文档库 最新最全的文档下载
当前位置:文档库 › 轧机主传动电机振动故障处理_wgjs概要

轧机主传动电机振动故障处理_wgjs概要

轧机主传动电机振动故障处理_wgjs概要
轧机主传动电机振动故障处理_wgjs概要

一起轧钢主传动电机振动故障处理经过的回顾

丁学杰1陶桂林

(武汉钢铁集团公司热轧厂430083 武汉)

摘要振动是电机的常见故障之一,本文结合我厂一起轧钢主传动电机振动故障的处理经过,对电机振动故障的分析方法和处理经验进行了总结。

关键词轧钢电机振动故障

轧钢主传动电机是钢铁企业的关键动力设备,其运行状态的好坏不仅关系到产品质量的好坏,还关系到钢铁企业的生产效益能否实现。随着冶金自动化水平的提高,钢铁企业对生产的连续性和设备的稳定性都提出了很高的要求。作为钢厂核心设备的的轧机出现任何非正常停机都将造成重大的经济损失。

我厂的R2初轧机是一台由双电机驱动的可逆轧机,上下轧辊电机的容量和驱动控制结构完全相同。××年7月,R2轧机的上辊电机出现异常振动和巨大响声,同时伴有整流子打火等异常现象。本文将介绍这起电机振动故障的特点,以及故障分析和处理的前后经过。

1电机基本情况与振动故障的特点

R2轧机的两台驱动电机均由日本东芝公司于1975年制造,故障出现前电机一直正常运行。该电机设计容量5000kW,电枢额定电压:750V,额定电流:7250A,励磁电压:500V,励磁电流:307A,额定转矩:122kN.m,额定转速:40r/min,最大转速65 r/min,电机极数:18,轧机的传动系统如图1所示。

图1 电机与轧辊联接示意图

××年7月在电机日常巡检时发现,R2轧机在轧钢时上辊传动系统出现异常的振动和巨大的响声。进一步观察还发现,电机转子存在较明显的轴向窜动、同时伴随整流子打火等异常现象。凭经验,这是轧机系统出现的较为严重的振动故障。由于电机与轧辊之间的传动机构较多,故障出在轧机传动机构还是电机本身一时难以判断。为迅速找到振动根源,我们多方面入手,对引起轧机系统振动的因素进行了排查。

1作者简介:丁学杰,1961~,湖北武汉人,高级工程师

2轧机系统振动故障的排查

引起轧机系统振动的原因很多,文献[1~3]显示轧机本身的机械系统、电机的机械结构的、电机的电磁性能改变、以及电机基础性状的变化都有可能造成轧机系统的振动。为尽快查出振动的起因,我厂立即向电机制造商----东芝公司发出了咨询,该公司迅速安排技术人员对R2上辊电机振动情况进行了诊断。由于时间限制,日方怀疑电枢升高片和电枢均压线可能有开裂、断线现象。由于日方判断未得到确认,因此未敢贸然进行停机检修,同时为将故障造成的损失降到最低,我们一边安排电机减负荷生产,一边加紧对引起轧机振动的因素,包括日方提出的因素,进行了测试排查。

2.1系统振动的特性分析

通过记录电机电压、电流波形,我们发现上辊电机的电压、电流均存在振荡现象。从电流波形观察,在轧钢过程中,电机转子每转一圈,电流波动18次, 与电机极数相同,在每次波动中有4个左右的小脉动。为了解振动与轧机机构和电机的相互关系,以不同速度为参考,折算成电机转动一周电流振荡次数如下表1所示。

表1.以不同参考对象测试的振动特性

从上述数据来看,无论才用何种速度作参考,电机电流的振荡都与电机的极数存在较强的相关性,这说明系统的振动与电机有某种关系,但这有待通过其它手段进一步确定。

2.2电磁因素的静态检测

为排除振动与控制系统和传动系统的关系,我们将上下辊电机的控制系统和传动系统同时互换,发现上辊电机振动故障依然存在,这说明电机振动与控制系统无关,于是我们又对电机的电气参数进行了测量。

(1)电枢直流电阻检查:上半圆中的9个主极,单个测量阻值均为0.0683Ω, 9个主极串联阻值为0.6205Ω。受检测条件限制,下半圆的9个主极与上半圆的9个

主极并联阻值为0.3119Ω。按电阻串并联公式计算复核,各主磁直流电阻均正常。

(2)电枢交流电抗检查:上半圆中的9个主极单个测量时,分别加上交流50V 电压,电流表读数均为5.25A;上下两个半圆的9个主极均按串联连接,加上交流250V电压,上下两组相同,电流表读数均为2.85A。交流电抗检查的结果表明主磁极的电参数正常。

(3)片间耐压检查。根据电机的绕组结构,相邻的三片整流子为一个单元,每单元内两个绕组的脉冲响应应相同,若匝间发生短路或开路,两者波形会出现明显差异。用RZJ-15型匝间耐压测试仪对R2上辊电机绕组进行片间耐压试验,结果换向器圆周990片整流子响应波形相同,电机绕组无匝间短路或开路故障。

(4)电机气隙检查:检查结果反映电机气隙均匀度符合规定。

通过上述检查分析,我们未发现电机存在电气方面的问题。

2.3电机基础的测试

为了解电机的基础情况,我厂特委托武汉冶金工业部建筑研究总院,对R2电机基础的动力参数、混凝土强度和振动的性状三方面进行测试。

基础的动力参数测试结果显示:电机基础的刚度系数和阻尼系数都正常,这表明基础的抗压、抗剪、抗弯及抗扭转能力在正常范围之内,电机基础没有产生共振。基础混凝土强度测试结果显示混凝土强度达30MPa,电机基础养护较好。

图2 振幅测点布置示意图

为深入了解上辊电机的振动情况,对电机定子、转子和基础的振幅、振频进行了定量测量,测点分布如图2所示。为便于比较,同时对下辊电机的振动也进行了测量,表2~5是上、下辊电机振动的实测数据。

表2 上下辊电机定子振幅(μm)

表3 上下辊电机转子振幅(μm)

从表2、表3的测量数据来看,上、下辊电机的基础的振幅以及转子的振幅都比较接近,而两台电机定子的振幅却相差8~10倍;上辊电机定子的振幅与电机基础的振幅相差约4~6倍,这都说明上辊电机的振动来自于电机的定子。

表4上辊电机定子振动数据(μm)

从表4来看,定子A轴机架与基础的振幅相差6~10倍,B轴机架与基础的振幅相差也有4~6倍。通过与基准点的振动比较,发现A、B轴机架的振动相位正好相反,这表明上辊电机的定子在作摇摆振动。上述测量结果表明轧机系统的振动实际是电机定子的振动,其原因可能是定子振动过大或者电机定子锚固不良。

表5振动频谱表(单位:Hz,--:无)

基础振频测试如表5所示,上辊电机定子及基础存在一个68~76Hz的垂直振动,这个频率与电流测试分析的结果(18×4)相近。另外还存在一个40~46Hz的水平振动,而下辊电机基础没有这两个频段的振动,从频率分析结果来看,电机的定子和基础都存在异常振动,但不能区分振动的剧烈程度。结合振幅测量结果,可以判定振动来源于电机的定子。

2.4机械系统的检查

为排除机械系统方面的原因,在生产间隙特安排技术人员对轧机机械系统的轴承、传动连接轴、万向连接、润滑系统进行检查。通过对当年原始施工资料及锚固螺栓紧固的情况分析,排除了电机定子锚固不良的可能性。

2.5电机本身的解体检查与处理

鉴于电机外部未发现故障点,于是决定对R2上辊电机作解体检查处理。年修期间,将上辊电机转子吊出就地检查,未发现问题;将电机定子运往电机修理厂进行检查,目视未发现定子磁极等部件存在松动现象。用力矩扳手对定子主磁极和换向极的螺丝进行逐一紧固时,发现有几根螺丝预紧力不足。紧固处理完毕后,对定子进行浸漆和烘干处理,消除绕组间可能存在的间隙。电机安装时,又在电机定子下加装两台10吨千斤顶,使定子与地基紧密接触,改变定子的固有振动频率。通过上述处理,上辊电机的振动得以消除。

3. 故障处理过程分析与总结

引起电机振动故障的原因很多,查明振动来源是一个复杂的推理过程。这次我厂电机振动故障持续近一年,期间进行了多项测试和分析。现在回头对有关资料进行整理,有许多经验可以总结:

1.对于电机的振动故障,电机电流、电压等电气参数的测量不易发现电机振动的根源所在。如前所述:在电流波形的测试过程中我们发现“转子每转一圈,电流波动18次,每次波动有4个左右的小脉动”的现象,但是很难确定故障的部位,甚至难以区分是电机本体问题还是驱动控制系统问题,这主要因为振频只是描述振动特征的一个参数,从振动频率不足以了解振动的全部信息,因而就很难确定振动的具体部位;另外,由于这些电气参与了系统的闭环控制,因果关系也很难区分。

2.定、转子及基础的振动测试数据比较准确地确定了电机的振动位置和性态。其中,振幅测试数据在确定振动位置时具有较强的分辨能力。振频测试也有较强的分辨能力。但由于缺乏经验,在确定振动原因时,我们将原因归结于定子与基础锚固不良,而实际基础的锚固状况又较好,对测试结果产生了怀疑。

3.从最后的处理结果来看,这次电机定子振动的原因可能在于定子内部部件的紧固不良,引起定子的共振。电机的定转子之间存在强烈的电磁力作用,但转子未受到定子振动的影响,这是因为转子转动时的刚度得到增强,受外力的影响小。

事后来看,虽然在确定故障原因方面出现失误,但对振动特性的直接测量仍是确定振动部位和性态的最有效手段;对与振动相关的电压电流的测量,虽可间接了解振动的信息,但难以确定振动的部位和诱因。由于我方受测量技术和条件的限制,这次电机振动故障的处理可能走了些弯路,但是出于安全和稳妥的考虑,本次故障的处理方法对类似故障的处理仍具有较高参考价值。

参考文献

1.徐伯雄,窦玉琴.电机量测.北京:清华大学出版社,1990

2.刘彦情等编译.电机结构.北京:机械工业出版社,1976

3.机械工程手册电机工程技术手册编辑委员会.工程师手册.北京:机械工业出版

社,1986

Retrospect the Repairing Process of Oscillation Fault in Mill Main Dive Motor

Ding Xuejie Tao Guilin

(the first hot strip mill of WISCO,430083 Wuhan)

Abstract: oscillation fault is one of the popular malfunctions of electrical machine.

The repairing process for such fault that took place on the main drive motor in our plant was described, and some experiences on dealing with such fault were drawn.

Keywords:mill machine , electrical machine, oscillation fault

电机振动的原因

电机振动的原因 电机振动的原因很多,也很复杂。8极以上大极数电机不会因为电机制造质量问题引起振动。振动常见于2--6极电机,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机的振动限值、测量方法及刚性基础的判定标准,依据此标准可以判断电机是否符合标准。 电动机振动的危害 电动机产生振动,会使绕组绝缘和轴承寿命缩短,影响滑动轴承的正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘和水分入侵其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等事故。另外,电动机产生振动,又容易使冷却器水管振裂,焊接点振开,同时会造成负载机械的损伤,降低工件精度,会造成所有遭到振动的机械部分的疲劳,会使地脚螺丝松动或断掉,电动机又会造成碳刷和滑环的异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动的十个原因 1.转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 2.铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 3.联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。 4.联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 5.与电机相联的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 6.电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。 7.安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8.轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。 9.电机拖动的负载传导振动,比如说电机拖动的风机、水泵振动,引起电机振动。

振动的隔离与阻尼减振

振动是造成工程结构损坏及寿命降低的原因,同时,振动将导致机器和仪器仪表的工作效率、工作质量和工作精度的降低。 控制振动的一个重要方法就是隔振。从振动控制的角度研究隔振,不涉及结构强度的计算,它只是研究如何降低振动本身。这里所介绍的隔振方法,就是将振源与基础或连接结构的近刚性连接改成弹性连接,以防止或减弱振动能量的传递,最终达到减振降噪的目的。 隔振的作用有两个方面:一是减少振源振动传至周围环境;二是减少环境振动对物体或设备的影响。原理是在设备和底座之间安装适当的隔振器,组成隔振系统,以减少或隔离振动的传递。有两类隔振,一是隔离机械设备通过支座传至地基的振动,以减少动力的传递,称为主动隔振;另一种是防止地基的振动通过支座传至需保护的精密设备或仪表仪器,以减小运动的传递,称为被动隔振。 在一般隔振设计中,常常用振动传递比T 和隔振率η来评价隔振效果。主动隔振传递比等于物体传递到底座的振动与物体振动之比,被动隔振传递比等于底座传递到物体的振动与底座的振动之比,两个方向的传递比相等。 隔振效率: η=(1- T ) ·100% 传递比T : ]u D )u -/[(1u D (1T 2 2 2 2 2 2 ++= ) 式中D 为阻尼比,0 f u f = 为激振频率和共振频率的比。 只有传递比小于1才有隔振效果。因此T<1的区域称为隔振区。 隔振可以分为两类,一类是对作为振动源的机械设备采取隔振措施,防止振动源产生的振动向外传播,称为积极隔振或主动隔振;另一类是对怕受振动干扰的设备采取隔振措施,以减弱或消除外来振动对这一设备带来的不利影响,称为消极隔振或被动隔振。对于薄板类结构振动及其辐射噪声,如管道、机械外壳、车船体和飞机外壳等,在其结构表面涂贴阻尼材料也能达到明显的减振降噪效果,我们称这种振动控制方式为阻尼减振。

软件系统故障应急预案

软件系统故障应急预案-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

服务器软件系统故障应急预案 发生紧急故障时的判断及处理: 发生服务器软件系统故障后,客户如果未签订服务器系统维护协议,在服务器重启未能解决的情况下,通知客户经理和客户自行处理。若已经签订服务器系统维护协议的客户,服务器管理员应立即对服务器进行查看,分析故障原因,采取相应措施;必要时,保存系统状态不变,取出系统镜像备份磁盘,保持原始数据,进行快速恢复。如果没有恢复磁盘,应优先检查故障原因进行解决,如果无效,再客户同意的情况下以最新数据备份恢复的方式进行或采取其他措施。 服务器软件故障范畴: 服务器软件故障包括:操作系统故障,应用软件故障,病毒黑客攻击等。 其他注意事项: 事态或后果严重的,及时上报公司领导。 处置结束后, 系统管理员应将事发经过、处置结果等结束后一日内备案存档。 采取的技术措施: 在故障发生后立即查看服务器系统状态,如果是系统软件出现故障,并且能进入系统,且可以清晰定位故障原因,并可以立即排除,那么立即进行排除。如果估计在1小时之内都不能定位故障原因,那么报告客户经理和客户,同时联系厂商及技术支持协助排除,或根据技术支持的建议进行重新安装操作系统和应用系统。排除操作系统故障的方法,检查操作系统进程是否都正常,有无非法

进程,操作系统文件有无损坏丢失,是否受到病毒和木马程序侵害,黑客攻击。 如果不是操作系统故障,应该对应用系统进行仔细检查,检查方法,查看应用系统代码和数据是否被破坏,损坏,丢失,如果丢失,从正确的备份进行恢复。 平时需做的准备工作: A、操作系统和相关配置定期备份。 B、相关应用系统及数据定期备份。 C、必要的情况下准备备用域名。 D、确保备份数据做到三方备份(本地服务器,其他服务器, 异地服务器)。 E、做好备用服务器的搭建及定期测试。 成立应急预案小组成员及分工: 杨胜灵负责整体技术把控、技术支持及开发人员临时紧急调配。 孙道斌负责网站、网站设计相关技术支持及设计人员临时紧急调配。 宫元负责客户、域名及域名解析相关事宜。 李俊负责机房及服务器相关技术整体把控,相关维护管理人员的临时紧急调配。 张尊园负责电信及电信危机公关的处理。

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施 电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。 4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。 5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。一、机械性电机振动的产生原因与对策 1、转子的不平衡电机振动 A、原因: ·制造时的残留不平衡。

·长期间运转产生尘埃的多量附着。 ·运转时热应力引起轴弯曲。 ·转子配件的热位移引起不平衡载重。 ·转子配件的离心力引起变形或偏心。 ·外力(皮带、齿轮、直结不良等)引起轴弯曲。 ·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。 B、对策: ·抑制转子不平衡量。 ·维护到容许不平衡量以内。 ·轴与铁心过度紧配的改善。 ·对热膨胀的异方性,设计改善。 ·强度设计或装配的改善。 ·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。 ·轴承端面与轴附段部或锁紧螺帽的防止偏靠。 2、轴承之异常电机振动与电机振动噪音 A、原因: ·轴承内部的伤。 ·轴承的轴方向异常电机振动,轴方向弹簧常数与转子质量组成电机振动系统的激振。

电机振动十大原因,查找检修得看这些具体案例

电机振动十大原因,查找检修得看这些具体案例 电机振动的原因很多,也很复杂。8极以上大极数电机不会因为电机制造质量问题引起振动。振动常见于2--6极电机,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机的振动限值、测量方法及刚性基础的判定标准,依据此标准可以判断电机是否符合标准。 电动机振动的危害 电动机产生振动,会使绕组绝缘和轴承寿命缩短,影响滑动轴承的正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘和水分入侵其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等事故。另外,电动机产生振动,又容易使冷却器水管振裂,焊接点振开,同时会造成负载机械的损伤,降低工件精度,会造成所有遭到振动的机械部分的疲劳,会使地脚螺丝松动或断掉,电动机又会造成碳刷和滑环的异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动的十个原因 1.转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 2.铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 3.联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。 4.联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 5.与电机相联的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 6.电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。 7.安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8.轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。 9.电机拖动的负载传导振动,比如说电机拖动的风机、水泵振动,引起电机振动。 10.交流电机定子接线错误、绕线型异步电动机转子绕组短路,同步电机励绕组匝间短路,同步电机励磁线圈联接错误,笼型异步电动机转子断条,转子铁心变形造成定、转子气隙不均,导致气隙磁通不平衡从而造成振动。

电机常见的振动故障原因

编号:SM-ZD-75861 电机常见的振动故障原因Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

电机常见的振动故障原因 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一般来讲,电机振动是由于转动部分不平衡、机械故障或电磁方面的原因引起的。 一、转动部分不平衡主要是转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 处理方法是先找好转子平衡。如果有大型传动轮、制动轮、耦合器、联轴器,应与转子分开单独找好平衡。再有就是转动部分机械松动造成的。如:铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 二、机械部分故障主要有以下几点: 1、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。还有一种情况,就是有的联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 2、与电机相联的齿轮、联轴器有毛病。这种故障主要表

水泵电机振动检修案例

电动机振动的危害 电动机产生振动,会使绕组绝缘和轴承寿命缩短,影响滑动轴承的正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘和水分入侵其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等事故。另外,电动机产生振动,又容易使冷却器水管振裂,焊接点振开,同时会造成负载机械的损伤,降低工件精度,会造成所有遭到振动的机械部分的疲劳,会使地脚螺丝松动或断掉,电动机又会造成碳刷和滑环的异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动的十个原因 1.转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 2.铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 3.联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。

4.联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 5.与电机相联的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 6.电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。 7.安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8.轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。 9.电机拖动的负载传导振动,比如说电机拖动的风机、水泵振动,引起电机振动。 10.交流电机定子接线错误、绕线型异步电动机转子绕组短路,同步电机励绕组匝间短路,同步电机励磁线圈联接错误,笼型异步电动机转子断条,转子铁心变形造成定、转子气隙不均,导致气隙磁通不平衡从而造成振动。 振动原因及典型案例 振动原因主要有三种情况:电磁方面原因;机械方面原因;机电混合方面原因。 一 . 电磁方面的原因 1. 电源方面:三相电压不平衡,三相电动机缺相运行。 2. 定子方面:定子铁心变椭圆(公众号:泵管家)、偏心、松动;定子绕组发生断线、接地击穿、匝间短路、接线错误,定子三相电流不平衡。 举例:锅炉房密封风机电机检修前发现定子铁心有红色粉末,怀疑定子铁心有松动现象,但不属于标准大修范围内的项目,所以未处理,大修后试转时电机发生刺耳的尖叫声,更换一台定子后故障排除。 3.转子故障:转子铁心变椭圆、偏心、松动。转子笼条与端环开焊,转子笼条断裂,绕线错误,电刷接触不良等。 举例:轨枕工段无齿锯电机运行中发现电机定子电流来回摆动,电机振动逐渐增大,根据现象判断电机转子笼条有开焊和断裂的可能,电机解体后发现,转子笼条有7处断裂,严重的2根两侧与端环已全部断裂,如发现不及时就有可能造成定子烧损的恶劣事故发生。 二 .机械原因 1. 电机本身方面: 转子不平衡,转轴弯曲,滑环变形,定、转子气隙不均,定、转子磁力中心不一致,轴承故障,基础安装不良,机械机构强度不够、共振,地脚螺丝松动,电机风扇损坏。

电子设备的隔振技术及减振器选型

电子设备的隔振技术及减振器选型 1、概述 电子设备受到的机械力的形式有多种,其中危害最大的是振动和冲击,它们引起的故障约占80%它们造成的破坏主要有两种形式,其一是强度破坏:设备在某一激振频率下产生振幅很大的共振,最终振动加速度所引起的应力超过设备所能承受的极限强度而破坏;或者由于冲击所产生的冲击应力超过设备的极限强度而破坏。其二是疲劳破坏:振动或冲击引起的应力虽远低于材料的强度,但由于长时间振动或多次冲击而产生的应力超过其疲劳极限,使材料发生疲劳损坏。系统的振动特性受三个参数的影响,即质量、刚度和阻尼。对于电子设备的振动和冲击隔离来说,隔振系统的质量一般是指电子设备的质量,而刚度和阻尼则由设备的支撑装置提供。在机械环境的作用下,尤其是在舰船、坦克、越野车辆、飞机等运载工具中,设备及其内部的电子器件、机械结构等都难以承受振动冲击的干扰。 表1各种运载工具振动、冲击和离心加速度参数

为了减少或防止振动与冲击对电子设备的影响,通常采取两种措施:a)通过材料选用和合理的结构设计,增强设备及元器件的耐振动耐冲击能力;b)在设备或元器件上安装减振器,通过隔离振动与冲击,有效地减少振动与冲击对电子设备的影响。 2、隔振技术 2.1隔振 隔振就是通过在设备或器件上安装减振装置,隔离或减少它们与外界间的机械振动传递。 在电子设备与基础之间安装弹性支承即减振器,以减少基础的振动对电子设备的影响程度,使电子设备能正常工作或不受损坏;这种对电子设备采取隔离的措施,称为被动隔振。一般情况下,仪器及精密设备的隔振都是被动隔振。 被动隔振系数: 振动来自基础,其运动用U=Usin(31)表示,也是周期振动。被动隔振也可用隔振系数n表示其隔振效果,它的含义是被隔离的物体振幅与基础振幅之比(或是振动速度幅值、加速度幅值的比值),可用下式计算: n = x o/ U O ={[1+4 E 2( f / f o )2]/[l-( f / f o)2「+4E 2( f / f o)2}“(1)式中x o——物体的垂向振幅(m);

信息系统故障处理应急预案

信息系统故障处理应急预 案 The final edition was revised on December 14th, 2020.

上饶县交通警察大队 信息系统故障处理应急预案 一、信息系统应急预案组织机构 为了保证公安交警网络和信息系统的安全,防止因电脑硬件、软件、网络故障而产生的大队业务、网络使用的瘫痪,特制订上饶县交警大队信息系统安全应急方案。 二、信息系统故障等级划分 1、一级故障 信息系统发生故障,预计将或已经严重影响大队各窗口单位、业务单位相关业务中断1小时以上,并预计4小时以内无法恢复的,具备以下一个或几个特征,即定义为一级故障。 1.交警指挥大楼至支队公安网出现线路和设备故障; 2. 交警指挥大队内部网络出现故障; 3.大队计算机房供电系统、空调系统等外围保障设施出现严重故障; 6.病毒攻击造成大队网络专网中断或传输效率明显下降,关键业务系统不能正常提供服务; 7.病毒攻击造成大楼各网络感染客户端设备10台以上,导致关键业务系统和办公系统不能正常提供服务; 8.利用技术手段,造成业务数据被修改、假冒、泄漏、窃取的信息系统安全事件。 2、二级故障

满足以下条件之一,即定义为二级故障。 1.故障发生后,影响到信息系统的运行效率,速度变慢,但未影响车管等主要业务现场。 2.故障发生后预计在2小时以内恢复。 3、三级故障 满足以下条件之一,即定义为三级故障。 1.故障发生后,可随时应急处理,不会影响的系统全面运行,但是一种隐患。 一级和二级故障为重大故障;三级故障为一般性故障。 二信息系统故障处理程序 1、故障的发现 信息中心人员在发现故障或接到故障报告后,首先要记录故障发生时间和发现时间,以及发现部门、发现人,对故障的等级进行初步判定,并报告相关人员进行处理。 2、故障的处理 1.信息中心科室为故障处理部门,故障处理部门领导负责通知和落实相应岗位人员到出现故障科室部门,应先询问了解设备和配置近期的变更情况,查清故障的影响范围,从而确定故障的等级和发生故障的可能位置。 2. 对于重大故障按照的故障升级上报要求进行上报,并在处理过程中及时向主管关领导通报故障处理情况。 3. 对于一般性故障按照的故障升级上报要求进行上报,并在处理过程中及时通报故障处理情况。

电机震动标准

第一章、电动机维护检修规范 1、电动机完好标准 1.1零部件质量 1.1.1外壳完整,无明显缺陷,表面油漆色调一致,铭牌清晰。 1.1.2润滑油脂质量符合要求,油量适当,不漏油。 1.1.3电动机内部无积灰和油污,风道畅通。 1.1.4外壳防护能力或防爆性能良好,既符合电动机出厂标准,又符合周围环境的要求。 1.1.5定转子绕组及铁芯无老化、变色和松动现象,槽楔、端部垫块及绑线齐全紧固。 1.1.6定转子间的间隙符合要求。 1.1.7风扇叶片齐全,角度适合,固定牢固。 1.1.8外壳有良好而明显的接地(接零)线。 1.1.9各部件的螺栓、螺母齐全紧固,正规合适。 1.1.10埋入式温度计齐全,接线完整,测温表计指示正确。 1.1.1l起动装置好用,性能符合电动机要求。 1.1.12通风系统完整,防锈漆无脱落,风道不漏风,风过滤器、风冷却器性能良好,风机运行正常。1.1.13励磁装置运行稳定可靠,直流电压、电流能满足电动机要求。 1.1.14操作盘油漆完好,部件齐全,接线正规,标示明显。 1.1.15保护、测量、信号、操作装置齐全,指示正确,动作灵活可靠。 1.1.16电动机基础完整无缺。 1.1.17 电源线路接线正确牢固,相序标志分明,电缆外皮有良好的接地(接零)线。

1.2运行状况 1.2.1在额定电压下运行,能达到铭牌数据要求,各部位温升不超过表1所列允许值。 表1 电动机的最高允许温升(环境温度为40~C时) ℃ 绝缘等级 A级绝缘 E级绝缘 B级绝缘 F级绝缘 H级绝缘 测量方法温度计法电阻法温度计法电阻法温度计法电阻法温度计法电阻法温度计法电阻法 与绕组接触的铁芯及其他部件 60 —— 75 —— 80 —— 100 —— 125 —— 集电环或整流子 60 —— 70 —— 80 —— 90 —— 100 —— 滑动轴承 40 —— 40 —— 40 —— 40 —— 40 —— 滚动轴承 55 —— 55 —— 55 —— 55 —— 55 —— 电动机绕组 50 60 65 75 70 80 85 100 105 125 1.2.2电动机的振动值(两倍振幅值),一般应不大于表2的规定。对于Y系列电动机,空载振动、速度的有效值应不超过表3所列数据。 表2电动机的允许振动值 转速,r/min 3000 2000 1500 1000 750及以下 两倍振幅值,mm 表3 Y系列电动机空载振动、速度允许值 安装方式弹性刚性 轴中心高H,mm 56≤H≤132 132≤H≤225 225≤H≤400 400≤H≤630 转数n,r/min 600≤n≤1800 1800

重大设备故障应急预案

重大设备故障应急预案 1.目的和适用范围 1.1目的:在重大设备故障发生后,能快速、有效地控制处理,以保障公司生产秩序有效运行,尽量减少因设备故障造成对生产的影响和损失。 1.2适用范围:凡是设备故障发生后有下列情形之一的均应按本预案的有关规定进行 1.2.1严重影响公司生产秩序正常进行; 1.2.2配电设备、供水管网出现严重安全隐患; 1.2.3关键、贵重设备故障直接经济损失金额达0.3万元以上。 2.术语和缩略语 3.引用标准 4.设备概况 公司现有各类主要生产设备20余台、套,设备配置能满足下料、卷板,抛丸,抛罐,抛管,钻孔、焊接、加工各工序的制造要求。设备生产能力可达到产品年产量超过100套的需求。 5.组织管理 5.1成立公司重大设备故障应急处置领导小组,其组成人员如下: 组长:经理 副组长:生产副经理、安全设备部经理 成员:公司下属安全生产第一负责人 5.2领导小组职责:

负责本预案的制定、修订和完善;组建应急处置小组,并组织实施和演练,检查和督促作好重大设备故障的预防措施和应急处置的各项准备工作,负责各类重大设备故障发生后应急处置的统一领导、组织指挥和协调。 5.3重大设备故障应急处置小组: 指挥长:经理 副指挥长:总工程师、安全设备部经理 成员:设备维修组负责人、材料成品部经理、 设备涉及的相关部门、车间的第一负责人 5.4重大设备故障应急处置小组其主要职责为: 5.4.1发生重大设备故障时,通报重大设备故障信息,发布应急处置命令,负责组织实施应急方案;在最短的时间内以最快的方式向上级部门和相关部门报告事故有关情况,必要时向有关单位发出协助处置请求;进行事故的调查、处理及经验教训的总结工作。 5.4.2指挥小组分工: 5.4.2.1.指挥长:组织、指挥重大设备故障的应急处置工作; 5.4.2.2.副指挥长:协助组长负责应急处置的具体组织、指挥工作;生产系统开停车调度工作; 5.4.3成员:负责组织事故现场的抢险、抢修工作;损失额度的评估;处理善后事宜。 6.重大设备故障的报告制度 6.1凡是发生重大设备故障的部门,应在5分钟内以最快的方式向设备动力部及公司重大设备故障应急处置小组报告,同时作好事故现场

电机振动的原因

电机振动得原因 电机振动得原因很多,也很复朵。8极以上大极数电机不会因为电机制造质量问题引起振动。振动常见J- 2—6极电机,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机得振动限值、测量方法及刚性基础得判定标准,依据此标准可以判断电机就是否符合标准。 电动机振动得危害4 电动机产生振动,会使绕组绝缘与轴承寿命缩短,影响滑动轴承得正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘与水分入侵其中,造成绝缘电阻降低与淤露电流增大, 甚至形成绝缘击穿等事故.另外,电动机产生振动,乂容易使冷却器水管振裂,焊接点振开,同时会造成负载机械得损伤,降低工件精度,会造成所有遭到振动得机械部分得疲劳,会使地脚螺丝松动或断掉,电动机乂会造成碳刷与滑环得异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动得十个原因A 转子.耦合器.联轴器.传动轮(制动轮)不平衡引起得. 瑟、铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。A 3、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生得原因主耍就是安装过程中,对中不良、安装不当造成得。 哀4、联动部分中心线在冷态时就是重合一致得,但运行一段时间后由于转子支点,基础等变形,中心线乂被破坏?因而产生振动」 5、与电机相联得齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定得振动.皿 6、电机本身结构得缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小, 轴承座、基础板、地基得某部分乃至整个电机安装基础得刚度不够. 7、安装得问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8、轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦得润滑与温度产生异常。 9、电机拖动得负载传导振动,比如说电机拖动得风机、水泵振动,引起电机振动。 10、交流电机定子接线错课、绕线型异步电动机转子绕组短路,同步电机励绕组匝间短路,同步电机励磁线圈联接错误,笼型异步电动机转子断条,转子铁心变形造成定、转子气隙不均,导致气隙磁通不平衡从而造成振动。却 振动原因及典型案例 嫌动原因主要有三种情况:电磁方面原因;机械方而原因;机电混合方面原因。 一、电磁方面得原因1山. 电源方而:三相电压不平衡,三相电动机缺相运行?如、定子方面:定子铁心变椭圆、偏心、松动:定子绕组发生断线、接地击穿. 匝间短路、接线错误,定子三相电流不半衡。 举例:锅炉房密封风机电机检修前发现定子铁心有红色粉末,怀疑定子铁心有松动现象, 但不属

Noise and vibration DC-motor(直流电机噪音及振动)

3482
IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 6, NOVEMBER 2004
Characterization of Noise and Vibration Sources in Interior Permanent-Magnet Brushless DC Motors
Hong-Seok Ko and Kwang-Joon Kim
Abstract—This paper characterizes electromagnetic excitation forces in interior permanent-magnet (IPM) brushless direct current (BLDC) motors and investigates their effects on noise and vibration. First, the electromagnetic excitations are classi?ed into three sources: 1) so-called cogging torque, for which we propose an ef?cient technique of computation that takes into account saturation effects as a function of rotor position; 2) ripples of mutual and reluctance torque, for which we develop an equation to characterize the combination of space harmonics of inductances and ?ux linkages related to permanent magnets and time harmonics of current; and 3) ?uctuation of attractive forces in the radial direction between the stator and rotor, for which we analyze contributions of electric currents as well as permanent magnets by the ?nite-element method. Then, the paper reports on an experimental investigation of in?uences of structural dynamic characteristics such as natural frequencies and mode shapes, as well as electromagnetic excitation forces, on noise and vibration in an IPM motor used in washing machines. Index Terms—Brushless machines, electromagnetic forces, noise, permanent magnet, vibrations.
Fig. 1.
Cross sections of BLDC motors.
I. INTRODUCTION
C
ONVENTIONAL direct current commutator motors with permanent magnets are easy to control and require few semiconductor devices. Yet, they have serious operational problems in association with brushes. For examples, the brushes require regular maintenance and induce noise by friction with the commutators. A solution for these problems is brushless direct current (BLDC) motors. BLDC motors can be classi?ed into two types, as shown in Fig. 1 according to the geometric shape and location of permanent magnets. Compared with surface mounted permanent-magnet (SPM) motors, interior permanent-magnet (IPM) motors have several advantages. One advantage comes from the position of magnets. Because permanent magnets are embedded in the rotor, the IPM motors can be used at higher speeds without debonding of the permanent magnets from the rotor due to the centrifugal forces. Another obvious advantage of the IPM motors is higher ef?ciency. That is, in addition to the mutual torque from the permanent magnets, the IPM motors utilize the reluctance torque generated by the rotor saliency [1].
Manuscript received June 28, 2002; revised June 7, 2004. H.-S. Ko was with the Mechanical Engineering Department, Korea Advanced Institute of Science and Technology (KAIST), Daejon 305-701, Korea. He is now with Samsung Electronics Company Ltd., Suwon 443-742, Korea (e-mail: hskatom@yahoo.co.kr). K.-J. Kim is with the Mechanical Engineering Department, KAIST, Daejon 305-701, Korea (e-mail: kjkim@mail.kaist.ac.kr). Digital Object Identi?er 10.1109/TMAG.2004.832991
Regarding the noise and vibration, the IPM motors have more sources than the SPM motors. Furthermore, analysis of magnetic ?eld in the IPM motors is more dif?cult due to the magnetic saturations, especially in the rotors. In an IPM motor, the electromagnetic excitation sources can be classi?ed into three parts: cogging torque, ripples of mutual and reluctance torque, and ?uctuations of radial attractive force between the rotor and stator. In an SPM motor, only the mutual torque is generally considered and an analytical method can be used [2], [3]. For the IPM motors, however, the ?nite-element method (FEM) is used to account for the magnetic saturation at the rotor core and, besides the mutual torque, the reluctance torque needs to be considered. In addition, although only the permanent magnet may be considered to calculate the radial attractive forces between the rotor and stator in the IPM motors [4], the electromagnetic ?eld due to the currents may become signi?cant depending on the loading and generate serious excitation forces. In this paper, a technique that can ef?ciently calculate the cogging torque as a function of rotor position by including saturation effects is proposed. Then, a torque equation for characterizing the space and time harmonics with respect to the mutual and reluctance torque ripples is used to extract their ?uctuating components. The radial attractive forces due to the electric currents in the stator as well as the permanent magnets in the rotor are calculated by the FEM and its effects on noise and vibration are investigated. The noise and vibration in the motors are mostly generated by the electromagnetic sources and subsequently can be ampli?ed by the dynamic characteristics of the motor structure. Therefore, in?uences of natural frequencies and mode shapes of the structures are experimentally investigated for the noise and vibration of an IPM motor under study. II. ELECTROMAGNETIC EXCITATION SOURCES Electromagnetic excitations in electric motors are caused by variation of both circumferential and radial forces acting between the stator and the rotor with respect to the time and space.
0018-9464/04$20.00 ? 2004 IEEE

电动机振动的危害和原因

电动机振动的危害和原因 电机振动的原因很多,也很复杂。8极以上大极数电机不会因为电机制造质量问题引起振动。振动常见于2--6极电机,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机的振动限值、测量方法及刚性基础的判定标准,依据此标准可以判断电机是否符合标准。 电动机振动的危害 电动机产生振动,会使绕组绝缘和轴承寿命缩短,影响滑动轴承的正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘和水分入侵其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等事故。 另外,电动机产生振动,又容易使冷却器水管振裂,焊接点振开,同时会造成负载机械的损伤,降低工件精度,会造成所有遭到振动的机械部分的疲劳,会使地脚螺丝松动或断掉,电动机又会造成碳刷和滑环的异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动的十个原因 1、转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。

2、铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 3、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。 4、联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 5、与电机相联的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 6、电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。 7、安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8、轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。 9、电机拖动的负载传导振动,比如说电机拖动的风机、水泵振动,引起电机振动。 10、交流电机定子接线错误、绕线型异步电动机转子绕组短路,同步电机励绕组匝间短路,同步电机励磁线圈联接错误,笼型异步电动机转子断条,转子铁心变形造成定、转子气隙不均,导致气隙磁通不平衡从而造成振动。

电机振动的危害、原因及判断和排除故障的方法

电机振动的危害、原因及判断和排除故障的方法 内容简介:一般来讲,引起电动机振动的原因不外乎机械和电磁两方面的原因。引起直流电动机振动的主要原因是机械上、电气上和安装上的原因。在生产中我们经常采用断电法来检查区分是由于电磁还是机械原因引起的振动 电动机在各行各业中有着广泛的应用,而在使用中会出现许多问题,其中电机振动是日常生产生活中较轻易碰到的。 一、电动机振动的危害 电动机振动会加速电动机轴承磨损,使轴承的正常使用寿命大大缩短,同时,电动机振动将使绕组绝缘下降。由于振动使电机端部绑线松动,造成端部绕组产生相互磨擦,绝缘电阻降低,绝缘寿命缩短,严重时造成绝缘击穿。另外,电动机振动会造成所拖动机械的损坏,影响四周设备的正常工作,发出很大的噪声。 二、电动机振动的原因 一般来讲,引起电动机振动的原因不外乎机械和电磁两方面的原因。引起直流电动机振动的主要原因是机械上、电气上和安装上的原因。电机振动极限值在国家标准GB100068.2一88《旋转电机振动测定方法及极限振动极限》中都有规定。振动是所有电机在制造、安装、运行维护与检修中经常遇到和必须解决的问题。振动过大会导致电机的运行稳定性破坏、换向条件恶化、零部件损坏、电机寿命缩短,甚至造成停机故障。 机械部分故障主要有以下几点: 机械方面主要存在地脚紧固不牢,基础台面倾斜,不平;轴承损坏,转轴弯曲变形,电动机轴线中心与其所拖动机械轴线中心不一致;定、转子铁芯磁中心不一致,转子动平衡不良等。转动部分不平衡主要是转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。处理方法是先找好转子平衡。如果有大型传动轮、制动轮、耦合器、联轴器,应与转子分开单独找好平衡。再有就是转动部分机械松动造成的。如:铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 1、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。还有一种情况,就是有的联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。机座、端盖重要支承件制造误差或运行变形。由于机座、端盖等转子重要支承件的配合面形位误差超差,特别是大、中型电机运行较长时间后机座、端盖等重要支承件变形,使电机在运行时轴承产生干扰力,造成电机振动。这些配件的误差或变形可采用回转打百分表等方式测得,发现有这一情况后,应对配件进行焊修等工艺方式处理,或更换配件。 2、与电机相联的齿轮、联轴器有毛病。这种故障主要表现为齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 3、电机本身结构的缺陷和安装的问题。这种故障主要表现为轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。而轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。电枢不平衡。由于旋转时不平衡质量产生的离心力的作用,使轴承上作用有一个旋转力,造成了电机和基础的振动。当气隙不匀、主极固定不紧或机座、端盖的刚度较差时,都会造成振动加剧,因此检

相关文档
相关文档 最新文档