文档库 最新最全的文档下载
当前位置:文档库 › 公路桥梁铅销橡胶支座的标准化

公路桥梁铅销橡胶支座的标准化

公路桥梁铅销橡胶支座的标准化
公路桥梁铅销橡胶支座的标准化

第23卷 第3期2003年5月

长安大学学报(自然科学版)

Journal of Chang ′an U niversity (N atural Science Edition )

V o l 123 N o 13

M ay 2003

收稿日期:2001211225

作者简介:刘健新(19422),男,山西清徐人,长安大学教授,博士生导师.

文章编号:167128879(2003)0320056204

公路桥梁铅销橡胶支座的标准化

刘健新,胡兆同

(长安大学公路学院,陕西西安 710064)

摘 要:为了解决铅销橡胶支座要根据桥梁的结构动力特性和桥位处场地土类型进行个例设计和制造的问题,结合中国新公路工程抗震设计规范的制定工作,在已完成交通部科研项目“公路桥梁减震装置及设计方法研究”的基础上,依据中华人民共和国交通行业标准JT T 4293《公路桥梁板式橡胶支座》中列出的支座,配置铅销,计算出相应的等价刚度K B 和等价阻尼系数h B ,并通过近30座跨径20~50m 梁式公路桥的恒载支座反力和固有周期的计算统计分析,确定了在 、 类场地土地基条件下铅销橡胶支座的标准规格,可供新建或旧桥改造采用减震设计时选择铅销橡胶支座使用。

关键词:公路桥梁;减震设计;铅销橡胶支座;标准中图分类号:U 442155 文献标识码:A

Standard iza tion of lead rubber bear i ng (L RB )for h ighway br idge

L IU J ian 2x in ,H U Z hao 2tong

(Schoo l of H ighw ay ,Chang ′an U n iversity ,X i ′an 710064,Ch ina )

Abstract :L ead 2rubber 2bearing (L RB )shou ld be designed and m anufactu red in dividually acco rding to b ridge structu ral dynam ic characteristics and so ilm echan ics .So its standardizati on is very i m po rtan t fo r its w idely app licati on in designn ing an ti 2seis m ic b ridge .B ased on ch inese sp ecificati on ,JT T 4293S lab R ubber B ea ring f or H ig hw ay B rid g e ,the eqvivalen t stiffness K B and eqvivalen t dam p ing coefficien t h B of lead p in s w ere calcu lated .T h rough the statistical analysis of dead 2load bearing reacti on and natu ral p eri od of som e beam b ridged w ith sp an s 20m ~50m ,the L RB standards w ere in troduced under typ e and typ e site so il conditi on s .Key words :h ighw ay b ridge ;seis m ic ab so rb ing design ;lead rubber bearing ;standard

中国现行的(JTJ 004289)《公路工程抗震设计

规范》[1]

是1990年开始执行,至今已长达12年之久,近年来的桥梁震害表明,该规范未能反映许多新的桥梁震害现象,也未能吸收许多新的研究成果,不仅落后于美国、日本、欧共体的桥梁抗震设计规范,也落后于中国的建筑抗震设计规范,不能适应中国国民经济发展和桥梁建设的需要,交通部于2000年立项制定新的《公路工程抗震设计规范》的工作已在积极进行中。新规范已明确增加桥梁结构的减震设计内容,积极建造装有减震装置的桥梁是中国桥梁抗震技术的发展方向之一。

作为制定新公路工程抗震设计规范的前期工作,交通部于1996年底立项的《公路桥梁减震装置

及设计方法研究》[2]

(以下简称《研究》

)科研项目已于2001年结束,对铅销橡胶支座、粘性剪切型阻尼器等减震装置的工作机理,静、动力特性以及公路桥梁的减震设计方法进行了内容广泛而深入的研究,为铅销支座的标准化研究提供了理论基础和技术支持。

《研究》的科研工作结束之后,已在陕西西户高速公路K 27+305146跨线桥和山西祁临高速公路马牧汾河特大桥,使用了铅销橡胶支座,但铅销橡胶

支座要根据桥梁结构的动力特性和桥位处场地土类型进行个例设计和制造,不仅给设计和制造带来很大的不便,也影响了其推广应用和减震桥梁的建设。因此有必要制定铅销橡胶支座标准解决上述问题。

1 铅销橡胶支座的性能

111 铅销橡胶支座的构造及工作原理

如图1所示,铅销橡胶支座由用来支承荷载的

层状橡胶、钢板及用于吸收耗散能量的铅销组合而成。普通橡胶支座的主要缺点是阻尼很小,在较低水平力作用下支座变形也可能很大。在普通橡胶支座中插入铅销,则可以得到一个紧凑的隔震装置。铅销提供了地震下的耗能和静力荷载下所必须的屈服强度与刚度,在较低水平力作用下,因具有较高的初始刚度,其变形很小。在强烈地震作用下,

由于铅销的屈服,一方面消耗地震能量;另一方面,刚度降低,达到延长结构周期的目的,从而通过降低地震激励来减小地震反应。

图1 铅销橡胶支座构造

图2为铅销橡胶支座在交变荷载作用下的滞回曲线,说明有一部分变形功为铅销所吸收,然后又转化为热能耗散到大气中,从而达到吸收耗散振动能量的目的。其吸收能量的大小可由滞回曲线所包围的面积来计算。

图2 滞回曲线

112 铅销橡胶支座的计算模式和特性参数

可将支座的滞回曲线简化为具有初始刚度K 1

和屈服后刚度K 2的双线性曲线,如图3所示。支座的等价刚度K B 与等价阻尼常数h B 可根据功的原理利用铅销橡胶支座滞回特性的等价线性化模型进行计算,其计算方法为

K B =[F (u B e )-F (-u B e )] (2u B e )=(A r G Χ

A L q )

u B e

(1)h B =?W (2ΠW )=2Q d [u B e +Q d

(K 2-K 1)] [Πu B e (Q d +u B e K 2)]

(2)

式中:?W 为支座吸收的总能量,即图4中滞回曲线所包围的面积;W 为支座的弹性能,即图4中三角形obu B e 的面积。

图3 滞回曲线的等效线性化模型

图4 减震装置的等价刚度与等价阻尼常数

113 铅销配置及特性参数

20世纪60年代以来,中国开始了橡胶支座的

研制、试验和使用,目前已成为国内公路与城市桥梁广泛采用并深受欢迎的一种支座。板式橡胶支座已经系列化、定型化、标准化,在中华人民共和国交通

行业标准(JT T 4293)

《公路桥梁板式橡胶支座》(以下简称《标准》)中,列出了支座承载力为150~1000

kN 的各种等级的公路桥梁所用矩形和圆形板式橡胶支座,本文所研究的铅销橡胶支座是在《标准》的板式橡胶支座中配置铅销而构成的。这样做可以利用已有的标准,便于推广、应用,也便于比较普通板式橡胶支座和铅销橡胶支座的相关静、动力特性。在《标准》所列的GJZ 、GYZ 规格系列支座中按式(3)的原则配置铅销,并计算铅销橡胶支座特性参数。

7

5第3期 刘健新,等:公路桥梁铅销橡胶支座的标准化

1125≤? Υ≤5

(3)

式中:?为支座总高度;Υ为铅销直径。

2 实桥计算统计分析

211 恒载支座反力和支座设计承载力的关系

使用铅销橡胶支座对桥梁进行减震设计,将是一个反复迭代的计算过程。因此,应恰当选用第一次配置的铅销橡胶支座,以在满足减震目标要求的条

件下,尽量减小迭代次数。同时,配置铅销橡胶支座将使未使用铅销橡胶支座的桥梁固有振动周期有所延长。因此,本文通过收集到的近30座跨径20~50

m 梁式公路桥、

计算了桥梁恒载下的支座反力和选用的普通橡胶支座设计承载力间的关系,如表1所

示。

表1 恒载支反力与支座设计承载

桥序号123

4

5

6

7

8

9

10

11

12

13

14

恒载支座反力 kN 95177951772531892971575621312011361107110386120888121315104141123345180816124284123设计承载力 kN

3933938758751037614157188413818844978841203614桥序号15

16

17

18

19

20

2122

23

24

25

26

27

28

恒载支座反力 kN 5471721901721069192941579211243714451619534190535188547172569104596172190138设计承载力 kN

1200

614

1988

393

393

700

1050

1050

1203

1200

1037

1050

614

用正比例关系进行拟合,并按恒载支座反力不同范围给出了其与设计承载力的回归公式,如恒载支座反力在200~300kN ,300~400kN 之间时,恒载支座反力和设计承载力的回归关系为

R 设=31028R 恒

(4)R 设=21413R 恒

(5)

212 实桥固有周期计算

通过铅销橡胶支座的配置将原先使用普通橡胶支座的桥梁固有周期适当延长,加大阻尼,从而实现桥梁减震,但减震和非减震相比,应有一个减震控制的目标,本文确定的减震目标值为30?,即减震后的地震力应比未减震的地震力减少30?。桥梁未减震时的固有周期T 称为原始固有周期,作为计算未减震地震力时是必不可少的原始数据:原始固有周期还将作为标准铅销橡胶支座选用的参数之一。

3 铅销橡胶支座的标准化

311 标准化的途径

为了设计和加工制造的方便,在《标准》给出的GJZ 系列板式圆形和矩形普通橡胶支座中配置铅销

应按照下述要求,即①采用铅销橡胶支座的减震桥梁上作用的地震力,应不大于采用普通橡胶支座非减震桥梁上作用的地震力的70?;②铅销橡胶支座在大震时的水平变位Χ≤215;③铅销橡胶支座中的铅销高度和直径之比应满足1125≤? Υ

≤5。配置铅销之后,计算出该种铅销橡胶支座的一次刚度K 1,二次刚度K 2,等价刚度K B 和等价阻尼系数h B 等特性参数。另一方面,则从实桥计算统计分析,得出桥梁恒载下支座反力和支座设计承载力的关系,以及桥梁的原始固有周期。将上述两个方

面,即铅销橡胶支座的减震能力和桥梁减震的需求结合起来,绘制出选用图。

312 铅销橡胶支座的选用图及选用参数

图5、图6分别为 、 场地时,圆形和矩形GYZ L 250、GYZ L 300的选用图(GYZ L 表示铅销橡胶支座)。在设计新的减震桥梁或将旧桥改造为减震桥梁时可按照图选用铅销橡胶支座。

图5 类场地土GYZ L 250、GYZ L 300的选用图

图6 类场地土GYZ L 250×300、GYZ L 250×350的选用图

313 算例

该桥为7m ×2m 的连续箱梁桥,其立面图和

8

5 长安大学学报(自然科学版) 2003年 

计算模型如图7、图8所示

图7

 桥梁立面图

图8 桥梁有限单元模型图

本桥各跨并列5片箱梁,每片箱梁下设置2个

GJ 250×300×64型普通橡胶支座,计算出原始固有周期为11106s 。由图6桥台选GJZ L 250×300(Υ60)支座。桥墩选GJZ 250×300,(Υ(35)支座,括号内数字的铅销直径,两次迭代计算后满足要求,此桥大震时的固有周期为11190s 。4 结 语

因本文仅就《标准》中的GJZ 、GYZ 系列板式橡

胶支座进行了配置铅销的初步标准化研究工作,实现铅销橡胶支座标准化尚还有许多工作要做,但本文提出的研究途径和设计方法为完善公路桥梁铅销胶支座的标准化工作,提出了研究方向和应进一步深入研究的问题。参考文献:

[1] (JTJ 004289)公路工程抗震设计规范[S ].1989.[2] 刘健新,胡兆同,李子青,等.公路桥梁减震装置及设计

方法研究总报告[R ].西安:长安大学,2000.

[3] 胡兆同,刘健新.桥梁铅销橡胶支座性能的试验研究

[J ].西安公路交通大学学报,1998,18(2):1—4.[4] 胡兆同,李子青,刘健新.桥梁铅销橡胶支座设计参数

的研究[J ].西安公路交通大学学报,1998,18(4):41—

44.

[5] (JT T 4293)公路桥梁板式橡胶支座[S ].1993.

[责任编辑 孙守增]

(上接第14页)

[7] D an iel J T h iele ,M aher K T adro s ,Jo seph V Benak .

State of the art fo r con tro l of b ridge app roach settlem en t [A ].In :B ridge Evaluati on R epair and R ehab ilitati on [C ].

U SA ,

K luw er

A academ ic

Pub lishers ,1990,57—67.

[8] 张奎鸿,钱绍武.沪嘉高速公路软土地基工程的回顾

[J ].华东公路,1993,(3):1—5.

[9] 叶见曙.桥头引道工后沉降控制标准的研究[J ].东南

大学学报,1997,27(3):12—17.

[10]孙 璐,邓学钧.速度与车辆动态特性对于车路相互作

用的影响[J ].土木工程学报,1997,30(6):34—40.

[11]C rump K S .N um erical inversi on of lap lace tran sfo rm s

u sing a fou rier series app rox i m ati on [J ].J A C M ,1976,23(1):89—96.

[12]ISO 263121997.M echan ical vib rati on and i m pact 2

evaluati on

of

hum an

expo su re

to

w ho le 2body

vib rati on 2part 1:General requ irem en t [S ].

[13]周一呜,毛恩荣.车辆人机工程学[M ].北京:北京理工

大学出版社,1999.

[14]ISO 263121982.Gu ide fo r the evaluati on of hum an

expo su re to w ho le 2body vib rati on [S ].

[15]肖劲松,王沫然.M A TLAB 51x 与科学计算[M ].北

京:清华大学出版社,2000.

[责任编辑 孙守增]

9

5第3期 刘健新,等:公路桥梁铅销橡胶支座的标准化

橡胶支座参数表

GPZ(II)系列盆式橡胶支座固定支座(GD)型主要尺寸表 规格(MN) 主要尺寸(mm) 重量kg 预埋底柱A(B)、C(D)A'(B')、C'(D')H d×L GPZ(Ⅱ)0.8GD2502107525Φ40×250 GPZ(Ⅱ)1.0GD2802358034Φ40×250 GPZ(Ⅱ)1.25GD3102608545Φ40×250 GPZ(Ⅱ)1.5GD3402909057Φ40×250 GPZ(Ⅱ)2.0GD3903309579Φ40×250 GPZ(Ⅱ)2.5GD435370100104Φ40×250 GPZ(Ⅱ)3GD475400105131Φ40×250 GPZ(Ⅱ)3.5GD510430110158Φ40×250

GPZ(Ⅱ)4GD545460115187Φ40×250 GPZ(Ⅱ)5GD610520130265Φ50×300 GPZ(Ⅱ)6GD670570145348Φ50×300 GPZ(Ⅱ)7GD720610150428Φ50×300 GPZ(Ⅱ)8GD770650155509Φ60×300 GPZ(Ⅱ)9GD815690160592Φ60×300 GPZ(Ⅱ)10GD860730170697Φ60×300 GPZ(Ⅱ)12.5GD960810185947Φ70×350 GPZ(Ⅱ)15GD10508902001227Φ70×350 GPZ(Ⅱ)17.5GD11359602101497Φ70×350 GPZ(Ⅱ)20GD122010402301896Φ80×350 GPZ(Ⅱ)22.5GD129011002402217Φ80×350 GPZ(Ⅱ)25GD136011502502566Φ90×400 GPZ(Ⅱ)27.5GD143012202602930Φ90×400 GPZ(Ⅱ)30GD149012702703295Φ90×400 GPZ(Ⅱ)32.5GD155013202803709Φ100×400 GPZ(Ⅱ)35GD161013702904154Φ100×400 GPZ(Ⅱ)37.5GD167014203004610Φ100×400 GPZ(Ⅱ)40GD172014603105050Φ100×400 GPZ(Ⅱ)45GD183015603205856Φ110×450 GPZ(Ⅱ)50GD192016303356744Φ110×450 GPZ(Ⅱ)55GD202017203507872Φ120×450 GPZ(Ⅱ)60GD210017903658817Φ120×450注:表中数据规格除"MN"计及注明者外,均以毫米为单位.

公路桥梁板式橡胶支座尺寸表

板式橡胶支座 一、公路桥梁板式橡胶支座规格系列 1、围 本标准规定板式橡胶支座的要求、规格系列及选用。 本标准适用于承载力小于5000kN 的公路桥梁用矩形、圆形平板式橡胶支座。 2、规性引用文件 下列文中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用 文件,其随后所有的修改(不包括勘误的容)或修订版均不适用于本标准, 然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。 凡是不注日期的引用文件,其最新版本适用于本标准。 JT/T4 一2004 公路桥梁板式橡胶支座 JTG D60 一2004 公路桥涵设计通用规 JTG D62 一2004 公路钢筋混凝土及预应力混凝土桥涵设计规 3、支座要求 3 . 1支座产品分类、代号、结构、技术要求、试验方法、检验规则及标志、包装、贮存、运输、安装和养护均应满足JT/T 4 一2004的要求. 3.2 支座使用阶段平均压应力бC=10M Pa ( S <7时бC=8M Pa);橡胶硬度60 ( IRHD )时,其常温下剪变模量G = 1.OMpa 。剪变模量随温度下降而递增, 当累年最冷月平均温度的平均值O ~-10℃时为寒冷地区,G = 1 . 2MPa ;当低于-10 ℃时为严寒地区,G = 1.5MPa ;当低于-25 ℃时,G = 2 . 0 MPa 。全国气温分区图见JTG D60 一2004附录B。 3.3支座橡胶弹性体体积模量Eb= 2000 MPa。支座与混凝土接触时,摩擦系数μ= 0 . 3 ,与钢板接触时,摩擦系数μ=0 . 2 。聚四氟乙烯板与不锈钢板接触(加硅脂)时,μf=0 . 06 ,当温度低于-25 ℃时,μf值增大30 % ,当不加硅脂时,μf应加倍。若有实测资料时,也可按实测资料采用。 3.4 橡胶支座剪切角α 正切值,当不计制动力时,tan α不大于0 .5 ,当计入制动力时,tan α不大于0 .7. 3.5 橡胶支座的计算和验算均应满足JTG D62 一2004的要求。 4、普通板式橡胶支座

桥梁支座计算

支座计算 (1)、确定支座的平面尺寸 橡胶板应满足: c ck A R σσ≤=e 若选用支座平面尺寸为cm l 62a =(顺桥)、cm 64l b =的矩形,取 cm l a 611620=-=,cm l b 631640=-=,支座形状系数S 为: ()33.10)6163(5.12616320000=+???=+?=b a es b a l l t l l S 式中:es t ——中间层橡胶片厚度,取cm t es 5.1=。 125≤≤S ,满足规范要求。 橡胶板的平均容许压应力为MPa c 0.10=σ,橡胶支座的剪变弹性模量MPa G e 0.1=(常温下),橡胶支座的抗压弹性模量e E : MPa S G E e e 23.57633.100.14.54.522=??== 计算时最大支座反力为kN 71.3906.131285.456kN 47.831rk ,0k ,0Pk ,0gk ,0====R kN R R kN R q kN R R R R R 696.128771.3906.131456.28547.831rk ,0qk ,0Pk ,0gk ,0ck =+++=+++=MPa MPa c 0.10<35.363.061.010696.12873 ==??=-σσ 满足要求。 (2)、 确定支座的高度 主梁的计算温差取℃36=?T ,温差变形由两端的支座均摊,则每一个支座承受的水平位移l ?为: ()cm T l 665.064.03.3636102 1215'l =+???=?=?-α

计算汽车荷载制动力引起的水平位移,首先须确定作用在每一个支座上的制动力bk F 。对36.3m 桥梁可布置四行车队,汽车荷载制动力按《桥规》4.3.6条,为二车道上总重力的10%,二车道的荷载总重为: kN 709.91967.012)2.3053.365.10(=???+?,kN 9709.9110709.91900=?, 六根梁共12个支座,每个支座承受的水平力bk F 为: kN F bk 75.1312 165== 橡胶层总厚度e t 应满足: 1、不计汽车制动力时:cm t l e 33.1665.022=?=?≥; 2计汽车制动力时: cm ab G F t e bk l e 974.062 .064.0100.121075.137.0665.027.063=?????-=-?≥ 3、此外,从保证受压得稳定考虑,矩形板式橡胶支座的橡胶厚度应满足: cm a t a cm e 4.125102.6=≤≤=。 由上述分析可知,按计入制动力和不计入制动力计算的橡胶厚度最大值为 1.33cm ,小于6.2cm ,因此橡胶层总厚度e t 的最小值取6.2cm 。由于定型产品中,对于平面尺寸为65cm×65cm 的板式橡胶支座中,e t 只有8cm , 9.5cm ,11cm ,12.5cm 四种型号,e t 暂取8cm 。 钢板厚度取0.5cm ,加劲板上、下保护层不应小于0.25cm ,取0.25cm ,中间橡胶层厚度取15mm 。故可布置 6 层钢板,此时,加劲板总厚度: cm t e 85.15225.0=?+?=,与取用值一致。加劲板总厚度为cm t s 365=?=∑,故支座高度cm h 1138=+=。 ()33.10) 6163(5.023********=+???=+?=b a es b a l l t l l S

铅芯隔震橡胶支座设计指南

目录 1. 桥梁减隔震技术概述 (1) 1.1减隔震技术基本原理 (1) 1.2减隔震支座发展及现状 (1) 2. 支座结构设计 (2) 2.1设计依据 (2) 2.2支座分类 (3) 2.3支座型号 (3) 2.4支座结构 (3) 2.5产品特点 (4) 3. 支座技术性能 (4) 3.1规格系列 (4) 3.2剪切模量 (5) 3.3水平等效刚度 (5) 3.4等效阻尼比 (5) 3.5设计剪切位移 (5) 3.6温度适用范围 (5) 4. 支座布置原则 (5) 5. 支座选用原则 (6) 6. 减隔震计算 (7) 7. 支座安装、更换、养护及尺寸 (8) 7.1支座安装工艺细则 (8) 7.2支座更换工艺 (14) 7.3支座的养护与维修 (14) 7.4支座安装尺寸 (16)

L R B系列铅芯隔震橡胶支座 1. 桥梁减隔震技术概述 1.1 减隔震技术基本原理 我国是一个强震多发国家,地震发生频率高、强度大、分布范围广、伤亡多、灾害严重,特别是近年发生的四川汶川特大地震、青海玉树大地震等地震灾害,给我们带来了惨痛的教训。与此同时,桥梁作为生命线系统工程中的重要组成部分,一旦损毁、中断便等于切断了地震区的生命线,同时,遭受破坏的大型桥梁修复往往非常困难,严重影响交通的抢通及恢复,从而影响救灾工作的开展,继而引发更大的次生灾害。受到这些地震灾害的教训以后,基于桥梁抗震设计的结构控制技术开始在我国桥梁工程界得到日益重视,国内相关部门积极开展了桥梁减隔震设计及研究工作。 对于地震作用,传统结构设计采用的对策是“抗震”,即主要考虑如何为结构提供抵抗地震作用的能力。一般来说,通过正确的“抗震”设计可以保证结构的安全,防止结构整体破坏或倒塌,然而,结构构件的损伤却无法避免。在某些情况下,靠结构自身来抵抗地震作用显得非常困难,需要付出很大的代价。因此,我们必须寻求更为有效的抗震手段,如基于减隔震装置的结构控制技术等。 结构控制技术的应用,不仅可以提高结构的抗震性能,还可以节省造价,从某种意义上来说,这是解决实际结构抗震问题的唯一有效途径。对于桥梁或建筑结构,目前发展相对成熟、实际应用较为广泛的是减隔震技术。减隔震技术是一种简便、经济、先进、有效的工程抗震手段。 图1 加速度反应谱图2 位移反应谱通过地震时的加速度反应谱(图1)与位移反应谱(图2)可以清楚地反映出不同阻尼下,加速度和位移随着地震周期的变化规律,当延长结构周期,增加结构阻尼可有效降低地震时的加速度和位移响应。减隔震设计就是利用结构地震响应的这种性质,通过延长结构周期和提高阻尼达到减轻地震作用的目的。 1.2 减隔震支座发展及现状 为了减小地震引起桥梁结构的破坏,各国学者对桥梁结构的减震、隔震进行了广泛、深入的研究,并取得了大量的研究成果。研究成果表明:对于桥梁结构比较容易实现和有效的减隔震方法主

支座规范

中华人民共和国交通行业标准 JT/T 4-2004 代替JT/T 4--1993,JT3132.3--90 公路桥梁板式橡胶支座 2004-03-17发布 2004-06-1实施 中华人民共和国交通部发布

公路桥梁板式橡胶支座 1 范围 本标准规定了公路桥梁板式橡胶支座产品的分类、技术要求、试验方法、检验规则以及标志、包装、储存、运输、安装和养护的要求。 本标准适用于公路桥梁所用矩形、圆形板式橡胶支座。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 528硫化橡胶或热塑性橡胶拉伸应力应变性能的测定(eqv IS037:1994) GB/T 912碳素结构钢和低合金结构钢热轧薄钢板及钢带 GB/T 1682硫化橡胶低温脆性的测定---单试样法(eqv lS0812:1991) GB/T 3280不锈钢冷轧钢板 GB/T 3512硫化橡胶或热塑性橡胶热空气加速老化和耐热试验(eqv IS0188:1998) GB/T 6031硫化橡胶或热塑性橡胶硬度的测定(10~100IRHD)(idt IS048:1994) GB/T 7759硫化橡胶或热塑性橡胶在常温、高温和低温下压缩永久变形的测定(eqv ISO 815:1991) GB/T 7760硫化橡胶与金属粘合的测定——单板法(eqv IS0813:1986) GB/T 7762硫化橡胶耐臭氧老化试验——静态拉伸试验法(neq IS01431/1:1989) GJB 3026聚四氟乙烯大型板材规范 HG/T 2198硫化橡胶物理试验方法的一般要求 HG/T 2502 5201硅脂 JT 391公路桥梁盆式橡胶支座 JJG 175非金属拉力、压力和万能试验机检定规程 JTG 1362公路钢筋混凝土及预应力混凝土桥涵设计规范 3 产品分类及代号

公路桥梁盆式橡胶支座规范jt-t391-2009

公路桥梁盆式橡胶支座规范jt-t391-2009 篇一:公路桥梁盆式橡胶支座新旧标准的比较 公路桥梁盆式橡胶支座新旧标准的比较 摘要:本文对jt/t391-2009《公路桥梁盆式支座》标准与 jt391-1999《公路桥梁盆式橡胶支座》标准内容的差别进行了比较浅析,归纳了新旧标准之间的主要区别,对新标准比较合理的改动进行深入分析。 关键词:jt/t391-2009 jt391-1999比较 中图分类号:x734 文献标识码:a 文章编号: jt/t391-2009《公路桥梁盆式支座》(以下简称新标准)已于2009年5月1日实施,代替jt391-1999《公路桥梁盆式橡胶支座》(以下简称旧标准)。新标准在旧标准的基础上进行了很大改善和修订,在内容上也有了较大的变化,新标准的整体框架符合cb/t 1.1—2009《标准化工作导则第1:标准的结构和编写》给出的规则。 1新旧标准的比较 1.1标准名称 新标准名称修改为“公路桥梁盆式支座”代替了旧标准“公 1 路桥梁盆式橡胶支座”。 1.2标准代号 新标准代号为”jt/t391”代替旧标准”jt391”,由原来的强制性标准修改为推荐性标准。 1.3范围 新标准减少了对公路桥梁盆式橡胶支座的产品规格的规定,增加了对公路桥梁盆式支座结构形式及装配要求的规定。新标准适用于

篇二:盆式支座检测报告 桥梁盆式橡胶支座出厂检验报告 桥梁盆式橡胶支座出厂检验报告 桥梁盆式橡胶支座出厂检验报告 篇三:桥梁支座施工技术要求 桥梁支座安装施工技术要求 一、编制依据 1.《郑州至民权高速公路开封至民权段两阶段施工图设计》; 2.《公路工程质量检验评定标准》(JTG F80/1,2004); 3.《公路桥涵施工技术规范》(JTG/T F50-2011); 4.《公路桥梁板式橡胶支座》(JT/T4-2004); 5.《公路桥梁板式橡胶支座规格系列》(JT/T663-2006); 6.《公路桥梁盆式橡胶支座》(JT/T391-2009); 2 7.《河南省高速公路施工标准化技术指南》; 二、支座垫石的施工技术要求 1、支座垫石施工之前,应做好支座垫石位置处混凝土的凿毛工作。 2、按照施工图纸计算复核支座垫石的设计标高。一片梁的各个支座的支承垫石顶面标高应处于同一平面内,避免发生支座偏压、初始剪切与不均匀受力现象。严格控制支座垫石顶面标高,保证其在规范允许的误差范围之内。 3、用于盆式支座的支座垫石,应按图纸要求预留盆式支座底板地脚螺栓孔,预留螺栓孔直径和深度必需满足设计图纸要求。 4、在施工过程中,应严格控制支座垫石位置处预埋钢筋网片的数量与预埋质量。

桥梁支座计算

支座计算 (1)、确定支座的平面尺寸 橡胶板应满足: R ck 若选用支座平面尺寸为l a 62cm (顺桥)、l b 64cm 的矩形,取 l 0a 62 1 61cm 10b 64 1 63 cm ,支座形状系数S 为: 63 61 式中: tes ――中间层橡胶片厚度,取t es 1.5cm S 2t es l o aCT 2 1.5 (63 61) 10.33 5 S 12 ,满足规范要求 橡胶板的平均容许压应力为 c 10.0MPa ,橡胶支座的剪变弹性模量 Ge 1.0MPa (常温下),橡胶支座的抗压弹性模量E R ck R 0, gk 831.47 1. 0 10 .332 576. 23MPa R 0, gk 831.47kN R , Pk 285.456kN R , q k 131 . 06 kN R) , rk 39. 71 kN R 0, qk R 0, rk 131. 06 39. 71 1287. 696kN e ? 计算时最大支座反力为 285. 456 c R Pk E e 5.4Q S 2 5.4 1287. 696 10 3 0. 61 0.63 3. 35MP X 10. 0MPa 满足要求。 (2)、确定支座的高度 主梁的计算温差取 36C , 温差变形由两端的支座均摊,则每一个支座 承受的水平位移]为: T | 10 5 36 36.3 0. 64 0. 665cm

计算汽车荷载制动力引起的水平位移,首先须确定作用在每一个支座上的制 动力Hk 。对36.3m 桥梁可布置四行车队,汽车荷载制动力按《桥规》436条, 为二车道上总重力的10 % ,二车道的荷载总重为 (10.5 36.3 305.2 2 1 0.67 919. 709kN 919.709 10 00 91.9709kN ,六根梁共12个支座,每个支座承受的水平力 Hk 为: 橡胶层总厚度t e 应满足: 1、不计汽车制动力时:t e 2 i 2 0.665 1.33cm ; 2计汽车制动力时: 3、此外,从保证受压得稳定考虑,矩形板式橡胶支座的橡胶厚度应满足: 由上述分析可知,按计入制动力和不计入制动力计算的橡胶厚度最大值为 1.33cm ,小于6.2cm ,因此橡胶层总厚度t e 的最小值取6.2cm 。由于定型产品中 对于平面尺寸为65cm X 65cm 的板式橡胶支座中,t e 只有8cm,9.5cm, 11cm, 12.5cm 四种型号,t e 暂取8cm 。 钢板厚度取0.5cm ,加劲板上、下保护层不应小于 0.25cm ,取0.25cm ,中 间橡胶层厚度取15mm 故可布置6层钢板,此时,加劲板总厚度: t e 0. 25 2 5 1.5 8cm ,与取用值一致。加劲板总厚度为 t s 5 6 3cm ,故支座高度 h 8 3 11cm 。 165 72" 13. 75kN 0. 665 0.7鑫 0.7 13. 75 103 6 2 1.0 10 0.64 0.62 0. 974cm 6. 2cm 10 t e 12. 4cm 。 l 0a l 0b 2 - es l 0a l 0b 24 39 2 0.5 (6 3 61) 10. 33

20121020-LRB铅芯隔震橡胶支座设计指南

桥梁标准构件系列产品 LRB 系列铅芯隔震橡胶支座 设计指南 2012 年08 月

〖LRB 系列铅芯隔震橡胶支座〗设计指南 目录 1. 桥梁减隔震技术概述 (1) 1.1 减隔震技术基本原理 (1) 1.2 减隔震支座发展及现状 (1) 2. 支座结构设计 (2) 2.1 设计依据 (2) 2.2 支座分类 (3) 2.3 支座型号 (3) 2.4 支座结构 (3) 2.5 产品特点 (4) 3. 支座技术性能 (4) 3.1 规格系列 (4) 3.2 剪切模量 (5) 3.3 水平等效刚度 (5) 3.4 等效阻尼比 (5) 3.5 设计剪切位移 (5) 3.6 温度适用范围 (5) 4. 支座布置原则 (5) 5. 支座选用原则 (6) 6. 减隔震计算 (7) 7. 支座安装、更换、养护及尺寸 (8) 7.1 支座安装工艺细则 (8) 7.2 支座更换工艺 (14) 7.3 支座的养护与维修 (14) 7.4 支座安装尺寸 (16)

LRB 系列铅芯隔震橡胶支座 1. 桥梁减隔震技术概述 1.1 减隔震技术基本原理 我国是一个强震多发国家,地震发生频率高、强度大、分布范围广、伤亡多、灾害严重,特别是近年发生的四川汶川特大地震、青海玉树大地震等地震灾害,给我们带来了惨痛的教训。与此同时,桥梁作为生命线系统工程中的重要组成部分,一旦损毁、中断便等于切断了地震区的生命线, 同时,遭受破坏的大型桥梁修复往往非常困难,严重影响交通的抢通及恢复,从而影响救灾工作的 开展,继而引发更大的次生灾害。受到这些地震灾害的教训以后,基于桥梁抗震设计的结构控制技 术开始在我国桥梁工程界得到日益重视,国内相关部门积极开展了桥梁减隔震设计及研究工作。 对于地震作用,传统结构设计采用的对策是“抗震”,即主要考虑如何为结构提供抵抗地震作用 的能力。一般来说,通过正确的“抗震”设计可以保证结构的安全,防止结构整体破坏或倒塌,然 而,结构构件的损伤却无法避免。在某些情况下,靠结构自身来抵抗地震作用显得非常困难,需要 付出很大的代价。因此,我们必须寻求更为有效的抗震手段,如基于减隔震装置的结构控制技术等。 结构控制技术的应用,不仅可以提高结构的抗震性能,还可以节省造价,从某种意义上来说,这是解决实际结构抗震问题的唯一有效途径。对于桥梁或建筑结构,目前发展相对成熟、实际应用 较为广泛的是减隔震技术。减隔震技术是一种简便、经济、先进、有效的工程抗震手段。 图 1 加速度反应谱图 2 位移反应谱通过地震时的加速度反应谱(图1)与位移反应谱(图2)可以清楚地反映出不同阻尼下,加速度和位移随着地震周期的变化规律,当延长结构周期,增加结构阻尼可有效降低地震时的加速度和 位移响应。减隔震设计就是利用结构地震响应的这种性质,通过延长结构周期和提高阻尼达到减轻 地震作用的目的。 1.2 减隔震支座发展及现状 为了减小地震引起桥梁结构的破坏,各国学者对桥梁结构的减震、隔震进行了广泛、深入的研究,并取得了大量的研究成果。研究成果表明:对于桥梁结构比较容易实现和有效的减隔震方法主

铅芯橡胶支座的构造及性能

铅芯橡胶支座的构造及性能 铅芯橡胶支座的构造 铅芯橡胶支座构造如图所示,铅芯橡胶支座是在RB支座的中心压入铅芯构成的。铅芯压入后与橡胶支座融为一体追随剪切变形,这种支座是由橡胶支座安定的复原装置和铅的能量吸收装置所构成的阻尼机构一体型的隔震装置。 铅是一种具有良好塑性变形能力和能量吸收能力的金属。铅芯橡胶支座也是最早用于隔震结构的支座之一。铅芯橡胶支座凭借其优良的力学性能,较为简单的构造和高性价比,已经在工程中广泛应用。 铅芯橡胶支座的基本性能 1、铅阻尼器的能量吸收能力 橡胶本身是一种易拉压变形的材料,单独做成支座加力后变形巨大(如图)。工程用橡胶支座是由薄钢板与薄橡胶层叠组成,钢板对橡胶竖向变形有优秀的约束作用,竖向压缩刚度非常高,但与天然橡胶支座一样,LRB支座拉伸刚度较低,约为压缩刚度的1/7~1/10。

2、铅芯橡胶支座LBR的水平变形能力 钢板约束橡胶的竖向变形但对其水平变形没有影响。同时铅芯能够很好地追随支座变形,吸收地震能量。LRB支座水平性能稳定,LRB支座由于铅芯的存在,能够限制支座的水平变形,如下图所示,装有LRB支座的隔震结构的水平变形要比装有RB支座的小(不考虑外加阻尼作用下)。 3、铅芯橡胶支座LRB的工作特点

铅芯橡胶支座通过铅芯的大小来调整阻尼的大小。铅芯直径增大后,屈服力变大,阻尼量增加,但中心孔过大也会给支座的性能带来不良影响。 4、铅芯橡胶支座LRB的耐久性 日本等国家的工程调查表明,LRB支座与RB支座基本一致,隔震橡胶即使在使用100年后,其内部橡胶依然完好。有调查显示,LRB支座使用10年后,其特性基本保持不变,并预测出60年后其性能仅会下降3%。 5、铅芯橡胶支座LRB的基本力学性能 铅芯橡胶支座的滞回性能可用下图的双线型模型表示。其中细实线为橡胶支座的滞回特性。LRB支座的水平特性是与图示的橡胶部分与铅芯部分水平性能叠加而成,如图粗实线所示。铅芯橡胶支座在剪切变形为250%能表现出稳定的双线型滞回特性

公路桥梁盆式橡胶支座标准

公路桥梁盆式橡胶支座 Pot-type elastomeric pad bearing for highway bridge 1范围 本标准规定了公路桥梁盆式橡胶支座的产品规格、分类、型号、技术要求。 本标准适用于承载力为800KN~60000KN的桥梁盆式橡胶支座(以下简称盆式支座)。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 527-83 硫化橡胶物理试验方法的一般要求 GB/T 528-92 硫化橡胶和热塑橡胶拉伸性能的测定 GB/T 1591-92 低合金结构钢 GB 1033-86 塑料密度和相对密度试验 GB/T 1039-92 塑料力学性能试验方法总则 GB/T 1040-92 塑料拉伸性能试验方法 GB/T 1184-96 形状和位置公差未注公差的规定 GB/T 1682-94 硫化橡胶低温脆性的测定——单试样法 GB/T 1804-92 一般公差线性尺寸的未注公差 EN1337-5,Annex A 内密封圈 ASTM A240-316L 不锈钢冷轧钢板 GB 3512-83 橡胶热空气老化试验方法 GB 6031-85 硫化橡胶国际硬度的测定(30-85IRHD常规试验法) GB 7759-87 硫化橡胶在常温和高温下恒定形变压缩永久变形的测定GB 7762-87 硫化橡胶耐臭氧老化试验静态拉伸试验方法 GB/T 8923-88 涂装前钢材表面锈蚀等级和除锈等级 JB/T 5943-91 工程机械焊接件通用技术条件 SYNTHESO-8002 硅脂

支座安装施工工艺标准

支座安装施工工艺 1适用范围 本标准适用于公路桥梁工程中板式橡胶支座、盆式橡胶支座、球型支座的安装。 2施工准备 2.1材料 2.1.1支座:进场应有装箱清单、产品合格证及支座安装养护细则,规格、质量和有关技术性能指标符合现行公路桥梁支座标准的规定,并满足设计要求。 2.1.2配制环氧砂浆材料:二丁酯、乙二胺、环氧树脂、二甲苯、细砂,除细砂外其他材料应有合格证及使用说明书,细砂品种、质量应符合有关标准规定。 2.1.3配制混凝土及补偿收缩砂浆材料。 2.1. 3.1水泥:宜采用硅酸盐水泥和变通硅酸盐水泥。进场应有产品合格证或出厂检验报告,进场后应对强度、安定性及其他必要的性能指标进行取样复试,其质量必须符合现行国家标准《硅酸盐水泥、普通硅酸盐水泥》GB175等的规定。 当对水泥质量有怀疑或水泥出厂超过三个月时,在使用前必须进行复试,并按复试结果使用。不同品种的水泥不得混合使用。 2.1. 3.2砂:砂的品种、质量应符合国家现行标准《公路桥涵施工技术规范》JTJ041的要求,进场后按国家现行标准《公路工程集料试验规程》JTJ058的规定进行取样试验合格。 2.1. 3.3石子:应采用坚硬的卵石或碎石,并按产地、类别、加工方法和规格等不同情况,按国家现行标准《公路工程集料试验规程》JTJ058的规定分批进行检验,其质量应符合国家现行标准《公路桥涵施工技术规范》JTJ041的规定。 2.1. 3.4外加剂:外加剂应标明品种、生产厂家和牌号。外加剂应有产品说明书、出厂检验报告及合格证、性能检测报告,有害物含量检测报告应由有相应资质等级的检测部门出具。进场后应取样复试合格,并应检验外加剂的匀质性及与水泥的适应性。外加剂的质量和应用技术应符合现行国家标准《混凝土外加剂》GB8076和《混凝土外加剂应用技术规范》GB50119的有关规定。 2.1. 3.5掺合料:掺合料应标明品种、生产厂家和牌号。掺合料应有出厂合格证或质量证明书和法定检测单位提供的质量检测报告,进场后应取样复试合格。掺合料质量应符合国家现行相关标准规定,其掺量应通过试验确定。

公路桥梁盆式橡胶支座标准

公路桥梁盆式橡胶支座 标准 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

公路桥梁盆式橡胶支座 Pot-type elastomeric pad bearing for highway bridge 1范围 本标准规定了公路桥梁盆式橡胶支座的产品规格、分类、型号、技术要求。 本标准适用于承载力为800KN~60000KN的桥梁盆式橡胶支座(以下简称盆式支座)。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 527-83 硫化橡胶物理试验方法的一般要求 GB/T 528-92 硫化橡胶和热塑橡胶拉伸性能的测定 GB/T 1591-92 低合金结构钢 GB 1033-86 塑料密度和相对密度试验 GB/T 1039-92 塑料力学性能试验方法总则 GB/T 1040-92 塑料拉伸性能试验方法 GB/T 1184-96 形状和位置公差未注公差的规定 GB/T 1682-94 硫化橡胶低温脆性的测定——单试样法 GB/T 1804-92 一般公差线性尺寸的未注公差 EN1337-5,Annex A 内密封圈 ASTM A240-316L 不锈钢冷轧钢板 GB 3512-83 橡胶热空气老化试验方法

GB 6031-85 硫化橡胶国际硬度的测定(30-85IRHD常规试验法) GB 7759-87 硫化橡胶在常温和高温下恒定形变压缩永久变形的测定 GB 7762-87 硫化橡胶耐臭氧老化试验静态拉伸试验方法 GB/T 8923-88 涂装前钢材表面锈蚀等级和除锈等级 JB/T 5943-91 工程机械焊接件通用技术条件 SYNTHESO-8002 硅脂 3分类、型号及规格 3.1分类 按使用性能分类 (1)双向滑动支座(多向滑动支座):具有竖向承载、竖向转动和多向滑移性能,代号为TGA。 (2)单向滑动支座:具有竖向承载、竖向转动和单一方向滑移性能,代号为TGE。 (3)固定支座:具有竖向承载和竖向转动性能,代号为TF。 型号 支座型号表示方法如图1。 图1 例如:TGE4000KN:表示单向滑动支座,承载竖向载荷为4000KN。 TGA1500KN:表示双向(多向)滑动支座,承载竖向载荷为1500KN。 TF5000KN:表示固定支座,承载竖向载荷为5000KN。 3.3结构形式

支座计算

支座计算 原桥台支座型号:GYZF 4 d250×65 现选用GYZF 4 d400×65 原桥墩支座型号:GYZ d350×66 现选用GYZ d500×70 一、 桥台支座 1、 确定支座的平面尺寸 现选用GYZF 4 d400×65mm ,上下层橡胶片单层厚2.5mm ,中间层橡胶片单层厚t es =9.5mm ,加劲钢板单层厚t 0=4mm ,四氟滑板厚t f =2mm 。 支座反力R ck =964KN R Gk =626.18KN ①、计算支座的平面形状系数S : 圆形支座S= es t d 40 d 0=d-5×2=400-10=390mm S= 5 .94390?=10.26 S=10.26符合规范规定的“5≤S ≤12” ②计算橡胶支座的弹性模量: 抗压弹性模量Ee=5.4G e S 2 Ee=5.4×1.0×10.262=568.45Mpa ③验算支座的承压强度δc δc = e ck A R A e = 4 2 d π δc = 2 3 ) 10 390(14.34964-??? =8073.8Kpa δc =8073.8Kpa <[]c δ=10000Kpa 符合规范要求 2、 确定支座的厚度 ①、 主梁的计算温差 本桥地处寒冷地区,公路桥梁结构的最高有效温度标准值为34℃ 最低有效温度标准值为-10℃。主梁的计算温差为Δt=34-(-10)=44℃。温差变形由两端桥台的支座均摊,则每个支座承受的水平位移Δg=0.5αc ?Δt ?L Δg=0.5×10-5×44×(2500×3+18)=1.65cm

②、 汽车荷载制动力引起的水平位移Δp 一个设计车道上公路—Ⅰ级车道荷载总重为:(260+10.5×75)×10%=104.75KN 。根据《桥规》,公路—Ⅰ级汽车荷载制动力标准值不得小于165KN 。经比较,汽车荷载制动力取165KN 参与计算。每跨4片梁共3跨,支座共计:4×4=16个。每个支座承受的水平力F bk = 16 165=10.31KN 。 t e =9.5×4+2.5×2=43mm Δp= A G t F e e bk 2 Δp= 4 4000.1210 4331.102 3 π? ???=1.76mm 3、 确定需要的橡胶片总厚度te: 不计汽车制动力: t e ≥2Δg t e ≥2Δg=2×1.65=3.30cm 计入汽车制动力: t e ≥1.43(Δg+Δp) t e ≥1.43(Δg+Δp)=1.43×(1.65+0.176)=2.61cm 采用5层加劲钢板6层橡胶片组成的支座,上下层橡胶片每层厚2.5mm 。中间层橡胶片单层厚t es =9.5mm ,加劲钢板单层厚t 0=4mm ,四氟滑板厚t f =2mm 。 橡胶片总厚度t e : t e =9.5×4+2.5×2=43mm=4.3cm >3.30cm (合格) 且符合《桥规》中 5 10 d t d e ≤ ≤即cm t cm e 80.4≤≤的要求。 4、 确定支座的厚度 h= t e +0.4×5+0.2=6.5cm=65mm 5、 验算支座的抗滑稳定性 ①、 计算温度变化引起的水平力: H t =AG e e t g ? H t = 3 .465.1100.14 4.03 2 ? ??π=48.22KN

板式橡胶支座适用规范

板式橡胶支座适用规范:公路桥梁板式橡胶支座技术标准(JT /T4-2004) 进场时要求: 1.标志: 每块橡胶支座要留有xx标志; 2.包装: 支座应根据分类、规格分别包装。包装应牢固可靠,包装外面应注明产品名称、规格、制造日期。包装内应附有产品合格证。 3.按每批号常规检验项目三项: ①.极限抗压强度②.抗压弹性模量③.抗剪弹性模量橡胶支座每批取样品六块,其中三块做破坏性试验,三块可退回,四氟板可免检抗剪弹性模量试验。 特别注意: 1、根据实际经验,如果支座为甲供的话(一般业主会这么做),同一规格尽量让材料商一次送够,不要每批次送几十个。要不然检测费用高昂。 2、常规检测中以抗压弹性模量超出设计值(不合格)居多,当外委报告取回后,需认真查看核对。另2009年广东省某次检查中发现过该类问题: 报告中抗压弹性模量超出范围值,但报告结论为合格。有值得商榷的地方,一定要及早发现并更正。 锚具取样送检资料 原文地址: xxxx钢绞线、锚具、夹片如何取样送检? 自由世界工程类别: 桥梁工程检测类别:

原材料-锚具、夹片、连接器取样规范名称: GB/T 14370-2000《预应力筋用锚具、夹片和连接器》试验规范名称: GB/T 14370-2000《预应力筋用锚具、夹片和连接器》验收规范名称: GB/T 14370-2000《预应力筋用锚具、夹片和连接器》试验项目: 外观硬度锚具锚品摩阻损失锚具静载锚固性能取样频率:1批/(同一类产品、同一批原材料、同一种工艺一次投料生产的数量、<=1000套)取样方式: 随机抽取取样数量: 外观抽10%并不少于10套硬度抽取5%并不少于5套(含锚具、配套的连接器与夹片【夹片每套为5片】)锚具锚品摩阻损失、锚具静载锚固性能各取3套【具体数量为6个锚具、对应3个锚具孔数的连接器、对应6个锚具孔数的夹片,对应3个锚具孔数的钢绞线(每根长5m,规范要求受拉区不少于 3m)】结果判定: 1、外观表面无裂缝,尺寸符合设计要求,则合格。如有1套不符合,取双倍,如仍有一套不符合,则每套检查; 2、硬度每个零件测3点,全合格,则合格。如有1个零件不合格,取双倍,如仍有一个不符合,则每个检查; 3、静载锚固与疲劳荷载检验及周期荷载检验全合格则合格。如有1不合格,取双倍,如仍有1不合格,则该批产品为不合格品。工程类别: 桥梁工程检测类别: 原材料-钢绞线取样规范名称: 力学性 能GB/T 228-2002《金属材料室温拉伸试验方法》屈服强度与松驰GB/T 5224-2003《预应力混凝土用钢绞线》试验规范名称: 力学性

橡胶支座规格

一、公路桥梁板式橡胶支座(JT/T4)的工作原理 1、普通板式橡胶支座由多层橡胶片与加劲钢板钢板,且钢板全部包在橡胶弹性材料内形成的橡胶支座。板式支座具有足够的竖向刚度以承压垂直荷载,能将上部构造的反力可靠地传递给墩台,有良好的弹性,以适应梁端的转动;又有较大的剪切变形以满足上部构造的水平位移。 2、四氟乙烯板式橡胶支座是在普通板式橡胶支座上粘接一层厚1.5-3mm的聚四氟乙烯板而成。除具有普通板式橡胶支座的竖向刚度与弹性变形,能承受垂直荷载及适应梁端转动外,因四氟乙烯与梁底不锈钢板间的低摩擦系数(μ≤0.08)可使桥梁上部构造的水平位移不受限制。请参考:板式橡胶支座的应用范围及四氟乙烯橡胶支座及安装技术 二、公路桥梁板式橡胶支座代号及表示方法 根据桥梁板式橡胶支座的结构型式分类如下: 球冠圆板式橡胶支座(TCYB系列) 普通板式橡胶支座--- 矩形普通板式橡胶支座(GJZ系列) 圆形普通板式橡胶支座(GYZ系列) 板式橡胶支座圆形四氟板式橡胶支座(GYZF4系列) 聚四氟乙烯板式橡胶支座--- 矩形四氟板式橡胶支座(GJZF4系列) 球冠四氟板式橡胶支座(TCYBF4系列) 由于板式支座本身具有足够的竖向刚度,可以满足较大垂直荷载,并具有良好的弹性以适应梁端的转动。还具有较大的剪切变形以满足上部构造的水平位移;可以产生很好的防震作用,能减轻动载对上部构造与墩台的冲击作用。由于板式橡胶支座具有水平剪切的各向同性,能良好传递上部构造多的变形。在弯、斜桥的使用中优点突出。该产品除具有普通支座的功能外,还具有在梁端作用力作用时通过球形表面橡胶层调整受力中心的位置,逐渐将力扩散到圆板式橡胶支座的钢板和橡胶层,使支座受力均匀,尤其适用于斜交桥,立交桥等坡度桥的场所。 三、板式橡胶支座按胶种适用温度分类如下: a、氯丁橡胶: 适用温度+60℃∽-25℃ b、天然橡胶: 适用温度+60℃∽-40℃ c、三元乙丙橡胶 四、板式橡胶支座的适用范围 1、公路桥梁板式橡胶支座适用于跨度小于30m、位移量较小的桥梁.不同的平面形状适用于不同的桥跨结构,正交桥梁用矩形支座;曲线桥、斜交桥及圆柱墩桥用圆形支座.

标准-10301桥梁支座-客运专线桥梁盆式橡胶支座暂行技术条件2005

客运专线桥梁盆式橡胶支座 暂行技术条件 二〇〇五年五月

关于发布《客运专线高性能混凝土暂行技术条件》 等8个暂行技术条件的通知 科技基函[2005]101号 现发布《客运专线高性能混凝土暂行技术条件》、《客运专线基床表层级配碎石暂行技术条件》、《客运专线60AT钢轨暂行技术条件》、《客运专线有碴轨道预应力混凝土岔枕暂行技术条件》、《客运专线桥梁伸缩装置暂行技术条件》、《客运专线桥梁盆式橡胶支座暂行技术条件》、《客运专线桥梁圆柱面钢支座暂行技术条件》、《客运专线桥梁混凝土桥面防水层暂行技术条件》等8个技术条件,自发布之日起实行。 各单位在执行过程中,应结合工程实际,认真总结经验,积累资料。 由主编单位铁道科学研究院另印发单行本。 铁道部科学技术司 二〇〇五年八月十二日

前 言 盆式橡胶支座是连接桥梁上部结构和下部结构的重要部件,其质量和性能将直接影响到整座桥梁的使用性和耐久性。“客运专线桥梁盆式橡胶支座暂行技术条件”是在TB/T 2331-2004《铁路桥梁盆式橡胶支座》和GB/T 17955-2000《球型支座技术条件》的基础上,参考国内外的最新标准,如欧洲标准prEN 1337-5 Structural bearings-Pot bearing、美国公路桥梁设计规范(AASHTO),针对客运专线的特殊要求而编制的。相对于秦沈客运专线盆式橡胶支座,本技术条件主要有以下方面的改进和补充:——增加了对成品支座胶料的检测; ——支座用聚四氟乙烯板物理机械性能检测中增加了球压痕硬度的测定; ——明确规定了聚四氟乙烯板在硅脂润滑条件下的初始静摩擦系数; ——增加了对成品支座聚四氟乙烯板的检测; ——单向活动支座侧向导槽的滑板采用SF-Ⅰ三层复合板; ——将支座的检验分为原材料及部件进厂检验、产品出厂检验和型式检验,并明确了检验频次; ——在成品支座的检验中增加了支座的压转试验; ——型式检验时增加了支座用聚四氟乙烯板的磨耗性能检验; ——对支座的防腐涂装提出更明确的要求; ——针对不同梁型及架设方式增加了支座安装的要求; ——增加了支座养护维修要求; ——增加了支座的保修期。 本技术条件负责起草单位:铁道科学研究院,中铁工程设计咨询集团有限公司。 本技术条件主要起草人:臧晓秋,庄军生,张士臣,盛黎明,王振华。 本技术条件由铁道部科学技术司负责解释。

铅芯橡胶支座力学性能及应用研究

铅芯橡胶支座力学性能及应用研究 本文介绍了铅芯橡胶支座的性能,利用大型通用结构分析程序Ansys,对一实际工程建模分析了铅芯橡胶支座的减震效果,结果证明铅芯橡胶支座具有较好的减震、隔震性能。 标签:铅芯橡胶支座减隔震连续梁应用研究 1 铅芯橡胶支座及力学特性 铅芯橡胶支座是新西兰人W.H.Robinson在1975年4月发明的,一经问世就受到各国关注,并得到了广泛应用。它将竖向支承、水平向柔性(由橡胶提供)和滞变阻尼(由铅的塑性变形提供)三种功能结合在一个装置里,比较经济地解决了桥跨结构的隔震问题。一般叠层橡胶支座是由薄橡胶板和薄钢板交错叠合并相互硫化粘结而成的产品。由于钢板对橡胶板横向变形产生约束,使其具有非常大的竖向刚度。同时钢板又不影响橡胶板的剪切变形,保持了橡胶固有的柔韧性,使其具有比竖向刚度小得多的水平刚度,及延长桥梁结构的水平自振周期。从而使支座具有竖向支承与水平隔震机构的双重功能。 铅芯橡胶支座的吸能效果主要是利用铅芯弹塑性变形来达到。由于铅棒的屈服强度较低(7MPa),并在弹塑性变形条件下具有较好的疲劳性能,它被认为是一种较理想的阻尼器。大量实验研究表明:铅芯橡胶支座的恢复力模型可以用双线性来表示。铅芯橡胶支座的屈服力与铅棒的面积有关,增大铅棒的面积可以提高屈服力,从而提高耗能效果。铅芯橡胶隔震支座的滞回耗能特性主要有其控制参数屈服力、初始剪切刚度及屈服后刚度所确定。 本文主要致力于对铅芯支座的计算及实际应用,推动减隔震支座在桥梁中应用与发展。 2 抗震分析方法 2.1 模型建立清瀾大桥由于引桥结构是对称结构,考虑到各联之间的相互影响,以及对比不同墩高之间的隔震效果,现选择西侧引桥7号桥墩至15号桥墩之间的部分作为抗震分析对象,此部分的桥型图如图1所示。 采用有限元程序Ansys对该大桥进行抗震计算,采用空间梁单元beam188模拟预应力混凝土连续梁桥的主梁和桥墩;二期恒载采用集中质量单元mass21模拟;主梁与边墩之间的联结用combine39单元来模拟。桥梁结构有限元计算模型简图如图2所示,对于非隔震结构,墩与梁之间考虑板式橡胶支座,采用铰接,而桥台处考虑四氟板支座,采用摩擦单元,顺桥向则是用非线性摩擦滑移单元Combine39来模拟滑移支座。单元的起滑力为 f=μ·FN (1)

相关文档