DE为A,许用应力均为[?]。求载荷F 的许用值。以下四种答案中哪一种是正确的? [?]A2[?]A ;; 32 [?]A; [?]A。 5. 一种是正确的? 外径和壁厚都增大;

材料力学性能习题及解答库

第一章习题答案 一、解释下列名词 1、弹性比功:又称为弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。 2、滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。 3、循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力,称为金属的循环韧性。 4、包申格效应:先加载致少量塑变,卸载,然后在再次加载时,出现ζ e 升高或降低的现 象。 5、解理刻面:大致以晶粒大小为单位的解理面称为解理刻面。 6、塑性、脆性和韧性:塑性是指材料在断裂前发生不可逆永久(塑性)变形的能力。韧性:指材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力 7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶; 8、河流花样:当一些小的台阶汇聚为在的台阶时,其表现为河流状花样。 9、解理面:晶体在外力作用下严格沿着一定晶体学平面破裂,这些平面称为解理面。 10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,一定是脆断,且较为严重,为最低级。穿晶断裂裂纹穿过晶内,可以是韧性断裂,也可能是脆性断裂。 11、韧脆转变:指金属材料的脆性和韧性是金属材料在不同条件下表现的力学行为或力学状态,在一定条件下,它们是可以互相转化的,这样的转化称为韧脆转变。 二、说明下列力学指标的意义 1、E(G): E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100%弹性变形所需的应力。 2、Z r 、Z 0.2、Z s: Z r :表示规定残余伸长应力,试样卸除拉伸力后,其标距部分的 残余伸长达到规定的原始标距百分比时的应力。ζ 0.2:表示规定残余伸长率为0.2%时的应力。 Z S:表征材料的屈服点。 3、Z b韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。 4、n:应变硬化指数,它反映了金属材料抵抗继续塑性变形的能力,是表征金属材料应变硬 化行为的性能指标。 5、3、δ gt、ψ : δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。 Δgt 是最大试验力的总伸长率,指试样拉伸至最大试验力时标距的总伸长与原始标距的百

材料力学性能课后习题答案

材料力学性能课后答案(整理版) 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 2、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 3、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同? 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。5、论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论 的局限性。

材料力学课后习题答案

8-1 试求图示各杆的轴力,并指出轴力的最大值。 解:(a) (1) 用截面法求内力,取1-1、2-2截面; (2) 取1-1截面的左段; 110 0 x N N F F F F F =-==∑ (3) 取2-2截面的右段; (a (b) (c (d

220 0 0x N N F F F =-==∑ (4) 轴力最大值: max N F F = (b) (1) 求固定端的约束反力; 0 20 x R R F F F F F F =-+-==∑ (2) 取1-1截面的左段; 110 0 x N N F F F F F =-==∑ (3) 取2-2截面的右段; 1 1 2

220 0 x N R N R F F F F F F =--==-=-∑ (4) 轴力最大值: max N F F = (c) (1) 用截面法求内力,取1-1、2-2、3-3截面; (2) 取1-1截面的左段; 110 20 2 x N N F F F kN =+==-∑ (3) 取2-2截面的左段; 220 230 1 x N N F F F kN =-+==∑ (4) 取3-3截面的右段; 1 1

330 30 3 x N N F F F kN =-==∑ (5) 轴力最大值: max 3 N F kN = (d) (1) 用截面法求内力,取1-1、2-2截面; (2) 取1-1截面的右段; 110 210 1 x N N F F F kN =--==∑ (2) 取2-2截面的右段; 3 1 2

220 10 1 x N N F F F kN =--==-∑ (5) 轴力最大值: max 1 N F kN = 8-2 试画出8-1所示各杆的轴力图。 解:(a) (b) (c) F

材料力学习题与答案

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等

外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构) 单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) ζs= ζi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相

相关文档
相关文档 最新文档