文档库 最新最全的文档下载
当前位置:文档库 › 土壤总磷有机磷无机磷含量测定试剂盒说明书

土壤总磷有机磷无机磷含量测定试剂盒说明书

土壤总磷有机磷无机磷含量测定试剂盒说明书
土壤总磷有机磷无机磷含量测定试剂盒说明书

货号:MS2905 规格:100管/96样土壤总磷/有机磷/无机磷含量测定试剂盒说明书

微量法

注意:正式测定之前选择2-3个预期差异大的样本做预测定。

测定意义:

土壤总磷包括有机磷和无机磷,其中无机磷能够直接被植物利用。土壤有机磷经过矿化分解而转化为无机磷。同时测定土壤总磷、有机磷和无机磷,可以全面反映土壤磷营养状况。

测定原理:

利用钼蓝法定磷。取一份土样,通过浸提法测定土壤无机磷含量;另外取一份土样,经高温灼烧后,土壤有机磷转化为无机磷,测得土壤总磷含量;总磷含量减去无机磷含量,即可计算出有机磷含量。

自备实验用品及仪器:

可见分光光度计/酶标仪、微量玻璃比色皿/96孔板、台式离心机、可调式水浴锅,分析天平、可调式移液器、550℃高温电炉、蒸馏水、100目筛子(可更小)。

试剂组成和配制:

试剂一:液体×1瓶,4℃保存。临用前用蒸馏水稀释10倍后再用。

试剂二:液体×1瓶,4℃保存。

试剂三:粉剂×1瓶,4℃避光保存。临用前配制,加入8mL蒸馏水,充分溶解后加入4mL 试剂二,混匀。

标准品:液体×1支,20 μmol/L无机磷标准品,4℃保存。

土壤不同形态磷提取:

1.无机磷:称取通过100目筛子的风干土样0.01g,转移到1mL离心管,加入1mL试剂一,震荡混匀,然后置于45℃水浴1h,8000g,25℃离心10min,取上清液一,用于无机磷含量测定。

2.总磷提取:取通过100目筛子的风干土样,550℃灼烧1h,冷却后称取约0.01g,转移到1 mL 离心管,加入1mL试剂一,震荡混匀,然后置于45℃水浴1h,8000g,25℃离心10min,取上清液二,用于总磷含量测定。

测定步骤:

1. 分光光度计/酶标仪预热30 min,调节波长到660 nm,蒸馏水调零。

2.打开水浴锅,调节温度到40℃。

3. 空白管:取EP管,依次加入100μL蒸馏水,100μL试剂三,混匀后置于40℃水浴保温10min,室温冷却10 min后于660 nm测定吸光度,记为A空白管。

4. 标准管:取EP管,依次加入10μL标准液,90μL蒸馏水,100μL试剂三,混匀后置于40℃水浴保温10min,室温冷却10 min后于660 nm测定吸光度,记为A标准管。

5. 测定管:取EP管,依次加入10μL上清液一或者上清液二,90μL蒸馏水,100μL试剂三,混匀后置于40℃水浴保温10min,室温冷却10 min后于660 nm测定吸光度,记为A测定管。注意:空白管和标准管只需测定一次。

土壤磷含量计算:

a.使用微量石英比色皿测定的计算公式如下

第1页,共2页

1.土壤无机磷含量(μmol /g 干重)=[C标准液×(A测定-A空白)÷(A标准-A空白)]×V 总÷W

=0.02×(A测定-A空白)÷(A标准-A空白)÷W

C标准液:20 μmol/L; W:土壤样品质量,g; V总:上清液一总体积,1 mL=0.001 L。2.土壤总磷含量(μmol /g 干重)=[C标准液×(A测定-A空白)÷(A标准-A空白)]×V总÷W

=0.02×(A测定-A空白)÷(A标准-A空白)÷W

C标准液:20 μmol/L;W:土壤样品质量,g;V总:上清液二总体积,1mL=0.001 L。

3.土壤有机磷(μmol /g干重)=土壤总磷-土壤无机磷

b. 使用96孔板测定的计算公式如下

1.土壤无机磷含量(μmol /g 干重)=[C标准液×(A测定-A空白)÷(A标准-A空白)]×V 总÷W

=0.02×(A测定-A空白)÷(A标准-A空白)÷W

C标准液:20 μmol/L; W:土壤样品质量,g; V总:上清液一总体积,1 mL=0.001 L。2. 土壤总磷含量(μmol /g 干重)=[C标准液×(A测定-A空白)÷(A标准-A空白)]×V总÷W =0.02×(A测定-A空白)÷(A标准-A空白)÷W

C标准液:20 μmol/L;W:土壤样品质量,g;V总:上清液二总体积,1mL=0.001 L。

3.土壤有机磷(μmol /g 干重)=土壤总磷-土壤无机磷

注意事项:

试剂三配制过程中,可能会产生黑色固体,其不影响结果,注意吸取时不要将黑色固体吸入。

第2页,共2页

土壤微生物的分离纯化与鉴定

土壤微生物的分离纯化 与鉴定 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

目录

摘要 利用分离纯化微生物的基本操作技术以及选择培养基对土壤中的微生物进行分离与纯化,得到能够产生果胶水解酶的细菌以及能够分解几丁质的霉菌。根据菌落形态观察,革兰氏染色结果,芽孢有无及位置,运动性以及一系列的生理生化试验的结果,对照种属特征初步鉴定分离纯化的微生物所属的类群。 关键词 土壤微生物、细菌、果胶、霉菌、几丁质、划线分离、纯培养 前言 在自然条件下,微生物常常在各种生态系统中群居杂聚。群落是不同种类微物的混和体。为了生产和科研的需要,人们往往需要从自然界混杂的微生物群体中分离出具有特殊功能的纯种微生物;或重新分离被其他微生物污染或因自发突变而丧失原有优良性状的菌株;或通过诱变及遗传改造后选出优良性状的突变株及重组株。这种获得单一菌株纯培养的方法称为微生物的分离纯化技术。纯培养是指一株菌种或一个培养物中所有的细胞或孢子都是由一个细胞分裂、繁殖而产生的后代。 分离纯化技术主要由采集样品、富集培养、纯种分离和性能测定等几个基本环节组成。 实验目的 1.学习利用选择培养基从土壤中分离能够产生特殊水解酶的细菌以及霉菌的 方法; 2.学习运用划线分离法纯化分得的细菌以及真菌的方法; 3.学习测定土壤中细菌数目,种类的方法; 4.根据菌落形态,染色结果,运动性以及生理生化试验鉴定未知细菌;小室 培养法观察鉴定未知真菌。

实验原理 一、经典分类鉴定方法 以上便是在微生物鉴定过程中的经典思路及流程,因此我们可以针对以上各项指标设计一系列试验包括形态学观察,染色,生理生化试验,免疫学试验等对其进行逐步定位。 二、现代分类鉴定方法 1.微生物遗传型的鉴定 (1) DNA碱基比例的测定(G+C)mol%以下为该方法的关键因素: *解链温度法(Tm值) *(G+C)mol%值只能做否定判断; *(G+C)mol%值差别>5,属不同的种; 差别>10,属不同的属。 (2)核酸分子杂交法 *DNA-DNA分子杂交原理:DNA分子解链的可逆性和碱基配对的专 一性。 结论: I DNA同源性≥ 60% (同种) II DNA同源性≥ 70% (同亚种) III DNA同源性60~ 70% (不同亚种) IV DNA同源性20~ 60% (同属) (3)16s rRNA作为细菌进化的计时器 本次实验中由于实验性质以及仪器试剂限制,主要以微生物形态鉴定以及生理生化指标鉴定为主。 实验整体思路: 在确定取样环境之后,对微生物原样进行梯度稀释,产生合适的浓度在选择培养基上进行涂板用于微生物的选择与计数; 通过检测得到有特定功能的细菌以及霉菌进行菌种的分离纯化,用平板划线法多次划线得到纯种;

土壤试剂盒操作手册和常见问题

FastDNA Spin Kit for Soil实验步骤 1.Add up to 500 mg of soil sample to a Lysing Matrix E tube. 在裂解介质管E中最多加入500mg土壤样品。 注意:推荐最多加入500mg土壤样品,含水量比较多的土壤或者碎屑多的土壤可适量减少样品量。 2.Add 978 μL Solution Phosphate Buffer to sample in Lysing Matrix E tube. 在裂解介质管E中加入978μl Sodium Phosphate Buffer 3.Add 122 μL MT Buffer. What’s happening: Begin to solubilize membrane proteins with detergents as well as extra-cellular proteins and contaminations in soil. 加入122μl MT Buffer 发生的反应:用洗涤剂溶解细胞膜蛋白以及细胞外蛋白和土壤中的污染物。 注意:为了得到更好的样品处理效果,加入土壤样品及两个缓冲液后,在裂解介质管中仍能保留有250-500μl空间。 4.Homogenize in the FastPrep Instrument for 40 seconds at a speed setting of 6.0 What’s happening: mechanical disruption of cell walls of soil organisms and releasing nucleic acids into the protective buffer. 将样品置于FastPrep?仪器上匀浆40s,速度为6.0m/s 发生的反应:机械破碎土壤微生物的细胞壁,将核酸释放入保护缓冲液中。 5.Centrifuge at 14,000×g for 5-10 minutes to pellet debris. 14,000 x g离心5-10min至沉渣 注意:如果把离心时间延长到15min,可以更好地使样品量较大的,或者细胞壁结构较复杂的细胞碎片沉降到管底。 6.Transfer supernatant to a clean 2.0 ml microcentrifuge tube. Add 250μL PPS (Protein Precipitation Solution) and mix by inverting the tube 10 times. What's happening: Separate the solubilized nucleic acids from the cellular debris and lysing matrix. Flocculation of protein-containing micelles 将上清液转移至一个干净的2.0ml离心管中。加入250μL的PPS溶液(蛋白质沉淀溶液),用手颠倒10次,使之充分混合。 发生的反应:将溶解的核酸与细胞沉渣以及裂解介质分离。产生絮状蛋白。

血清铁浓度检测试剂盒说明书

货号:MS2802 规格:100管/96样 血清铁浓度检测试剂盒说明书 微量法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。 测定意义: 血清铁是指血液中转铁蛋白所结合的铁,该指标常用于鉴别缺铁性与非缺铁性贫血。 测定原理: 亚硫酸钠还原血清Fe3+生成成Fe2+,Fe2+进一步与2, 2’- 联吡啶显色,在520nm处有吸收峰,测定该波长光吸收值即可计算血清铁含量。 自备实验用品及仪器: 离心机、可调式移液枪、可见分光光度计/酶标仪、微量石英比色皿/96 孔板、冰醋酸、氯仿和蒸馏水。 试剂组成和配置: 试剂一:粉剂×1 瓶,4℃保存。临用前配制,加入15mL蒸馏水充分溶解。 试剂二:粉剂×1 瓶,4℃保存。临用前配制,加入469μL冰醋酸,加入15mL蒸馏水充分溶解。 标准液:液体×1 支(EP管),100μmol/L Fe3+标准液,4℃保存。 测定: 1. 分光光度计/酶标仪预热30min,调节波长到520nm,蒸馏水调零。 2. 标准液解冻:提前取出标准液,置于室温下充分解冻后混匀。 3. 空白管:取EP管,依次加入125μL蒸馏水,125μL试剂一,125μL试剂二,混匀后盖紧, 置于沸水浴5min,自来水冷却。加入62μL氯仿(自备),充分震荡混匀;室温10000rpm,离心10min,小心吸取上层液210μL,加入微量石英比色皿/96孔板,于520nm 测定吸光度,记为A空白管。 4. 标准管:取EP管,依次加入125μL标准液,125μL试剂一,125μL试剂二,混匀后盖紧, 置于沸水浴5min,自来水冷却。加入62μL氯仿,充分震荡混匀;室温10000rpm,离心10min,小心吸取上层液210μL,加入微量石英比色皿/96孔板,于520nm测定吸光度,记为A标准管。 5. 测定管:取EP管,依次加入125μL血清,125μL试剂一,125μL试剂二,混匀后盖紧,置 于沸水浴5min,自来水冷却。加入62μL氯仿,充分震荡混匀;室温10000rpm,离心10min,小心吸取上层液210μL,加入微量石英比色皿/96孔板,于520nm测定吸光度,记为A测定管。注意:空白管和标准管只需测定一次。 血清铁浓度计算公式: 血清铁含量(μmol/dL)=[C 标准液×(A 测定管-A 空白管)÷(A 标准管-A 空白管)]×V 总=10× (A 测定管-A 空白管)÷(A 标准管-A 空白管) C 标准液:100 μmol/L Fe 3+ 标准液;V 总:1 dL=0.1 L。 注意事项: 1、血清铁含量少,所用器皿(EP 管)需要注意,避免被铁污染。 2、试剂一和试剂二溶液不稳定,需现配现用,新配制的试剂只能当天使用。 3. 最低检出限为1μmol/L。 第1页,共1页

土壤中有机磷的测定学习资料

土壤中有机磷的测定 ——实验方案设计 土壤中磷知识总结 Ⅰ、土壤中磷的来源及分布:土壤中的磷素来源于成土矿物、有机物质和含磷化学肥料。土壤全磷量不能作为当季作物的土壤供磷的水平指标,但可作为表示土壤潜在肥力的一项指标。土壤磷素分为无机形态和有机形态。无机形态的磷约占全磷的50%~90%,主要包括磷酸钙类化合物(Ca-P)、磷酸铁类化合物(Fe-P)、磷酸铝类化合物(Al-P)和表面为氧化铁胶膜所封闭的闭蓄态磷(O-P)。风化程度较高的土壤,如红壤以O-P和Fe-P为主,风化程度较低的土壤以Ca-P 和Al-P为主。有机形态的磷约占全磷10%~50%,主要以磷脂、植素、核酸和核蛋白形式存在。土壤有机磷含量与土壤有机质含量密切相关。土壤有效磷是指当季作物所能吸收的磷。土壤中磷移动性很小。作物吸收的磷主要是土壤溶液中的H2PO- 4和HPO2 4-。 Ⅱ、磷的营养功能:1、磷是植物体内重要化合物的组成元素;2、磷能加强光合作用和碳水化合物的合成与运转;3、促进氮素代谢;4、磷能促进脂肪代谢;5、提高作物对外界环境的适应性 Ⅲ、作物磷素营养失调的症状 缺磷时,各种代谢过程受到抑制,植株生长迟缓、矮小、瘦弱、直立、根系不发达,成熟延迟、籽实细小、植株叶小、叶色暗绿或灰绿、缺乏光泽,主要是细胞发育不良致使叶绿素密度相对提高,同时,Fe的吸收间接地促进叶绿素合成,使叶色暗,严重缺磷时,在不少作物茎叶上明显地呈现紫红色的条纹或斑点(花青苷)甚至叶片枯死脱落,症状一般从基部老叶开始。逐渐向上部发展。 缺磷造成玉米果穗秃顶,油菜脱荚,棉花和果树落蕾、落花,甘薯及马铃薯薯块变小,耐贮性变差。磷素过剩,谷类无效分蘖,秕粒增加,叶肥厚而密,植株早衰。由于磷过多,而引起的病症,通常以缺Zn、Fe、Mg等的失绿症表现出来。 Ⅳ土壤中磷的测定方法:测定土壤速效磷的方法选择,酸性土壤一般采用盐酸氟化铵或氢氧化钠一草酸钠法来提取,石灰性土壤或中性土壤采用碳酸氢钠来提取。用NaHCO 3 溶液(pH8.5) 提取土壤速效磷,在石灰性土壤中提取液中的HCO 3 - 可和土壤溶液中的Ca 2+形成CaCO 3沉淀,从而降低了Ca 2+ 的活度而使某些活性较大的Ca—p 被提取出来。在酸性土壤中因pH 提高而使 Fe-p ,A1-P 水解而部分被提取。

土壤亮氨酸氨基肽酶(S-LAP)活性检测试剂盒说明书 微量法

土壤亮氨酸氨基肽酶(S-LAP)活性检测试剂盒说明书微量法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。 货号:BC4025 规格:100T/48S 产品内容: 试剂一:液体30mL×1瓶,4℃保存; 试剂二:粉剂×1瓶,4℃避光保存;临用前加入3mL丙酮溶解。 产品说明: S-LAP是一类能水解肽链N-末端为亮氨酸的酶,由土壤微生物分泌。S-LAP活性变化与机体某些病理状态密切相关。 S-LAP分解L-亮氨酸对硝基苯胺生成对硝基苯胺,后者在405nm有最大吸收峰,通过测定吸光值升高速率来计算S-LAP活性。 自备实验用品及仪器: 天平、离心机、可见分光光度计/酶标仪、微量玻璃比色皿/96孔板、甲苯、丙酮、30目筛(或更小)。操作步骤: 一、样本处理 土样自然风干,过30-50目筛。 二、测定步骤 1、分光光度计/酶标仪预热30min以上,波长调至405nm,蒸馏水调零。 2、加样表: 测定管对照管 土样(g)0.030.03 甲苯(μL)1515 震荡混匀,室温静置15min。 试剂一(μL)255255 试剂二(μL)30-

30℃水浴反应1h后立刻煮沸5min。流水冷却至室温。 试剂二(μL)-30 14000g常温离心10min,取200μL上清于405nm处测定吸光值,分别记为A测定管、A对照管,计算ΔA=A测定管-A对照顾管。 三、酶活计算公式 (1)按微量比色皿计算: 酶活性定义:每克土壤每分钟生成1nmol对硝基苯胺为一个酶活力单位。 S-LAP活性(U/g)=△A÷(ε×d)×109×V反总÷W÷T=0.507×△A÷W。 ε:对硝基苯胺摩尔消光系数:9.87×103L/mol/cm;d:比色皿光径,1cm;V反总:反应总体积,300μL=3×10-4L;W:土样质量,g;T:反应时间,60min;109:单位换算系数,1mol=109nmol。 (2)按96孔板计算: 酶活性定义:每克土壤每分钟氧化1nmol对硝基苯胺为一个酶活力单位。 S-LAP活性(U/g)=△A÷(ε×d)×109×V反总÷W÷T=0.844×△A÷W。 ε:对硝基苯胺摩尔消光系数:9.87×103L/mol/cm;d:96孔板光径,0.6cm;V反总:反应总体积,300μL=3×10-4L;W:土样质量,g;T:反应时间,60min;109:单位换算系数,1mol=109nmol。

铁测定试剂盒(PAPS显色剂法)产品技术要求huayuyikang

铁测定试剂盒(PAPS显色剂法) 适用范围:本试剂用于体外定量测定人血清中铁的含量。 1.1 产品型号/规格 试剂1:1×20 ml、试剂2:1×5 ml;试剂1:1×40 ml、试剂2:1×10 ml;试剂1:2×40 ml、试剂2:2×10 ml;试剂1:4×40 ml、试剂2:4×10 ml;试剂1:4×60 ml、试剂2:2×30 ml;试剂1:1×80 ml、试剂2:1×20 ml;试剂1:2×80 ml、试剂2:2×20 ml;试剂1:5×80 ml、试剂2:5×20 ml;试剂1:3×60 ml、试剂2:1×45 ml;试剂1:6×70 ml、试剂2:3×35 ml;试剂1:5×40 ml、试剂2:1×50 ml;试剂1:4×40 ml、试剂2:2×20 ml;试剂1:4×80 ml、试剂2:4×20 ml;试剂1:4×50 ml、试剂2:1×50 ml;试剂1:8×50 ml、试剂2:2×50 ml;试剂1:8×16.8 ml、试剂2:8×4.2 ml。 1.2 划分说明 试剂1:醋酸缓冲液 0.2 mol/L 表面活性剂适量 稳定剂适量 试剂2:PAPS 2.6 mmol/L 2. 性能指标 2.1 外观和性状 2.1.1 试剂盒各组分应齐全、完整、液体无渗漏;中文包装标签应清晰、准确、牢固。 2.1.2 试剂1应为无色澄清液体;试剂2应为棕色液体。 2.2 净含量

不少于标示值。 2.3 试剂空白吸光度 在光径1 cm、主波长578 nm下,以蒸馏水为检测样本时,吸光度应不大于0.300 。 2.4 分析灵敏度 铁含量为30.00 μmol/L时,测定吸光度差值(△A)应大于0.080。 2.5 线性范围 铁试剂在线性范围(0~120] μmol/L内: (a)回归系数r应不小于0.990; (b)在(0~12.0 ] μmol/L范围内,线性绝对偏差应不大于±1.2 μmol/L;(c)在(12.0~120]范围内,线性相对偏差应不大于±10%。 2.6 测量精密度 2.6.1 重复性 变异系数(CV)均应不大于5%。 2.6.2 批间差 相对偏差(R)应不大于5%。 2.7 准确度 采用GBW09152 冷冻人血清中无机成分分析标准物质对试剂盒进行测试,相对偏差应不超过±10%。 2.8 稳定性 铁试剂盒贮存于2 ℃~8 ℃、避光环境中,有效期为12个月。有效期满后应满足2.1、2.3、2.4、2.5、2.6.1、2.7的要求。

微生物--土壤放线菌的分离与鉴定

土壤放线菌的分离与鉴定实验设计报告 学院:生命科学学院 班级: 2013级生科2班 组长:刘瑜 2013506076 组员:汤界世 2013506070 李宇秀 2013506071 于淑婷 2013506075 陈洁作 2013506079

郑国梁 2013506083 2015年10月15日 一、实验目的 1、了解采集土样的要求和方法。 2、掌握由土壤中分离稀有放线菌的基本原理和操作技术。 3、学习并掌握土壤稀释法和微生物的纯培养技术。 4、学习并掌握抗生菌的鉴别方法。 二、实验原理 土壤是微生物的大本营,其中的放线菌多以链霉菌为主,因此人们通常将除链霉菌以外的其它放线菌统称为稀有放线菌。一般地,放线菌在比较干燥、偏碱性、含有机质丰富的土壤中数量居多。若以常规方法进行分离,得到的几乎全部是链霉菌。然而,当采用加热处理土样、选用特殊培养基或添加某种抗生素等方法时,均可提高稀有放线菌的获得率。由土壤中分离放线菌的方法很多,其中包括稀释法、弹土法、混土法和喷土法等,本实验主要采用稀释法,并通过选用特

殊培养基的方法,来获得放线菌。

放线菌菌丝由基内菌丝,气生菌丝和孢子丝组成。其菌丝体在培养基内,即基内菌丝或称营养菌丝体。基内菌丝体一般没有横隔,由于菌丝体长入培养基内和培养基表面,并纠缠在一起形成密集的菌落,所以用接种针将整个菌落培养基挑起而不破裂。基内菌丝体大部分呈黄、橙、蓝、紫、绿、徽,但也有无色在显微镜下观察时,气生菌丝体颜色较深,且较基内菌丝体粗两倍左右。气生菌丝体发育到一定阶段,在它上面形成孢子丝。孢子丝形状有直、波曲、螺旋、轮生之分。螺旋有松、紧、大、小之分,其螺旋的方向也有左旋与右旋之分,大多数种为左旋,少数为右旋。孢子具有不同的形状,有球形、椭球形、杆状、柱状,在光学显微镜下就能看清楚。根据菌体基内菌丝,气生菌丝和孢子丝的这些特征即可判断出分离出的菌体为放线菌。 三、实验材料试剂与仪器设备 1、材料:土壤样品(采集生科院门前草地土壤、16号楼内花圃土壤各500g) 2、试剂:1)培养基(高氏一号培养基):可溶性淀粉(20.0g)、硝酸钾(1.0g)、磷酸氢二钾(0.5g)、硫酸镁(0.5g)、氯化钠(0.5g)、硫酸亚铁(0.01g)、水1000ml、pH7.2-7.4

土壤中有机磷分组

文献综述 内容摘要 通过翻看这些文献和参考材料,了解土壤中有机磷分组测定的方法和目前研究达到程度。找出自己实验研究的方向和如何能弥补目前研究的不足。生物炭作为土壤改良剂,会增加土壤的吸收能力和生产能力,但是对土壤中有机磷的的分组的影响在各个地区是不一样的,本次实验主要是对沈阳和阜新的土壤进行实验,了解生物炭这种新型的土壤改良剂加入不同量时对不同土壤中总磷,无机磷和有机磷组分的影响,通过对空白组的对照,找出其中的规律,结合其他的微量元素的研究,更好的改良土壤情况,已达到增产增收的目的。 关键字:生物炭;有机磷;总磷;褐土;棕壤 1 选题依据 磷是植物生长发育必须的大量元素,植物体需要的磷主要是从土壤磷库中获得。作为土壤磷库的重要组部分,土壤有机磷对土壤肥力和植物营养有着重要的影响;其对植物的作用愈来愈受到关注。土壤有机磷经过矿化分解而转化为有效态磷,然后供给植物吸收利用。在无机磷含量较低的土壤上,有机磷的矿化更成为植物吸收磷素的重要来源。因此,对土壤有机磷进行研究,其重要性可想而知。随着有机农业和生态学的发展,近年来土壤有机磷在植物营养中的作用日益受到重视。人们对土壤有机磷的种类、数量和转化也随着研究方法的改善在不断地深入,并有了不少进展。在土壤中,磷元素主要源于母质的特殊性,不像碳、氢、氧、氮等大部分来自大气,因此在成土过程中,随着土壤有机质的积累,土壤有机磷也随之形成。土壤中的磷包括无机磷和有机磷两大部分,而有机磷在土壤磷库中占相当大的比例。从世界范围的土壤看,有机磷在土壤中的比重大约占15%~80%。我国大部分土壤有机磷占土壤全磷的20%~40%,且有逐年增加的趋势。天然植被下土壤有机磷含量时常可占总磷量的一半以上,而黑土中的含量更高。耕地土壤有机磷因为开垦的缘故,其含量时常比同类的自然土壤低一般来说,土壤表层有机磷含量较高,随着深度的增加,有机磷含量逐渐下降。土壤有机磷含量因土壤母质、土壤类型、土壤特性、土壤质地、植被类型、气候季节变化及土地管理措施而不同。一般认为,母质全磷量高,其土壤有机磷含量就高;母质全磷量低,其土壤有机磷含量就低。从土壤类型来看,有机土和有机质土有机磷含量最高,软土和变性土有机磷含量居中,氧化土和某些灰化土有机磷含量最低。土壤特性(包括土壤有机质量、全氮量和土壤pH等)对有机磷含量的影响比较复杂。研究表明,土壤有机磷含量和土壤有机质(有机碳)及全氮量具有良好的相关性;酸性土壤含有较多的植酸铁、铝盐,易使有机磷形成沉淀,故酸性土壤比碱性土壤容易积累有机磷。从土壤质地来看,粘粒、粉砂能够吸附有机磷,泥炭、腐泥的有机磷含量最高,壤质砂土、砂和细砂的有机磷含量最低。一般来说,森林土壤和草地土壤由于腐殖质积累较多,因此有机磷含量较高。季节和气候变化对有机磷的影响为:随着气温升高、雨量增加,土壤有机磷的含量上升;土壤

有效磷的测定(Olsen法)

土壤有效磷的测定(Olsen法) (pH 8.5 0.5molL-1NaHCO3浸提—钼锑抗比色法) 一、实验目的及说明 土壤中有效磷的含量,随土壤类型、气候、施肥水平、灌溉、耕作栽培措施等条件的不同而异。通过土壤有效磷的测定,有助于了解近期内土壤供应磷的情况,为合理施用磷肥及提高磷肥利用率提供依据。 土壤速效磷的测定中,浸提剂的选择主要是根据土壤的类型和性质测定。浸提剂是否适用,必须通过田间试验来验证。浸提剂的种类很多,近20年各国渐趋于使用少数几种浸提剂,以利于测定结果的比较和交流。我国目前使用最广学的浸提剂是0.5molL-1NaHCO3溶液(Olsen法),测定结果与作物反应有良好的相关性[1],适用于石灰性土壤、中性土壤及酸性水稻土。此外还使用0.03molL-1NH4F-0.025molL-1HCl溶液(Black法)为浸提剂,适用于酸性土壤和中性土壤。 同一土壤用不同的方法测得的有效磷含量可以有很大差异,即使用同一浸提剂,而浸提时的土液比、温度、时间、振荡方式和强度等条件的变化,对测定结果也会产生很大的影响。所以有效磷含量只是一个相对的指标。只有用同一方法,在严格控制的相同条件下,测得的结果才有相对比较的意义。在报告有效磷测定的结果时,必须同时说明所使用的测定方法。 二、方法原理 石灰性土壤中磷主要以Ca-P(磷酸钙盐)的形态存在。中性土壤Ca-P、Al-P(磷酸铝盐)、Fe-P(磷酸铁盐)都占有一定的比例。0.5molL-1NaHCO3(pH8.5)可以抑制Ca2+的活性,使某些活性更大的与Ca结合的P浸提出来;同时,也可使比较活性的Fe-P和Al-P起水解作用而被浸出。浸出液中磷的浓度很低,须用灵敏的钼蓝比色法测定,其原理详见土壤全磷的测定章节。 当土样含有机质较多时,会使浸出液颜色变深而影响吸光度,或在显色出现浑浊而干扰测定,此时可在浸提排荡后过滤前,向土壤悬液中加入活性碳脱色,或在分光光度计800nm 波长处测定以消除干扰。 三、实验仪器 研钵、20目筛子、电子天平(0.0001)、振荡器、722分光光度计、振荡器、勺子、小烧杯、容量瓶 四、试剂配制 (1)0.5mol·L-1NaHCO3(pH8.5)浸提剂42.0gNaHCO3(0.5mol 化学纯)溶于约800ml 水中,稀释至1L,用浓NaOH调节至pH8.5(用pH计测定),贮于聚乙稀瓶或玻璃瓶中,用塞塞紧。该溶液久置因失去CO2而使pH升高,所以如贮存期超过20天,在使用前必须检查并校准pH值。 (2)无磷的活性碳粉和滤纸须做空白试验,证明无磷存在。如含磷较多,须先用2mol·L-1HCl浸泡过液,用水冲洗多次后再用0.5mol·L-1NaHCO3浸泡过液,在布氏漏斗上抽滤,用水冲洗几次,最后用蒸馏水淋洗三次,烘干备用。如含磷较少,则直接用0.5mol·L-1 NaHCO3处理。 (3)钼锑抗试剂(6.5mol·L-1[H+])20.0g钼酸铵[(NH4)6Mo7O24·4H2O](分析纯)溶于300ml约60℃的水中,冷却。另取180ml浓H2SO4(分析纯)慢慢注入约400ml水中,

土壤漆酶活性检测试剂盒说明书 微量法

土壤漆酶活性检测试剂盒说明书微量法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。 货号:BC1965 规格:100T/48S 产品内容: 试剂一:液体30mL×1瓶,4℃保存。 试剂二:粉剂×2瓶,4℃避光保存,临用前每瓶加7.5mL试剂一溶解。 试剂三:液体3mL×1瓶,常温保存。若有白色物质析出,放于37℃中溶解即可。 产品说明: 土壤漆酶(SL)是一种含铜的多酚氧化酶,属于铜蓝氧化酶家族,广泛分布于真菌和高等植物中,具有较强的氧化还原能力,在纸浆生物漂白,环境污染物降解和木质纤维素降解以及生物检测方面有非常广泛的应用。 漆酶分解底物ABTS产生ABTS自由基,在420nm处的吸光系数远大于底物ABTS,测定ABTS自由基的增加速率,可计算得漆酶活性。 自备实验用品及仪器: 天平、低温离心机、可见分光光度计/酶标仪、微量玻璃比色皿/96孔板、震荡仪、30目筛(或更小)。操作步骤: 一、样本处理 新鲜土样风干,过30目筛。 二、测定操作 1.分光光度计/酶标仪预热30min,调节波长到420nm,蒸馏水调零。 2.加样表: 试剂名称测定管对照管 土样(g)0.030.03

试剂一(μL)135135 试剂二(μL)150- 37℃水浴反应10min。 试剂三(μL)1515 试剂二(μL)-150 4℃12000g离心15min,取200μL上清于420nm测定其吸光值,分别记为A测定管、A对照管,计算ΔA=A测定管-A对照管。 三、土壤漆酶(SL)活性计算公式 (1)按微量比色皿计算: 酶活性定义:每克土壤每分钟生成1nmol ABTS自由基所需的酶量为一个酶活力单位(U)。 SL活性(U/g)=ΔA÷(ε×d)×109×V反总÷W÷T=0.833×△A÷W。 ε:ABTS自由基摩尔消光系数:36000L/mol/cm;d:比色皿光径,1cm;V反总:反应总体积,3×10-4L;W,样本质量,g;T:反应时间,10min;109:单位换算系数,1mol=109nmol。 (2)按96孔板计算: 酶活性定义:每克土壤每分钟生成1nmol ABTS自由基所需的酶量为一个酶活力单位(U)。 SL活性(U/g)=ΔA÷(ε×d)×109×V反总÷W÷T= 1.39×△A÷W。 ε:ABTS自由基摩尔消光系数:36000L/mol/cm;d:比色皿光径,0.6cm;V反总:反应总体积,3 ×10-4L;W,样本质量,g;T:反应时间,10min;109:单位换算系数,1mol=109nmol。 注意事项: 1.试剂一需临用前配制,并且尽快使用,4℃保存一周,若变色则不能使用。 2.测定之前进行预实验,若吸光值较高(A>1.5),请减少土样质量再进行测定。若数值偏小可以延长反 应时间或增加土样质量进行测定。 3.离心后若上清仍然浑浊,可再次离心去除。

总铁结合力测定试剂盒(Ferene法)产品技术要求九州泰康

总铁结合力测定试剂盒(Ferene法) 适用范围:用于体外定量测定人血清中的总铁结合力。1.1包装规格 试剂Ⅰ(R1):60mL×3、试剂Ⅱ(R2):20mL×3、试剂Ⅲ(R1):60mL×3、试剂Ⅳ(R2):20mL×3; 试剂Ⅰ(R1):60mL×2、试剂Ⅱ(R2):20mL×2、试剂Ⅲ(R1):60mL×2、试剂Ⅳ(R2):20mL×2; 试剂Ⅰ(R1):60mL×1、试剂Ⅱ(R2):20mL×1、试剂Ⅲ(R1):60mL×1、试剂Ⅳ(R2):20mL×1; 试剂Ⅰ(R1):45mL×1、试剂Ⅱ(R2):15mL×1、试剂Ⅲ(R1):45mL×1、试剂Ⅳ(R2):15mL×1; 试剂Ⅰ(R1):90mL×1、试剂Ⅱ(R2):15mL×2、试剂Ⅲ(R1):90mL×1、试剂Ⅳ(R2):15mL×2。1.2主要组成成分

2.1 外观 试剂盒外观应整洁,文字符号标识清晰;试剂均为澄清溶液,无未溶解物。2.2 装量 试剂瓶内试剂的净含量不少于标示值。 2.3 试剂空白吸光度 在波长A600nm,记录吸光度值,试剂空白吸光度(R1+R2)不超过0.80A,试剂空白吸光度(R3+R4)不超过0.80A。 2.4 分析灵敏度 Fe:测试浓度100μmol/L的样本,吸光度变化值不低于0.002A。 UIBC:测试浓度50μmol/L的样本,吸光度变化值不低于0.002A。 2.5 线性 2.5.1铁离子: 在[1,120]μmol/L范围内,线性回归的确定系数应不低于0.990; 在[1,30)μmol/L范围内,线性绝对偏差不超过±3.0μmol/L; 在[30,120]μmol/L范围内,线性相对偏差不超过±10%; 2.5.2不饱和铁: 在[1,80]μmol/L范围内,线性回归的确定系数应不低于0.990; 在[1,30)μmol/L范围内,线性绝对偏差不超过±3.0μmol/L; 在[30,80]μmol/L范围内,线性相对偏差不超过±10%。 2.6 重复性 2.6.1批内重复性

模板土壤微生物的分离培养技术实验报告.doc

重庆大学研究生专业实验教学 实验报告书 实验课程名称: 实验指导教师: 学院: 专业及类别: 学号: 姓名: 实验日期: 成绩: 重庆大学研究生院制

一、实验目的 1、了解分离与纯化微生物的基本原理及方法; 2、了解倒平板配制土豆培养基的方法与平板划线分离的基本操作技术;; 3、学习平板菌落计数的基本原理和方法,并掌握其基本技能; 4、初步观察来自土壤中的几类微生物的菌落形态特征,并能判断菌的类型。 二、实验原理 1、培养基的种类 培养基是人工配制的适合微生物生长繁殖或积累代谢产物的营养基质,用以培养、分离、鉴别、保存各种微生物或积累代谢产物。一般的培养基应包含适合微生物生长的6大营养素即水分、碳源、氮源、能源、无机盐和生长因子。培养基的种类很多,根据培养成分的不同可分为天然培养基、合成培养基与半合成培养基;根据物理状态的不同又可分为液体培养基和固体培养基。微生物的分离、纯化、记数等方面的研究常常使用的就是固体培养基。本实验就是使用的固体培养基。 已配制好的培养基必须立即灭菌,如来不及灭菌,应暂存冰箱,以防止其中微生物生长繁殖而消耗养分和改变培养基酸碱度所带来不利影响。 培养基的原材料来源十分广泛,本实验采用的原材料为土豆。 2、接种方法与无菌接种 将微生物的培养物或含有微生物的样品移植到培养基上的操作技术称之为接种。接种是微生物实验及科学研究中的一项最基本的操作技术。接种的关键是要严格的进行无菌操作。微生物的接种方法很多,划线接种、三点接种、穿刺接种、混浇接种与涂布接种是几种常用的接种方法。 划线接种是最常用的接种方法,即在固体培养基表面作来回直线形的移动,就可以达到接种的目的。常用的接种工具为接种环、针等。在斜面接种和平板划线中就常用此法。

HZ-HJ-SZ-0084 水和土壤质量 有机磷农药的测定 ...

HZHJSZ0084 水和土壤质量有机磷农药的测定气相色谱法 HZ-HJ-SZ-0084 水和土壤质量气相色谱法 1 范围 本方法适用于地面水土壤中速灭磷(Mevinphos)二嗪磷(Diazinon)甲基对硫磷(Parathion-methyl)溴硫磷(Bromophos)稻丰散(Phenthoate) 本方法采用丙酮加水提取凝结法净化 本法的最低检测浓度为0.0001~0.0029mg/kg μa??经去氧管过滤  2.1.2 燃烧气 2.1.3 助燃气 2.2 配制标准样品和试样预处理的试剂和材料 使用的试剂一般系分析纯浓缩20倍用气相色谱仪测定无干扰峰 速灭磷二嗪磷甲基对硫磷溴硫磷稻丰散含量95%~99% 2.2.3 三氯甲烷(CHCl3) 2.2.5 石油醚沸程   2.2.7 磷酸(H3PO4) 2.2.8 氯化胺(NH4Cl) 2.2.10 无水硫酸钠(Na2SO4)烘4h备用 2.2.11 助滤剂Celite 545 2.2.12 凝结液溶于400mL蒸馏水 2.3 制备色谱柱时使用的试剂和材料 2.3.1 色谱柱(3.6)和填充物(3.6.5) 3 仪器 3.1 主要仪器 3.2 控制氮气 3.3 进样器 3.4 记录器 3.5 检测器 氮磷检测器 氮磷检测器的铷珠对氮和磷具有很好的选择性和灵敏度 3.6.1 色谱柱数量

3.6.2 色谱柱的特性 硬质玻璃 长1~1.5m 3.6.3 色谱柱的类型 3.6.4 色谱柱的预处理在玻璃柱管内注满热洗液(60~70浸泡4h ?ùó???áó??3??′??6%~10%的二氯二甲基硅烷甲醇液注满玻璃柱管然后用甲醇清洗至中性 3.6.5 填充物 Chrom Q 3.6.5.2 固定液17(苯基甲基硅酮) 涂渍固定液的方法溶在三氯甲烷中 再向其中加入三氯甲烷至液面高出1~2cm然后在红外灯下将溶剂挥发干或在旋转蒸发器上慢速蒸发干烘箱中 3.6.5.3 色谱柱的充填方法接真空泵 开动真空泵后并轻轻拍打色谱柱 至固定相不再抽入柱内为止用硅烷化玻璃棉塞住色谱柱另一端 将填充好的色谱柱进口按正常接在汽化室上先用较低载气流速和略高于实际使用温度而不超过固定液的使用温度下处理几小时(4~6h) à??ˉ24~48h?óé??ì2a?÷oó 3.6.6 柱效能和分离度 色谱柱总的分离效能要求大于0.8 3.7.1 样品瓶 3.7.2 蒸发浓缩器 3.7.4 真空泵 500mL分液漏斗500mL抽滤瓶 250mL 平底烧瓶 3.7.7 微量注射器10L 4 试样制备 4.1 样品性质 4.1.1 样品名称土 液体 4.1.3 样品的稳定性易分散 取具代表性的地表水及地下水装水样之前 4.2.1.2 土样充分混匀装入样品瓶(3.7.1) 4.2.2 样品的保存 4.2.2.1 水样如不能及时分析冷藏箱中保存1~3天 采集后能在-18

土壤有效磷测定(精)

土壤速效磷的测定(0.5M碳酸氢钠法) (一)方法原理: 用PH8.5的0.5M碳酸氢钠溶液,于温度25℃左右提取分离土壤速效磷。取一定量的提取液,控制显色中的硫酸的浓度为0.4N,钼酸铵的浓度为0.1%,以氯化亚锡为还原剂,使形成“磷钼兰”溶液。用比色计测定其兰色强度,然后于标准曲线上查找其相应的浓度,从而计算土壤中的速效磷的含量。 (二)试剂配制: (1)0.5MNaHCO3:称取化学纯NaHCO3 420.0克放入血清瓶中。加8000ml水溶解后,定容10000ml,摇匀,一般情况下,这样配制的溶液可得PH8.5。应用酚酞指示剂检查:取溶解后的溶液2ml于试管中,加入1滴酚酞应为微红色,否则用0.5N NaOH逐滴加入,边加边摇动血清瓶。调节至PH8.5,在定容10000ml,摇匀。 (2)硫酸—钼酸铵试剂: a.贮存液:称化学纯钼酸铵50.0克于800ml水中,微热溶解。另取化学纯浓硫酸(比重1.84)903ml,分次徐徐加入盛有2000ml水的3000ml三角瓶,并不断用玻棒搅拌,冷却后备用。 将钼酸铵溶液徐徐加入硫酸溶液中,并不断搅拌,稀至5000ml(用容量瓶稀释多次定容),摇匀,此溶液贮于紧塞的细口瓶中,放在暗处保存,其钼酸铵浓度为1%,硫酸浓度为6.5N。 b.使用液:使用时视其用量,将贮存液准确稀释5倍(即1份体积贮存液加4 份体积水),摇匀,即可使用。 (3)10%HCL溶液:取分析纯浓盐酸(比重1.19)239ml,加入500ml水中,以水稀释定容至1000ml,摇勺。 (4)氯化亚锡溶液:称取1.00克氯化亚锡(二级)溶于40ml10%HCL中。此试剂每天新鲜配制。 (5)标准磷溶液:准确称取经45℃烘干6小时分析纯KH2PO4 4.3936克于小烧杯中,用少量水溶解后,将溶液毫无损失地溶解洗入1000ml量瓶中,加入2ml 浓硫酸,稀释至刻度,摇匀,即为1000PPm/ml标准磷溶液。再准确吸取此液25.00ml于500ml量瓶中,用0.5M NaHCO3稀释至刻度,摇匀,即为50PPm磷的标准溶液。将50PPm磷的标准溶液用0.5M NaHCO3溶液准确稀释至50倍,即为1PPm磷的工作曲线标准磷溶液。每次使用前必需摇匀(不要长期保存)。 (三)操作步骤: 1.制备待测液:称取过20目筛的风干土样 2.50克于200ml左右塑料瓶中,用快速自动加液管加0.5M NaHCO3 50.00ml,盖紧瓶塞,放在25℃±1℃恒温室或保温箱内,保温振荡30分钟,立即用干燥过滤器保温过滤,滤液承接于60ml塑料杯内。 2.显色:分别用快速移液管吸取滤液5.00ml于20×180mm试管中,再加硫酸—钼酸铵使用液5.00ml,轻轻摇动,以驱除CO2(防止试液溅出),最后充分摇匀,加氯化亚锡溶液1滴,再摇匀,当室温在20℃左右显色10—15分钟,否则应延长至20—25分钟。 3.比色:取一对经检查消光值相等的直径1cm比色皿,一制装蒸馏水做空白,另一支在测定时先倒入显色液冲洗后,装入显色液,于光电比色计上,用红色(或680nm波长)滤光板测定其消光值(E)。根据E值在标准工作曲线上查出其相

铁测定试剂盒(亚铁嗪法)产品技术要求lepu

铁测定试剂盒(亚铁嗪法) 适用范围:用于体外定量测定人血清中铁的浓度。1.1规格 试剂1: 1×30mL,试剂2: 1×10mL; 试剂1: 2×60mL,试剂2: 2×20mL; 试剂1: 1×50mL,试剂2: 1×10mL; 试剂1: 1×40mL,试剂2: 1×10mL; 试剂1: 2×40mL,试剂2: 1×20mL; 试剂1: 2×40mL,试剂2: 2×10mL; 试剂1:3×28mL,试剂2:3×7mL; 试剂1:1×4L,试剂2:1×1L; 试剂1:2×4L,试剂2:1×2L。 1.2主要组成成分 试剂1主要组分: 试剂2主要组分: 2.1 净含量

应不低于试剂瓶标示装量。 2.2 外观 试剂1应为无色或浅色澄清液体,试剂2应为浅色或橙色澄清液体。外包装完好、无破损,标签完好、字迹清晰。 2.3 试剂空白 在600nm处测定试剂空白吸光度,应≤1.5; 2.4 分析灵敏度 测试25μmol/L的被测物时,吸光度变化(ΔA)应不低于0.005. 2.5 准确度 用参考物质(GBW09152)对试剂(盒)进行测试,相对偏差不超过±5%。 2.6 重复性 批内变异系数(CV)应不超过5%。 2.7 线性 2.7.1在[1,100]μmol/L 区间内,线性相关系数r应不低于0.990; 2.7.2[1,8)μmol/L区间内绝对偏差不超过±0.64μmol/L;[8,100]μmol/L区间内相对偏差不超过±8%。 2.8 批间差 对同一份样品进行重复测定,相对极差≤6%。 2.9 稳定性 取在2℃~8℃条件下贮存达到12个月后的试剂进行检测,应符合本标准2.2、2.3、2.4、2.5、2.6、2.7之规定。

土壤微生物的分离、培养、鉴定及菌落数的测定

吉林化工学院 科技性论文 题目:土壤微生物的分离、培养、鉴定及菌落数的 测定 学号:12130117 姓名:张金磊 年级:2012级 学院:化工与生物技术学院 专业:生物工程 指导教师:谢莹,许崇利(讲师) 完成日期:2014年3月20 日

摘要 土壤是矿物质、有机质和活的有机体以及水分和空气等的混合体。按重量计,矿物质占到固相部分(土壤干重)的90~95%或更多,有机质约占1~10%,可见土壤成分以矿物质为主。土壤有机质就是土壤中以各种形态存在的有机化合物。除此之外还有土壤溶液,它是土壤水分及其所含的溶解物质和悬浮物质的总称。土壤溶液是植物和微生物从土壤中吸收营养物的媒介。土壤微生物就是土壤中主要的有机生命体,土壤微生物是指生活在土壤中的细菌、真菌、放线菌、藻类的总称。其个体微小,一般以微米或毫微米来计算,通常1克土壤中有106~109个,其种类和数量随成土环境及其土层深度的不同而变化。它们在土壤中进行氧化、硝化、氨化、固氮、硫化等过程,促进土壤有机质的分解和养分的转化。 本次实验是研究土壤中细菌、真菌、放线菌的数目。我们利用选择培养基,以便在土壤水溶液中选出目的菌种,在用分浓度梯度法在选择培养基上培养出但菌落,以便计数。计数时可以根据不同菌种的不同形态学特征来分辨,如果出现与上述三种以外特性的菌种可以用革兰氏染色鉴别。 关键词:土壤微生物选择培养计数

Abstract Soil is a mixture of minerals, organic matter and living organisms as well as water and air. By weight, for solid mineral (soil dry weight) of 90~95% or more, organic matter accounted for about 1~10%, visible in mineral soil composition. Organic compounds in soil organic matter is the soil in various forms. In addition to the soil solution, it is the floorboard of soil moisture and the contained dissolved substances and suspended substances. Soil solution is to absorb the nutrients in plants and microorganisms in soil medium. Organic life is the main soil microorganism, soil microbial refers to live in soil bacteria, fungi, actinomycetes, algae. The individual small, general with micron or nanometer to calculate, usually 1 grams of soil in 106 ~ 109, its species and quantity as soil environment and soil depth varies. They are oxidation, nitration, ammoniation, nitrogen fixation, curing process in the soil, promote the transformation of soil organic matter decomposition and nutrient. This experiment is to study the number of soil bacteria, fungi, actinomycetes. We use the selective culture medium, in order to choose to bacteria in the soil solution in the culture medium, but colonies on selection by density gradient method,

相关文档
相关文档 最新文档