文档库 最新最全的文档下载
当前位置:文档库 › 多普勒天气雷达练习题 (2)

多普勒天气雷达练习题 (2)

多普勒天气雷达练习题 (2)
多普勒天气雷达练习题 (2)

练习题2

1.业务运行的多普勒天气雷达通常采用体积扫描的方式观测。我国业务运行多普勒雷达通常采用的体描模式(VCP11、VCP21、VCP31)

2.多普勒天气雷达与常规天气雷达的主要区别在于:前者可以测量目标物(沿雷达径向速度),从而大大加强了天气雷达对各种天气系统特别是(强对流天气系统)的识别和预警能力。

3.新一代雷达系统对灾害天气有强的监测和预警能力。对台风、暴雨等大范围降水天气的监测距离应不小于(400km)。

4.新一代雷达系统对灾害天气有强的监测和预警能力。对雹云、中气旋等小尺度强对流现象的有效监测和识别距离应大于(150km)。

5.新一代雷达观测的实时的图像中,提供了丰富的有关(强对流天气)信息。

13.气象上云滴、雨滴和冰雹等粒子一般可近似地看作是圆球。当雷达波长确定后,球形粒子的散射情况在很大程度上依赖于粒子直径D和入射波长λ之比。对于(D远小于λ)情况下的球形粒子散射称为瑞利散射;而(D与λ尺度相当)情况下的球形粒子散射称为(Mie)米散射。

14.多普勒天气雷达使用低脉冲重复频率PRF测(反射率因子),用高脉冲重复频率PRF测(速度)。15.每秒产生的触发脉冲的数目,称为(脉冲重复频率),用PRF表示。两个相邻脉冲之间的间隔时间,称为(脉冲重复周期),用PRT表示,它等于脉冲重复频率的(倒)数。16.降水粒子产生的回波功率与降水粒子集合的反射率因子成(正比)。与取样体积到雷达的距离的平方成(反比)。

17.S波段天气雷达是(10)cm波长的雷达。

18.在天线方向上两个半功率点方向的夹角称为(c波束宽度)。

19.在强回波离雷达(较近)时,有可能产生旁瓣造成虚假回波.

20.降水粒子的后向散射截面是随粒子尺度增大而(增大)。

(10000)(mm6/m3)。

(1000)、

(0.1)、

21.0dBZ、-10dBZ、30dBZ和40dBZ对应的Z值分别为(1)、

22.SA雷达基数据中反射率因子的分辨率为(1km×1°)。

23.写出Z-I关系的表达公式(b

Z=)

AI

24.Ze的物理意义是(所有粒子直径的6次方之和)。

25.雷达反射率η是单位体积中,所有降水粒子的(雷达截面之和)。

26.雷达气象方程说明回波功率与距离的(二)次方成反比。

27.在雷莱散射时,散射截面Qs比后向散射截面σ(小)。

28.降水粒子的后向散射截面是随粒子尺度增大而(增大)。

29

30

31

段)雷达。

32

射)和(

33

34

35

36

37

38.反射率因子的大小反映了气象目标内部降水粒子的(尺度)和(数密度),常用来表示气象目标的强度。

39.单位体积中云雨粒子后向散射截面的总和,称为气象目标的(反射率)。

40.假设单位体积中有400粒直径为1mm的降水粒子,6粒直径为2mm的降水粒子,3粒直径为3mm 的降水粒子和1粒直径为4mm的降水粒子,它们对反射因子的贡献是(4mm>3mm>1mm>2mm)。41.假设单位体积中有90粒直径为1mm的降水粒子,6粒直径为2mm的降水粒子,3粒直径为3mm 的降水粒子和1粒直径为4mm的降水粒子,它们对反射因子的贡献是(1mm<2mm<3mm<4mm)。42.一般来说,雷达反射率因子越大,雨强就越大,但这个关系式会受到(BC)的很大影响。

A、衰减

B、零度层亮带

C、冰雹

D、距离

43.多普勒天气雷达的应用领域主要在于对灾害性天气的监测和预警。还可以进行较大范围的降水定量估测,获取降水和降水运体的风场结构,改善高分辨率数值天气预报模式的(初值场)。

44.多普勒雷达主要是由雷达数据采集子系统RDA(数据采集)、雷达产品生成系统RPG(数据处理)、主用户处理器PUP(用户终端)三个部分组成。

45.PUP显示雷达回波时,所标注的回拨所在高度是假定大气为标准大气的情况下计算得到的。46.新一代天气雷达回波顶高产品中的回波顶高度(小于云顶高度)。

47.使用PPI上的雷达资料时,不同R处回波(处于不同的高度上)。

48.在雷达PPI图上,以雷达为中心,沿着雷达波束向外,随着径向距离的增加距地面的高度(增加)。

49.雷达探测到的任意目标的空间位置可根据(仰角)、(方位角)、(斜距)求得。

50.在大气基本满足水平均匀并且雷达周围有降水的条件下,通过分析某一个仰角扫过的圆锥面内径向速度的分布,可以大致判断雷达上空大尺度的(风向、风速)随高度变化的情况。从某一仰角

55.降水算法要求用来导出降水率的反射率因子的取样位于零度层亮带以下的区域。

56.降水回波的反射率因子一般在在15dbz以上。层状云降水回波的强度很少超过35dbz。大片的层状云或层状云-积状云混合降水大都会出现零度层亮带。

57.当波源和观测者做相对运动时,观测者接收到的频率和波源的频率不通,其频率变化量和相对速度大小有关,这种现象叫做多普勒效应。多普勒天气雷达是利用多普勒效应来测量质点相对于雷达的径向速度。

58.电磁波在真空中是沿(直线)传播的,而在大气中由于(折射)指数分布的不均匀性,就会产生折射,使电磁波的传播路径发生(弯曲)。

59.压、湿随高度变化的不同,导致了折射指数分布的不同,使电磁波的传播发生弯曲,一般有(标准大气)折射、(临界)折射、(超)折射、(负)折射、(零)折射五种折射现象。

60.当雷达波束路径曲率大于地球表面曲率时,称之为超折射。超折射一般发生在温度随高度升高

而增加、湿度随高度增加而迅速减小的大气层中。

61.超折射回波主要出现在最低扫描仰角。

62.非降水回波包括:(地物)回波、(海浪)回波、昆虫和鸟的回波、大气(折射指数)脉动引起的回波、(云)的回波等。

63.超拆射回波是因为大气中拆射指数n随高度(迅速减小)而造成的。

64.大气中出现超折射时,电磁波传播路径(微微向下弯曲)。

65.通常,超折射回波的本质是(地物回波)。

66.地物杂波主要有(固定地物杂波)和(超折射地物杂波)。

67.人们把雷达观测到早上所出现的超折射回波,作为一种预算午后可能产生强雷暴的指标是因为低空有暖干盖有利于对流不稳定能量储存。

68

69

70

71

72

73

74

75

76

A、时间分辨率高

B、空间分辨率高

C、不以地面为基础

D、范围大

77.强度不变的同一积雨云从雷达站的315°方向200km处向东南方向移动,在雷达上看起来积雨云回波的强度愈来愈强,这是因为距离衰减愈来愈小。

78.在PPI上有一条对流回波带,由远处逼近本站时,在远处只有少数几块回波出现在荧光屏上,随时间逐渐逼近本站,形成一条排列紧密的回波带,这是(b)。a.气象目标反射因子Z的作用b.距离作用c.对流发展的结果d.地物挡住。

79.天气雷达一般分为X波段、C波段、S波段,波长分别是3cm、5cm、10cm。

80.98D的最大的最大不模糊探测距离是460km。

81.不存在单一的(脉冲重复频率)使得最大不模糊距离和最大不模糊速度都比较大,这通常称为(多普勒两难)。

82.多普勒两难是指不能同时得到好的速度和强度。“多普勒两难”表现在PRF脉冲重复频率变化

对Rmax最大探测距离和Vmax最大不模糊速度的影响,当PRF增加,Rmax(减小),Vmax(增加)。

83.最大不模糊距离r

max 与脉冲重复频率PRF成反比,而最大不模糊速度V

max

与脉冲重复频率PRF

成正比。

84.如果一个目标在两个脉冲的时间间隔内移动得太远,它的真实相移超过180°,此时雷达测量的速度是模糊的。

85.在线性的假定条件下,雷达获取的经向风速数据通过VAD处理,可得到不同高度上的水平风向和风速,因而可以得到垂直风廓线随时间的演变图。

86.速度方位显示风廓线产品(VWP)代表了雷达上空60km左右范围内风向风速随高度的变化。87.沿雷达径向方向,若最大入流速度中心位于右侧,则为反气旋性旋转。

88.在速度图上分析风向时,实际风向的矢量必须与从PUP显示屏中心到(零等速线上某一点的连线)垂直。

89

90

向)互相垂直;另一种情况是该点的真实风速为零,在那里的大气运动速度极小或处于静止状态。91

92

93

94

95.根据对流云强度回波的结果特征,风暴分为单体风暴、多单体风暴和超级单体风暴。每个雷暴单体的生命史大致可分为发展、成熟、消散三个阶段。

96.对流造成的灾害性天气指的是(ABCD)。A下沉气流造成的地面阵风速度超过18m/sB、任何形式的龙卷C、直径大于2cm的冰雹D、暴洪

97.风暴运动是(平流)和(传播)的合成。

98.风暴动力结构及风暴潜在的影响力很大程度上取决于环境的热力不稳定、风的垂直切变和水汽的垂直输送。

99.局地强风暴是在特定的大气环境中发展起来的强大对流系统,环境的最重要特征是强位势不稳定和强风垂直切变。

100.出现超级单体风暴的有利环境条件为:一是大气层结不稳定,二是强的风垂直切变,三是云体低层的环境风速较强。

101.一般而言,对流风暴中的上升气流越强,风暴产生强烈天气的潜势就越大。根据反射率因子的三维结构,也就是说通过比较(高)、(中)、(低)层反射率因子的结构,可以判断其中上升气流的强弱,进而判断该对流风暴有无产生强烈天气的潜势,是属于强风暴还是非强风暴。强上升气流的反射率因子特征包括:低层强反射率因子梯度、中低层弱回波区、中高层回波悬垂。强风暴的上升速度通常超过30m/s。

102.产生强降水的中尺度对流回波的多普勒速度特征是:强的风切变、强的辐合和形变、深厚的积云对流、旋转环流。

103.雷暴大风的部分雷达回波特征包括:反射率因子核心不断下降、中层径向辐合MARC、低层强烈辐散。

104.超级单体的低层反射率因子结构除了核心区偏向一侧,导致该侧反射率因子梯度很大外,还

,低层有弱回波区,中高层有(悬垂回波)结构,同时还有有界弱.在给定湿度、不稳定性及抬升的深厚湿对流中,垂直风切变对雷暴组织和特征的影响最大。

移动的、凸状(顺移动方向)的线状回波。对于显着弓形回波来说,

气旋式旋转)。“弓形回波”是(地面大风)的一个很好指标。

109.地面灾害性大风是对流风暴最常产生的强对流天气。直线型的地面风害主要是对流风暴内的下沉气流导致的。影响下沉气流强度的因素包括气块所受的负的热浮力、降水物的重力拖曳和气压扰动的垂直梯度。在比较大的环境垂直风切变条件下,产生地面直线型大风的系统有多单体风暴、飑线和超级单体风暴。它们的一个共同预警指标是出现(中层气流辐合MARC)。另外,(弓形)回波是一种容易产生地面大风的回波形态。

110.湿下击暴流的预警指标是(BD)。A、强的垂直风切变

B、云底以上的气流辐合

C、悬垂回波

D、反射率因子核心的下降

111.在典型的组织完好的飑线中,新单体沿着回波的(前沿)上升,而对于孤立的超级单体风暴或多单体风暴来说,新单体形成于回波(右后侧)。

112.飑线上最有可能形成灾害性天气的部分可以通过低层的强发射率因子(梯度)、中层的悬垂回波及(回波顶)位置从风暴核上方移到飑线(前沿上方)来识别。

113.在PPI上,典型的超级单体几乎都有钩状回波。

114.超级单体最本质的特征是具有一个深厚持久的中气旋。

115.超级单体风暴云中垂直气流基本分为两部分。前部为(斜升气流),后部为(下沉气流)。116.超级单体风暴前侧V型缺口回波表明强的(入流)气流进入上升气流;后侧V型缺口回波表明强的(下沉)气流,并有可能引起破坏性大风。

117.龙卷涡旋特征TVS是业务用以探测强龙卷的一种方法,TVS的定义有三种指标,切变、垂直方向伸展厚度、持续性。

118.有利于F2级以上龙卷产生的环境条件是强烈的低层垂直风切变和(B低的抬升凝结高度)。A 强烈的大气不稳定B低的抬升凝结高度C强的对流有效位能D较低的0℃层高度

119.只要雷达观测到(中气旋)就可发布强天气警报,而只有观测到(中等以上强度中气旋)时,

126.具有宽阔的弱回波区或有界弱回波区,特别是它们上方存在(强反射率因子核)的风暴最有利大冰雹或强降雹的发生。

127.有利于冰雹生长的条件之一是运体要具有深厚的负温区,负温区指0℃~-20℃区。一般认为云内0℃层的高度在600hPa上下,-20℃高度在(400hPa)等压面高度附近或以下有利于冰雹的生成。

128.当45-55dbz的回波强度达到-20℃层的高度时最有可能产生冰雹

129.一般来说,在产生冰雹的雹云中最大上升速度及水分累积区的高度一般在零度层以上。水分累积区的厚度不小于1.5-2.0公里。能较快增长为雹块的雹胚为过冷水冻滴。

130.有利于强冰雹产生的部分环境因素包括:CAPE值较大、0℃层高度不太高、环境垂直风切变较大。

131.大冰雹产生的其他指标还包括风暴顶的强辐散以及与气团有关的季节性的大垂直累积液态水

量VIL。S波段雷达出现(三体散射)将明确表明风暴中存在大冰雹。一般0℃层高度超过(4.5)km降雹的可能性就非常小。

132.三体散射现象是指由于雷达能量在强反射率因子区向前散射而形成的异常回波。强反射率因子区与强冰雹联系密切,这些强回波区域典型的强回波强度通常大于(60dbz)。

133.产生三体散射(TBBS)的冰雹回波,类似细长的钉子状从强回波区沿径向伸展;它的(径向速度)很小,(谱宽)很大。

134.通常,冰雹云的雷达回波比一般积雨云强,是由于冰雹云比积雨云的(云中粒子的尺度大)。135.在强对流天气临近预报预警中,A-I中最有用的4个产品为DEFH。(A速度方位显示VAD、B 弱回波区WER、C组合切变CS、D风暴路径信息STI、E冰雹指数HI、F中气旋M、G回波顶ET、H 垂直累积液态水含量VIL、I分层组合反射率因子。

大风的潜在性C风暴结构D回波顶高

142.最常用的V27号产品用途包括估计风向风速、确定水平和垂直切变和(B识别强天气系统)。A估计降水量B识别强天气系统C估计辐合辐散D判别上生运动强弱

143.应用垂直最大回波强度显示(最大)产品应注意:(1)、应注意近距离处的回波干扰,以免把地物回波误认为最大回波强度。(2)、在远距离处,由于最低仰角获取的数据离地面有一定高度,所以有可能探测不到真正的(最高仰角)回波强度。(3)、由于业务工作的时间限制,一般体积扫描的(反射率因子)不会很大,所以在雷达周围地区不一定能探测到最大回波强度。所在位置;并说明判断理由。东乡附近有中气旋存在,在约20公里范围内存在正负速度对,速度差较大(20m/s 以上),持续两个体扫。

144.多普勒天气雷达主要由几个部分构成?每个部分的主要功能是什么?答:三个子系统RDA、RPG、PUP组成1)雷达数据采集子系统(RDA),主要功能:产生和发射射频脉冲,接收目标物对这

些脉冲的反射能量,通过数字化形成基本数据。2)雷达产品生成子系统(RPG)由宽带通讯线路从RDA接收数字化的基本数据、对基本数据进行处理并生成各种产品、将产品通过窄带通讯线路传给用户。3)主用户终端子系统(PUP)主要功能是获取、处理和存储接收来自RPG的产品,包括各种产品的显示及强天气的自动报警设置等。

145.后向散射截面?

答:设有一个理想的散射体,其截面面积为σ,它能全部接收射到其上的电磁波能量,并全部均匀地向四周散射,若该理想散射体返回雷达天线处的电磁波能流密度,恰好等于同距离上实际散射体返回雷达天线的电磁波能流密度,则该理想散射体的截面面积σ就称为实际散射体的后向散射截面。

146.给出反射率因子在瑞利散射条件下的理论表达式,并说明其意义。答:Z=

单位体积6 i

D反射率因

径向速度相同

149.什幺是多普勒两难?

答:由于最大不模糊距离r

max

复频率PRF

称为“多普勒两难”。

150.天气雷达有哪些固有的局限性?

答:1)波束中心的高度随距离增加而增加2)波束宽度随距离的增加而展宽3)静锥区的存在。151.为什么要尽可能使用近距离、低仰角的雷达资料?

答:由雷达测高公式可知①当仰角越大时,那么雷达天线波束轴线离地面的高度越高,可能已探测到积雨云顶部,因而此时雷达回波可能只是云回波,而不是降水回波。②当距离越大时,同样使探测高度越高,探测到的已不是降水回波,即使是已接地的降水回波,由于距离远,降水粒子的散射以及大气介质的吸收,使得衰减越厉害,因而探测到的回波强度以及回波分布等都因衰减受到了很大影响。

152.简述雷达定量测量降水的基本步骤以及影响降水估算精度的因子。

答:雷达定量测量降水的基本步骤:首先利用每个体扫的最低4个仰角的反射率因子求得混合扫描反射率因子,其次根据Z-R关系求得降水率,然后对时间累加得出某段时间内的累积降水,最后利用雨量计数据对雷达估测降水进行调整、输出。影响降水估算精度的因子有:不恰当的Z-R关系、雷达本身的定标误差、湿的天线罩、零度层亮带、远距离处雷达波束从降水系统上面穿过、地物杂波、冰雹影响等。

153.简要分析利用Z-I关系(也称Z-R关系,Z=aI b)定量测量降水产生误差的原因。

答:(1)不适当的Z-I关系造成的误差。不同的气候条件、不同的降水类型其Z-I关系的系数A、B有很大不同(2)由于地球曲率的影响在不同探测距离和仰角上的取样高度不同导致估测偏差(3)雷达在零度层亮带取样、发生超折射时将过高估计降水(4)雷达取样位置下的蒸发导致对降水过高估计,取样位置下地形对降水的加强作用又导致过低估计降水(5)其他如雷达定标误差、

3)水汽条件(4)抬升条件

度SRM、组合反射率因子CR

HI、一小时累积降水OHR、强天气分析SWA

口等。

157.探测强对流天气需选用哪几个多普勒雷达产品?

答:(1)组合反射率CR

(2)垂直最大回波强度显示RHI

(3)垂直累积液态水VIL

(4)风暴相对平均径向速度SRM和基本速度V

(5)风廓线VWP(6)回波顶ET

(7)中气旋(8)冰雹指数

158.产生强对流天气的雷达回波有几种?

答:弓形回波、有界弱回波区(BWER)或弱回波区、大于等于50dbz回波区、垂直液态水(VIL)的大值区、钩状回波、三体散射回波、与中气旋相伴强回波(大于50dbz)。

159.垂直风切变对雷暴发展的主要作用是什么?

答:(1)在切变环境下能够使上升运动倾斜,这就使得上升气流中形成的降水质点能够脱离上升气流,而不会因拖曳作用减弱上升气流的浮力。

(2)可以增强中层干冷空气的吸入,加强风暴中的下沉气流和低层冷空气的外流。再通过强迫抬升使得流入的暖湿气流更加强烈地上升,从而加强对流。

160.简述脉冲风暴的雷达回波特征?

答:(P102)脉冲风暴是发展迅速的强风暴,它产生于弱的垂直风切变环境中,同时环境具有较厚的底层湿层和高度的垂直不稳定性。脉冲风暴尽管具有单个单体的特征,但是很少以真正单个单体形式出现。强脉冲单体通常是在结构松散的多单体风暴中几个演变单体中的一个。强脉冲单体通常是在浅对流和若干非强单体出现以后才出现的。脉冲风暴的回波结构由三个特点,一是初始回波

50dBZ,三是强中心所在的高度也

162.简述阵风锋是如何形成的?

始,由于降水粒子所产生的拖曳作用,

展。这种冷性下沉气流作为一股冷空气,在近地面的低层向外扩展,与风暴运动前方的低层暖湿空气交汇而形成飑锋,又称阵风锋。

163.飑线在雷达回波中有什么特征?

答:飑线是呈线状排列的对流单体族,其长和宽之比大于5:1.

164.强降水(暴雨)的雷达回波性质与形状(特征)?

答:产生强降水的回波性质主要以雷阵雨回波、混合型降水回波、和层积混合为主,形状为带状、团、块状、絮状结构。

165.多普勒天气雷达能为短时强降水预报提供哪些线索?

答:(1)从多普勒天气雷达径向速度图识别低空急流及随时间的变化。

(2)降水率(雨强)估计:一般来说,反射率因子越大,雨强超强,但要注意正确分析冰雹和零度层亮带的影响,特别是在反射率因子剖面图上,大反射率因子位于-20度以下,则发生强降水

的可能性大。

(3)产生降水的对流系统主要轴的取向与系统移动方向的关系,从而提供降水持续时间长短的信息。

(4)每一个次流域面积上雨量的定量估计。

166.强冰雹的主要雷达识别判据是什么?有利于强冰雹产生的环境条件是什么?

答:(1)强度回波特征:回波强度最大值及所在高度,回波强度和务地的气候条件有关,一般在45-55DBZ,当强回波必须扩展到0度等温线以上高度,当扩展到0度等温线以上高度降大雹的可能性很大。

(2)有界弱回波区BWER或弱回波区WER存在,区域越大,降大雹的可能性,越大。

(3)高垂直积分液态水(4)三体散射长钉TBSS

3个基本条件外,大的对流有

答45或50dBZ)能否扩展到0oC,

累积液态水量)值。

168.大冰雹的回波特征?

答:(1)强度回波A、-20oC等温线以上超过

回波区(WER)域大小。C、垂直液态水(VIL)的大值区。(2)风暴顶辐散(3)三体散射回波169.在日常的雷达回波产品中“三体散射回波”有什么特点?

答:回波强度通常小于等于20dbz;呈类似细长的钉子状,从强回波区沿径向伸展;它的径向速度很小,谱宽很大。

170.在速度埸中如何判断中气旋?

答:(1)核区直径(最大入流速度和最大出流速度之间的距离)小于10 km。(2)垂直延伸厚度大于等于垂直尺度的三分之一。(3)上述两类指标都满足的持续时间至少为两<个体扫。

多普勒测速仪开题报告

1.结合毕业设计课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 一、本课题的研究背景及意义 随着我国经济建设的高速发展,人民生活的不断提高,道路上各式各样的车辆数目也在大幅上升,也使得交通违章不断增加,给道路交通和人民的生活带来了极大的威胁。由于汽车工业的不断进步,行驶在道路上的车辆速度越来越快,交通事故发生的频率也不断增加。众所周知,交通事故的发生大部分是由驾驶员的超速驾驶造成的。为提高汽车运行的安全性,减少交通事故的发生以及快速检测车辆行驶中的速度,所以有了测速仪的问世。 随着科技的进步,由雷达传感器制作的测速仪已经广泛应用于车辆测速的行业中,实现对车辆速度准确,快速的测量。该测速仪结构简单,可靠性高,操作方便,可广泛应用于摩托车、汽车等机动车辆的速度测量中。测速仪的发展动向是把测速仪的准确性,稳定性和可靠性作为重要的质量指标。 二、本课题国内外研究现状 我国测速仪的应用和研究起源于八十年代,伴随着我国经济发展,由最初的简单雷达测速仪发展到现在的超声波,激光等多种测速仪,同时在误差补偿,超速报警,便捷等多个方面的研究和发展取得了长足的进步,由以前的单一,简单,笨重的测速仪演变为如今的多样,复杂,小巧,为我国的交通做出了巨大贡献,同时涌现了广州科能,西安光伟等一大批骨干测速仪制造企业,基本上形成了中国测速仪目前的发展格局。 雷达测速仪是根据接收到反射波频移量的计算而得出物体的运动速度,雷达测速易于捕捉目标,无须精确瞄准,可以采用手持的方式,在车辆的运动中进行测速。在中国的雷达测速仪发展中,雷达测速仪越来越向着高精度,高智能,高便捷的方向快速发展。 面对风起云涌的国内外市场及日新月异的中国经济,我国测速仪的发展和应用依然存在着非常严峻的问题。在2010年的国家测速仪调查报告中,我们可以看到我国的测速仪采用国外进口的测速仪占很大的比例,其中居多来自美国,日本。主要是因为我国的测速仪在质量,测量误差,报警设计方面离国外的测速仪还有一定的差距,但在近年的研究中,我国的测速仪发展还是取得了好大的进步。

最新1多普勒天气雷达原理与应用

1多普勒天气雷达原 理与应用

第六部分 多普勒天气雷达原理与应用(周长青) 我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品 第一章 我国新一代天气雷达原理 一、了解新一代天气雷达的三个组成部分和功能 新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA )、雷达产品生成子系统(RPG )、主用户处理器(PUP )。 二、了解电磁波的散射、衰减、折射 散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。 衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。 折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性 (密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。 2 /3730/776.0T e T P N +=波束直线传播 波束向上弯曲波束向下弯曲000=>

雷达波长,K 表示与复折射指数有关的系数,C 为常数,之决定于雷达参数和降水相态。 四、了解距离折叠 最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c 为光速,PRF 为脉冲重复频率。 距离折叠是指雷达对雷达回波位置的一种辨认错误。当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。当目标位于最大不模糊距离(Rmax )以外时,会发生距离折叠。换句话说,当目标物位于Rmax 之外时,雷达却把目标物显示在Rmax 以内的某个位置,我们称之为‘距离折叠’。 五、理解雷达探测原理。 反射率因子Z 值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。 反射率因子(回波强度): ?=dD D D N Z 6)( 3 60/1m mm Z = 即反射率因子为单位体积内中降水粒子直径6次方的总和。 意义:一般Z 值与雨强I 有以下关系: 层状云降水 Z=200I1.6 地形雨 Z=31I1.71 雷阵雨 Z=486I1.37 新一代天气雷达取值 Z=300I1.4 六、了解雷达资料准确的局限性、资料误差和资料的代表性 由于雷达在探测降水粒子时,以大气符合标准大气情况为假定,与实际大气存在 一定的差别,使雷达资料的准确度具有一定的局限性,且由于雷达本身性能差异及探测方法的固有局限,对探测目标存在距离折叠及速度模糊现象,对距离模糊和速度模糊的处理等,均增大了雷达资料的误差。虽然如此,由于径向速度是从多个脉冲对得到的径向速度的平均值,为平均径向速度,雷达反射率因子通过对沿径向上的四个取样体积平均得到的,其径向分辨率相当于四个取样体积的长度,这也使雷达探测的资料具有一定的代表性。 第二章 天气雷达图像识别 一、掌握多普勒效应 多普勒效应为,当接收者或接受器与能量源处于相对运动状态时,能量到达接受者或接收器时频率的变化。多普勒频率,是由于降水粒子等目标的径向运动引起的雷

多普勒天气雷达原理与业务应用思考题

1 多普勒天气雷达主要由几个部分构成?每个部分的主要功能是什么? 答:主要由雷达数据采集子系统(RDA ),雷达产品生成子系统(RPG ),主用户终端子系统(PUP )三部分构成。RDA 的主要功能是:产生和发射射频脉冲,接收目标物对这些脉冲的散射能量,并通过数字化形成基本数据。RPG 的主要功能是:由宽带通讯线路从RDA 接收数字化的基本数据,对其进行处理和生成各种产品,并将产品通过窄带通讯线路传给用户,是控制整个雷达系统的指令中心。PUP 的主要功能是:获取、存储和显示产品,预报员主要通过这一界面获取所需要的雷达产品,并将它们以适当的形式显示在监视器上。 2 多普勒天气雷达的应用领域主要有哪些? 答:一、对龙卷、冰雹、雷雨大风、暴洪等多种强对流天气进行监测和预警;二、利用单部或多部雷达实现对某个区域或者全国的降水监测;三、进行较大范围的降水定量估测; 四、获取降水和降水云体的风场信息,得到垂直风廓线;五、改善高分辨率数值预报模式的初值场。 3 我国新一代天气雷达主要采用的体扫模式有哪些? 答:主要有以下三个体扫模式:VCP11——规定5分钟内对14个具体仰角的扫描,主要对强对流天气进行监测;VCP21——规定6分钟内对9个具体仰角的扫描,主要对降水天气进行监测;VCP31——规定10分钟内对5个具体仰角的扫描(使用长脉冲),主要对无降水的天气进行监测。 4 天气雷达有哪些固有的局限性? 答:一、波束中心的高度随距离的增加而增加;二、波束宽度随距离的增加而展宽;三、静锥区的存在。 5 给出雷达气象方程的表达式,并解释其中各项的意义。 答: P t 为雷达发射功率(峰值功率); G 为天线增益;h 为脉冲长度; 、 :天线在水平方向和垂直方向的波束宽度; r 为降水目标到雷达的距离; :波长; m :复折射指数; Z 雷达反射率因子。 6 给出反射率因子在瑞利散射条件下的理论表达式,并说明其意义。 答:∑= 单位体积6i D z ,反射率因子指在单位体积内所有粒子的直径的六次方的总和,与波长无 关。 7 给出后向散射截面的定义式及其物理意义。 答: 定义:设有一个理想的散射体,其截面面积为?,它能全部接收射到其 上的电磁波能量,并全部均匀的向四周散射,若该理想散射体返回雷达天线处的电磁波能流密度,恰好等于同距离上实际散射体返回雷达天线的电磁波能流密度,Z R C Z m m r h G p p t r ?=?+-=2 2222223212ln 1024λθ?πθ?λi S s R S 24πσ=

多普勒天气雷达练习题精编版

练习题2 1.业务运行的多普勒天气雷达通常采用体积扫描的方式观测。我国业务运行多普勒雷达通常采用的体描模式(VCP11、VCP21、VCP31)2.多普勒天气雷达与常规天气雷达的主要区别在于:前者可以测量目标物(沿雷达径向速度),从而大大加强了天气雷达对各种天气系统特别是(强对流天气系统)的识别和预警能力。 3.新一代雷达系统对灾害天气有强的监测和预警能力。对台风、暴雨等大范围降水天气的监测距离应不小于(400km)。 4.新一代雷达系统对灾害天气有强的监测和预警能力。对雹云、中气旋等小尺度强对流现象的有效监测和识别距离应大于(150km)。 5.新一代雷达观测的实时的图像中,提供了丰富的有关(强对流天气)信息。 6.新一代雷达速度埸中,辐合(或辐散)在径向风场图像中表现为一个最大和最小的径向速度对,两个极值中心连线和雷达射线(一致)。7.新一代雷达速度埸中,气流中的小尺度气旋(或反气旋),在径向风场图像中表现为一个最大和最小的径向速度对,但中心连线走向则与雷达射线相(垂直)。 8.新一代天气雷达观测采用的是北京时。计时方法采用24小时制,计时精度为秒。 9.速度场(零等值线)的走向不仅表示风向随高度的变化,同时表示雷达有效探测范围内的(冷、暖平流)。 10.在距离雷达一定距离的一个小区域内,通过对该区域内沿雷达径向速度特征的分析,可以确定该区域内的气流(辐合)、(辐散)和(旋转)等特征。 11.天气雷达是用来探测大气中降水区的(位置)、大小、强度及变化

12.气象目标对雷达电磁波的(散射)是雷达探测的基础。 13.气象上云滴、雨滴和冰雹等粒子一般可近似地看作是圆球。当雷达波长确定后,球形粒子的散射情况在很大程度上依赖于粒子直径D 和入射波长λ之比。对于(D远小于λ)情况下的球形粒子散射称为瑞利散射;而(D与λ尺度相当)情况下的球形粒子散射称为(Mie)米散射。 14.多普勒天气雷达使用低脉冲重复频率PRF测(反射率因子),用高脉冲重复频率PRF测(速度)。 15.每秒产生的触发脉冲的数目,称为(脉冲重复频率),用PRF 表示。两个相邻脉冲之间的间隔时间,称为(脉冲重复周期),用PRT表示,它等于脉冲重复频率的(倒)数。 16.降水粒子产生的回波功率与降水粒子集合的反射率因子成(正比)。与取样体积到雷达的距离的平方成(反比)。 17.S波段天气雷达是(10)cm波长的雷达。 18.在天线方向上两个半功率点方向的夹角称为(c波束宽度)。19.在强回波离雷达(较近)时,有可能产生旁瓣造成虚假回波. 20.降水粒子的后向散射截面是随粒子尺度增大而(增大)。 21.0 dBZ、-10dBZ、30dBZ和40dBZ对应的Z值分别为(1)、(0.1)、(1000)、(10000) (mm6/m3)。 22.SA雷达基数据中反射率因子的分辨率为(1km×1°)。 23.写出Z-I关系的表达公式 (b Z ) AI 24.Ze的物理意义是(所有粒子直径的6次方之和)。 25.雷达反射率η是单位体积中,所有降水粒子的(雷达截面之和)。 26.雷达气象方程说明回波功率与距离的(二)次方成反比。

多普勒雷达原理

汽笛声变调的启示--多普勒雷达原理 1842年一天,奥地利数学家多普勒路过铁路交叉处,恰逢一列火车从他身 旁驰过,他发现火车由远而近时汽笛声变响,音调变尖(注:应为“汽笛声的音频频率变高”);而火车由近而远时汽笛声变弱,音调变低(应为“汽笛声的音频频率降低了”)。他对这种现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的缘故,称为频移现象。因为这是多普勒首先提出来的,所以称为多普勒效应。 由于缺少实验设备,多普勒当时没有用实验进行验证。几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,验证了该效应。 为了理解这一现象,需要考察火车以恒定速度驶近时,汽笛发出的声波在传播过程中表现出的是声波波长缩短,好像波被“压缩”了。因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被“拉伸”了。因此,汽笛声听起来就显得低沉。 用科学语言来说,就是在一个物体发出一个信号时,当这个物体和接收者之间有相对运动时,虽然物体发出的信号频率固定不变,但接收者所接收到的信号频率相对于物体发出的信号频率出现了差异。多普勒效应也可以用波在介质中传播的衰减理论解释,波在介质中传播,会出现频散现象,随距离增加,高频向低频移动。 多普勒效应不仅适用于声波,它也适用于所有类型的波,包括电磁波。 多普勒效应被发现以后,直到1930年左右,才开始应用于电磁波领域中。常见的一种应用是医生检查就诊人用的“彩超”,就是利用了声波的多普勒效应。简单地说,“彩超”就是高清晰度的黑白B超再加上彩色多普勒。超声振荡器产生一种高频的等幅超声信号,向人体心血管器官发射,当超声波束遇到运动的脏器和血管时,便产生多普勒效应,反射信号为换能器所接受,根据反射波与发射波的频率差可以求出血流速度,根据反射波的频率是增大还是减小判定血流方向。 20世纪40年代中期,也就是多普勒发现这种现象之后大约100年,人们才将多普勒效应应用于雷达上。多普勒雷达就是利用多普勒效应进行定位,测速,测距等的雷达。当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差(称为多普勒频率),根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。20世纪70年代以来,随着大规模集成电路和数字处理技术的发展,多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦察、靶场测量、武器火控和气象探测等方面,成为重要的军事装备以及科学研究、业务应用装置。 多普勒天气雷达,是以多普勒效应为基础,当大气中云雨等目标物相对于雷达发射信号波有运动时,通过测定接收到的回波信号与发射信号之间的频率差异就能够解译出所需的信息。它与过去常规天气雷达仅仅接收云雨目标物对雷达发射电磁波的反射回波进了一大步。这种多普勒天气雷达的工作波长一般为5~10厘米,除了能起到常规天气雷达通过回波测定云雨目标物空间位置、强弱分布、垂直结构等作用,它的重大改进在于利用多普勒效应可以测定降水粒子的运

利用多普勒测车速的原理

关于利用多普勒测车速的原理探究 摘要 本文从实例出发,阐述了雷达测速仪的工作原理───电磁波的多普勒效应,以及其实际应用上的一些情况. 关键词 电磁波的多普勒效应 The discovery of the principle of the velometer with Doppler effect Li Hongyang, Zhangyan Lin Weiping Tang Guangzhao , Li Zhuoran (A group from nuclear physics major, the physics department, scu) Abstract this article describes the application of Doppler effect of electromagnetic wave ,and the principle of the radar velometer. Keywords the Doppler effect of electromagnetic wave 背景 假定这种情景:一平直公路放置一测速仪,远方式来一辆车,其速度为v,测速仪发射一列电磁波,其频率为f,在极短时间后收到一频率为f ’的反射波.现在需要由f,f ’求v. 由于发出的为电磁波,经典运动理论下的多普勒公式已远远不够.再次我们避开四维坐标,用洛仑兹变换与狭义相对论来推导相对论下的多普勒效应. 令静止参考系为K 系,运动参考系为K ’系 则有 ①, ② 而由洛仑兹变换知: ③ ∴ ④ ⑤ 联立③④⑤得: ⑥ 2 2 2 01c u c m E -=2220'1'c u c m E -=????? ? ? ?? ??? -===-=γγ2''''c vt t t z z y y vt x x ?? ?????? ?? ??? ??-=-=-=221'1''c vu u u c vu u u vt u u x z z x y y x x γγγ2222''''z y x u u u u ++=2222z y x u u u u ++=22222 11'1c vu c u c u x --=-γ

1多普勒天气雷达原理与应用

第六部分多普勒天气雷达原理与应用(周长青) 我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品 第一章我国新一代天气雷达原理 一、了解新一代天气雷达的三个组成部分和功能 新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA)、雷达产品生成子系统(RPG)、主用户处理器(PUP)。 二、了解电磁波的散射、衰减、折射 散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。 衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。 折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性(密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。 三、了解雷达气象方程 在瑞利散射条件下,雷达气象方程为: 其中Pr表示雷达接收功率,Z为雷达反射率,r为目标物距雷达的距离。Pt表示雷达发射功率,h为雷达照射深度,G为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K表示与复折射指数有关的系数,C为常数,之决定于雷达参数和降水相态。 四、了解距离折叠 最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c为光速,PRF为脉冲重复频率。 距离折叠是指雷达对雷达回波位置的一种辨认错误。当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。当目标位于最大不模糊距离(Rmax)以外时,会发生距离折叠。换句

多普勒测速仪工作原理

浏览次数:110次悬赏分:0|解决时间:2011-8-24 19:30|提问者:匿名 最佳答案 从开过来的机车所听到的声波间的距离被压缩了,就好像一个人正在关手风琴。这个动作的结果产生一个明显的较高的音调。当火车离去时,声波传播开来,就出现了较低的声音--这种现象被称为“多普勒”效应。 检查机动车速度的雷达测速仪也是利用这种多普勒效应。从测速仪里射出一束射线,射到汽车上再返回测速仪。测速仪里面的微型信息处理机把返回的波长与原波长进行比较。返回波长越紧密,前进的汽车速度也越快--那就证明驾驶员超速驾驶的可能性也越大。 多普勒测速仪仪器介绍 TSI的LDV/PDPA系统 LDV/PDPA的主要装置和原理 激光多普勒测速仪是测量通过激光探头的示踪粒子的多普勒信号,再根据速度与多普勒频率的关系得到速度。由于是激光测量,对于流场没有干扰,测速范围宽,而且由于多普勒频率与速度是线性关系,和该点的温度,压力没有关系,是目前世界上速度测量精度最高的仪器。 LDV/PDPA测速工作原理可以用干涉条纹来说明。当聚焦透镜把两束入射光以?角会聚后,由干激光束良好的相干性,在会聚点上形成明暗相间的干涉条纹,条纹间隔正比干光波波长,而反比干半交角的正弦值。当流体中的粒子从条纹区的方向经过时,会依次散射出光强随时间变化的一列散射光波,称为多普勒信号。这列光波强度变化的频率称为多普勒频移。经过条纹区粒子的速度愈高,多普勒频移就愈高。将垂直于条纹方向上的粒子速度,除以条纹间隔,考虑到流体的折射率就能得到多普勒频移与流体速度之间线性关系。LDV/PDPA系统就是利用速度与多谱勒频移的线性关系来确定速度的。各个方向上的多普勒频率的相位差和粒子的直径成正比,利用监测到的相位差可以来确定粒径。 LDV/PDPA系统从功能上分为:光路部分、信号处理部分。光路部分:采用He-Ni激光器或Ar离子激光器,是因为它们能够提供高功率的514.5nm,488nm,476.5nm三种波长的激光。带有频移装置的分光器将激光分成等强度的两束,经过单模保偏光纤和光纤耦合器,将激光送到激光发射探头,调整激光在光腰部分聚焦在同一点,以保证最小的测量体积,这一点就是测量体即光学探头。接受探头将接受到的多普勒信号送到光电倍增管转化为电信号以及处理并发大,再至多普勒信号分析仪分析处理后至计算机记录,配套系统软件可以进行数据处理工作。在流场中存在适当示踪粒子的倩况下,可同时测出流动的三个方向速度及粒子直径。 TSI公司在国际上第一个生产商业化的LDV/PDPA系统,现在的TSI公司的LDV/PDPA系统已经拥有4项专利设计,并且在流场、湍流、传质、传热、流型、燃烧研究上有广泛的使

雷达测速仪有哪些特点

我国河流湖泊众多,水网密布,而要测量水流的流速,记录水文数据资料,就需要用到测速仪。雷达测速仪就是众多测速仪中的一种,雷达测流运用的原理是多普勒效应。多普勒效应是为纪念奥地利物理学家克里斯琴约翰.多普勒而命名的。在声学领域中,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率将有所变化,此种频率的变化称之为频移,即多普勒效应。如下图所示,当雷达流速仪与水体以相对速度V发生对运动时,雷达流速仪所收到的电磁波频率与雷达自身所发出的电磁波频率有所不同, 此频率差称为多普勒频移。通过解析频移与V的关系,得到流体表面流速。 雷达测速仪被广泛应用在河道、灌渠、防汛等水文测量;江河、水资源监测;环保排污、地下水道管网监测;城市防洪、山区暴雨性洪水监测;地质灾害预警监测等诸多领域。 今天我们主要来看看雷达测速仪的特点,主要有如下几个特点: 1、非接触、安全低损、少维护、不受泥沙影响; 2、能胜任洪水期高流速条件下的测量; 3、具有防反接、防雷保护功能; 4、系统功耗低,一般太阳能供电即可满足测流需要; 5、多种接口方式,既有数字接口又具有模拟接口,方便接入系统; 6、无线传输功能(可选),可将数据无线传输到3.5km以外;

7、测速范围宽,测量距离远达40m; 8、多种触发模式:周期、触发、查询、自动; 9、安装特别简单,土建量很少; 10、全防水设计,适合野外使用。 非接触雷达测流方式测速时设备不受污水腐蚀,不受泥沙影响,少受水毁影响,土建简单,便于维护,保障人员安全,特殊的天线设计使得功耗超低,大大降低了供电需求。不仅可用于平时流速监测,而且特别适合承担急难险重观测任务。 航征科技是目前国内具有自主知识产权的雷达方案提供商, 拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户, 提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球优秀的智能传感解决方案提供商。

1多普勒天气雷达原理与应用

第六部分 多普勒天气雷达原理与应用(周长青) 我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品 第一章 我国新一代天气雷达原理 一、了解新一代天气雷达的三个组成部分和功能 新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA )、雷达产品生成子系统(RPG )、主用户处理器(PUP )。 二、了解电磁波的散射、衰减、折射 散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。 衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。 折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性 (密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。 2 /3730/776.0T e T P N +=波束直线传播 波束向上弯曲波束向下弯曲000=>

最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c 为光速,PRF 为脉冲重复频率。 距离折叠是指雷达对雷达回波位置的一种辨认错误。当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。当目标位于最大不模糊距离(Rmax )以外时,会发生距离折叠。换句话说,当目标物位于Rmax 之外时,雷达却把目标物显示在Rmax 以内的某个位置,我们称之为‘距离折叠’。 五、理解雷达探测原理。 反射率因子Z 值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。 反射率因子(回波强度): ?=dD D D N Z 6)( 0lg 10Z Z dBZ ?= 360/1m mm Z = 即反射率因子为单位体积内中降水粒子直径6次方的总和。 意义:一般Z 值与雨强I 有以下关系: 层状云降水 Z=200I1.6 地形雨 Z=31I1.71 雷阵雨 Z=486I1.37 新一代天气雷达取值 Z=300I1.4 六、了解雷达资料准确的局限性、资料误差和资料的代表性 由于雷达在探测降水粒子时,以大气符合标准大气情况为假定,与实际大气存在一定的差别,使雷达资料的准确度具有一定的局限性,且由于雷达本身性能差异及探测方法的固有局限,对探测目标存在距离折叠及速度模糊现象,对距离模糊和速度模糊的处理等,均增大了雷达资料的误差。虽然如此,由于径向速度是从多个脉冲对得到的径向速度的平均值,为平均径向速度,雷达反射率因子通过对沿径向上的四个取样体积平均得到的,其径向分辨率相当于四个取样体积的长度,这也使雷达探测的资料具有一定的代表性。 第二章 天气雷达图像识别 一、掌握多普勒效应 多普勒效应为,当接收者或接受器与能量源处于相对运动状态时,能量到达接受者或接收器时频率的变化。多普勒频率,是由于降水粒子等目标的径向运动引起的雷达回波信号的频率变化,也称为多普勒频移,其与目标的径向运动速度成正比,与多普勒天气雷达波长成反比。 二、了解多普勒天气雷达测量反射率因子、平均径向速度和速度谱宽的主要技术方法 多普勒雷达利用降水粒子的后向散射与多普勒效应来达到对其探测的目的。通过发射信号与接收信号的延迟来测量距离,通过降水粒子的多普勒频移来测量其速度。 反射率因子:雷达的反射率因子是降水粒子后向散射被雷达天线接收到的回波,为单位体积内中降水粒子直径6次方的总和,反射率因子Z 值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多。

DSP多普勒雷达测速测距

DSP 实验课大作业设计 一 实验目的 在DSP 上实现线性调频信号的脉冲压缩、动目标显示(MTI )和动目标检测(MTD),并将结果与MATLAB 上的结果进行误差仿真。 二 实验内容 2.1 MATLAB 仿真 设定带宽、脉宽、采样率、脉冲重复频率,用MATLAB 产生16个脉冲的LFM ,每个脉冲有4个目标(静止,低速,高速),依次做 2.1.1 脉压 2.1.2 相邻2脉冲做MTI ,产生15个脉冲 2.1.3 16个脉冲到齐后,做MTD ,输出16个多普勒通道 2.2 DSP 实现 将MATLAB 产生的信号,在visual dsp 中做脉压,MTI 、MTD ,并将结果与MATLAB 作比较。 三 实验原理 3.1 脉冲压缩原理及线性调频信号 雷达中的显著矛盾是:雷达作用距离和距离分辨率之间的矛盾以及距离分辨率和速度分辨率之间的矛盾。雷达的距离分辨率取决于信号带宽。在普通脉冲雷达中,雷达信号的时宽带宽积为一常量(约为1),因此不能兼顾距离分辨率和速度分辨力两项指标。脉冲压缩(PC )采用宽脉冲发射以提高发射的平均功率,保证足够的最大作用距离,而在接收时则采用相应的脉冲压缩法获得窄脉冲,以提高距离分辨率,因而能较好地解决作用距离和分辨能力之间的矛盾。 一个理想的脉冲压缩系统,应该是一个匹配滤波系统。它要求发射信号具有非线性的相位谱,并使其包络接近矩形;要求压缩网络的频率特性(包括幅频特性和相频特性)与发射脉冲信号频谱(包括幅度谱和相位谱)实现完全的匹配。 脉冲压缩按信号的调制规律(调频或调相)分类,可分为以下四种: (1)线性调频脉冲压缩 (2)非线性调频脉冲压缩 (3)相位编码脉冲压缩 (4)时间频率编码脉冲压缩 本实验采用的是线性调频脉冲压缩。 线性调频信号是指频率随时间的变化而线性改变的信号。线性调频可以同时保留连续信号和脉冲的特性,并且可以获得较大的压缩比,有着良好的距离分辨率和径向速度分辨率,所以将线性调频信号作为雷达系统中一种常用的脉冲压缩信号。 接收机输入端的回波信号是经过调制的宽脉冲,所以在接收机中应该设置一个与发射信号频率匹配的滤波器,使回波信号变成窄脉冲,同时实现了宽脉冲的能量和窄脉冲的分辨能力。解决了雷达发射能量及分辨率之间的矛盾。 匹配滤波器是指输出信噪比最大准则下的最佳线性滤波器。根据匹配理论, 匹配滤波器的传输特性: 0)()(*t j e KS H ωωω-=

脉冲多普勒雷达测速仿真

任务书 雷达进行PD测速主要是利用了目标回波中携带的多普勒信息,在频域实现目标和杂波的分离,它可以把位于特定距离上、具有特定多普勒频移的目标回波检测出来,而把其他的杂波和干扰滤除。因此要求雷达必须具备很强的抑制杂波的能力,能在较强的杂波背景中分辨出运动目标的回波。 如今,不管是在军用还是民用上,雷达都在发挥着它很早重要的作用,与早期雷达采用距离微分方法测速相比,基于脉冲多普勒理论的雷达测速技术具有实时性好、精度高等优点。特别是现代相控阵技术在雷达领域的应用,实现了波束的无惯性扫描和工作方式的快速切换,更便于应用脉冲多普勒技术进行雷达测速。 本篇课程设计目的在于介绍脉冲多普勒雷达测速的原理,并对这种技术进行介绍和仿真。

摘要 脉冲多普勒(PD)雷达以其卓越的杂波抑制性能受到世人瞩目。现代飞行器性能的改进和导航手段的加强,使其能在低空和超低空飞行,因此防御低空入侵己成重要问题,由此要求机载雷达,包括预警机雷达和机载火控雷达具有下视能力,即要求能在强的地杂波背景中发现微弱的目标信号,所以现代的预警机雷达和机载火控雷达皆采用PD体制。脉冲多普勒雷达包含了连续波雷达和脉冲雷达两方面的优点,它具有较高的速度分辨能力,从而可以更有效地解决抑制极强的地杂波干扰问题;此外,脉冲多普勒雷达能够同时敏感地测定距离和速度信息;能够利用多普勒处理技术实现高分辨率的合成孔径图像;而且亦具有良好的抗消极干扰能力和抗积极干扰能力。 本文介绍了脉冲多普勒雷达测速的原理,信号处理。并用matlab简单的仿真了雷达系统对信号的处理. 关键词:脉冲多普勒雷达恒虚警脉冲压缩线性调频 Abstact Pulse Doppler (PD) radar is famous for it`s outsdanding clutter suppression.Modern aircraft`s function and GPS has been strengthen.now.it makes the aircraft can fly lower and lower.So.nowadays,Defensing.Low altitude invasion has been an important problem.so we require airborne radar. Early warning radar and airborne fire control radar have the ability to look down.That is to say.The radar is be required the ability to find Weak target signal in the strong Groung clutter.So .The modern airborne early warning radar and airborne fire control radar use the PD system.Pulse Doppler (PD) radar concludes two adervantages of Continuous wave radar and impulse radar.It has a higher velocity resolution.thus it can effectively.soveing the problem of strong ground clutter.what`s more.Pulse Dppler (PD) radar can Sensitive text the Distance and speed on the same time.Itcan use Doppler processing technology to realise Synthetic aperture images with high resolution. This article sinply introduced principle of pulse Doppler radar and signal

多普勒天气雷达基础

多普勒天气雷达基础 一、填空题 0.5,1.5 , 2.4 , 2、我国S波段雷达探测范围:当探测距离在230km、340km、460km时,雷达波束高度分别是 4.5 km 、9.2km 、15.3 km 。 3、雷达探测的局限性是波束展宽和Overshooting 。 4、超级单体风暴可能产生的灾害有:雷电、灾害性大风,强降水、冰雹、甚至龙 二、选择题 1、雷达通常观测地面以上的大气,通常采用最低仰角是0.5°度,这样做的原因(A ) A.尽量减少地面的杂波 B.对近地层进行完美的扫描 C.随距离变远,波束中心逐渐变高,采样体积变大。 2、多普勒天气雷达的主要应用领域有(ABCDE)(多选) A.强对流天气的监测与预警 B. 监测天气尺度和次天气尺度降水系统 C.降水估计测量 D.风的测量(VAD 风廓线)——提供风场信息 E.数据同化,改善数值预报模式初值场 3、下面那些中小尺度天气系统可以产生雷暴大风天气?(ABCD)(多选) A.一般强风暴(超级单体或多单体风暴) B.飑线 C.与强锋面有关的带状对流中处于成熟阶段的单体中的下沉气流 D.雷暴低层的强烈入流 4、下面不属于气象回波的有(BCDG)(多选) A.絮状回波 B.超折射回波 C.鸟类回波 D.飞机回波 E.阵风锋 F.飑线G海浪回波H.0度层亮带 三、判断对错 1、在雷达图的产品中,0等速度线呈“S”形则说明大气风场结构为暖平流,呈反“S”形则为冷平流。(对) 2、雷达波束随着距离的变远,采样体积变少。(错) 3、雷达不能观测头顶的大气状态,但能观测所有近地面的大气。(错) 4、雷达在扫描时一个波束以某仰角发射出来,转360°完成一个高度的扫描。(对) 5.雷达不能观测到“头顶“的大气静锥区,环状无回波区。(对)

雷达测速与测距 ()

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 1.1 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空 间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各 种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不 同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信 号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角 度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分 辨力取决于信号带宽。对于给定的雷达系统,可达到的距离分辨力为 (1.1) 其中c为光速,为发射波形带宽。 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大, 在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,,此处,为发射脉冲宽度。因此,对 于简单的脉冲雷达系统,将有 (1.2)在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不 能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要 性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探 测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率 分脉冲功率和平均功率。雷达在发射脉冲信号期间 内所输出的功率称脉冲功 率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值, 用Pav表示。它们的关系为 (1.3) 脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉 冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应

多普勒雷达测速

多普勒雷达 多普勒雷达测速是一种直接测量速度和距离的方法。在列车上安装多普勒雷达,始终向轨面发射电磁波,由于列车和轨面之间有相对运动,根据多普勒频移效应原理,在发射波和反射波之间产生频移,通过测量频移就可以计算出列车的运行速度,进一步计算出列车运行的距离。克服了车轮磨损、空转或滑行等造成的误差,可以连续测速、测向和定位。 多普勒效应 当发射源(或接收者)相对介质运动时,接收者接收到的电磁波的频率和发射源的频率不同,这种现象被称为多普勒效应。 物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移)。 在运动的波源后面,产生相反的效应。波长变得较长,频率变得较低(红移)。 波源的速度越高,所产生的效应越大。根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度。 多普勒效应 假设原有波源的波长为λ,频率为f0,介质中波速为c则 (1)当波源静止不动Vs=0,观察者以V0相对波源移动(向波源方向) (2)当观察者静止不动V0=0,波源以Vs相对观察者移动(向观察者方向) (3)当波源移动速度为Vs,观察者移动速度为V0,相对运动,此时介质中的波长和观察者接收到的波的个数都有变化 多普勒雷达的测速原理 多普勒雷达法利用多普勒效应测量列车运行速度。在车头位置安装多普勒雷达,雷达向地面发送一定频率的信号,并检测反射回来的信号。由于列车的运动会产生多普勒效应,所以检测到的信号其频率与发送的信号频率是不完全相同的。如果列车在前进状态,反射的信号频率高于发射信号频率;反之,则低于发射信号频率。而且,列车运行速度越快,两个信号之间的频率差越大。通过测量两个信号之间的频率差就可以获取列车的运行方向和即时运行速度,对列车的速度进行积分就可得到列车的运行距离。 多普勒雷达的测速原理 雷达发射电磁波的频率为F,在介质中的传播速度为c,发射角为a1,当雷达以速度V平行于反射面运动(反射面静止),则在反射面接收到的波频率为f1 而此时反射面把波反射回去,相当于波源(静止),雷达接收反射回来的波,相当于观察者(平行反射面速度为V),由于雷达的运动,入射角为a2,则雷达接收到的波频率为f2 多普勒雷达的测速原理 发射波与接收波的频移为 由于雷达运动的速度V远远小于电磁波的速度c,可以近似认为入射角a2=a1,则频移将上式展为泰勒级数,并舍去高次项,可得 也就是说,发射波与入射波之间的频移fr与雷达的速度V沿发射波方向的分量的大小成正比。如果发射角a1固定,则频移fr就是与雷达速度V成正比,只要测量出频移fr 的值,就可以计算出雷达的运动速度V 误差来源 ?为了简化计算,减少处理难度,一般都会取简化后的公式来计算,然而,由于简化公式是通过舍入的方法进行简化得,简化公式与原公式之间存在一定误差,这样在使用简化公式之前就要先考虑这个误差对计算的影响。 ?列车运行的过程中,由于轨面不平整或其他原因,列车会产生振动,但列车的振动基本上都是车体的高频上下小幅度运动

486什么叫超声多普勒测速法

4.86什么叫超声多普勒测速法 多普勒(效应)法USF是利用在静止(固定)点检测从移动源发射声波多产生多普勒频移现象。 (1)流速方程式 如图5所示,超声换能器A向流体发出频率为fA的连续超声波,经照射域内液体中散射体悬浮颗粒或气泡散射,散射的超声波产生多普勒频移fd,接收换能器B收到频率为fB 的超声波,其值为 (9) 式中v-散射体运动速度。 多普勒频移fd正比于散射体流动速度 (10) 测量对象确定后,式(10)右边除v外均为常量,移行后得 (11) (2)流量方程式 多普勒法USF的流量方程式形式上与式(6)相同,只是所测得的流速是各散射体的速度v(代替式中的vm),与载体液体管道平均流速数值并不一致;方程式中流速分布修正系数Kd以代替K0 Kd是散射体的“照射域”在管中心附近的系数;其值不适用于在大管径或含较多散射体达不到管中心附近就获得散射波的系数。 (3)液体温度影响的修正 式(11)中又流体声速c,而c是温度的函数,液体温度变化会引起测量误差。由于固体的声速温度变化影响比液体小一个数量级,即在式(11)中的流体声速c用声楔的声速c0取代,以减小用液体声速时的影响。因为从图6可知cosθ=sinφ,再按斯纳尔定律sinφ/c=sinφ0/c0,式(11)便可得式(12),其中c0/sinφ0可视为常量。

(12) (4)散射体的影响 实际上多普勒频移信号来自速度参差不一的散射体,而所测得各散射体速度和载体液体平均流速间的关系也有差别。其他参量如散射体粒度大小组合与流动时分布状况,散射体流速非轴向分量,声波被散射体衰减程度等均影响频移信号。 优缺点: USF可作非接触测量。夹装式换能器USF可无需停流截管安装,只要在既设管道外部安装换能器即可。这是USF在工业用流量仪表中具有的独特优点,因此可作移动性(即非定点固定安装)测量,适用于管网流动状况评估测定 USF为无流动阻挠测量,无额外压力损失。 流量计的仪表系数是可从实际测量管道及声道等几何尺寸计算求得的,既可采用干法标定,除带测量管段式外一般不需作实流校验。 USF适用于大型圆形管道和矩形管道,且原理上不受管径限制,其造价基本上与管径无关。对于大型管道不仅带来方便,可认为在无法实现实流校验的情况下是优先考虑的选择方案。 多普勒USF可测量固相含量较多或含有气泡的液体。 USF可测量非导电性液体,在无阻挠流量测量方面是对电磁流量计的一种补充。 因易于实行与测试方法(如流速计的速度-面积法,示踪法等)相结合,可解决一些特殊测量问题,如速度分布严重畸变测量,非圆截面管道测量等。 某些传播时间法USF附有测量声波传播时间的功能,即可测量液体声速以判断所测液体类别。例如,油船泵送油品上岸,可核查所测量的是油品还是仓底水。

相关文档
相关文档 最新文档