文档库 最新最全的文档下载
当前位置:文档库 › 倍频电路与分频电路的设计

倍频电路与分频电路的设计

倍频电路与分频电路的设计
倍频电路与分频电路的设计

倍频电路与分频电路的

设计

文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

课程设计说明书

课程名称:模拟电子技术课程设计

题目:倍频电路与分频电路的设计

学生姓名:

专业:

班级:

学号:

指导教师:

日期:年月日

一、设计任务与要求

1.设计一倍频电路,能完成2倍频、4倍频(甚至更多)功能。且这些倍频能通过拨

可用晶振来完成);动开关转换。(振荡电路自行设计、制作,振荡频率应不低于11MH

Z

2.设计一分频电路,能完成1/2分频、1/4分频(甚至更低)功能。且这些分频能通过拨

可用晶振来完成)。动开关转换。(振荡电路自行设计、制作,振荡频率应不低于11MH

Z

二、方案设计与论证

随着通信技术的日益发展,倍频技术应用的领域也日益增长。例如CPU的倍频,最初CPU的速度与系统总线的速度是一样的,但随着CPU的速度要求越高,相应的倍频技术也就得到了迅速的发展。其工作原理是使系统总线工作在低频状态,而CPU的运行速度可以通过倍频技术来提升。改变频率的方法有很多种,本文只讨论几种:傅里叶法,锁相环法及乘法器与滤波器法。

方案一、傅里叶法:这是一种最简单的变频方式,它采用了傅里叶级数。任何一个周期信号都能表示为其基波和其谐波的和,如果将变换振荡电路输出的正弦波为方波,那它可以用一下的公式表示:

接着就需要选择正确的谐波,接着可以通过一个带通滤波器来选择所需的谐波。缺陷:自适用于低频。

方案二、锁相环法:在这个方法中,其输出频率不是直接是基准频率的输出,而是通过一个电压控制的振荡电路输出,它是通过一个相位比较器和基准电路频率同步。要被比较的频率是要除以倍频因子。由于频率的分割,压控振荡电路必须产生一个乘以n的频率。此过程便实现了频率的改变。局限:在大的频率范围内容易实现,起抖动差。

方案三、乘法器和滤波器法:此方法是,首先建立一个振荡电路,使其产生正弦波,而后通过一个乘法器,使其实现倍频,再通过一个滤波器,选择我们需要的频率,从而实现倍频。分频是通过JK触发器实现,其原理是利用JK触发器的保持及翻转功能,实现分频,再通过一个滤波整流电路,得到所需的基波。其大致框图如下图(1):

三、单元电路设计与参数计算

1、LC三点式正弦波振荡电路原理图如下图(2)所示,其中包括输入滤波电路和输出滤波电路,消除噪音信号。其产生的正弦波频率主要与C1、C6和L3相关。计算公式如下:

图(2)

2、倍频实现电路如下图(3)所示,其中包括乘法电路和选频滤波电路,分别实现二倍频和四倍频。

用乘法器实现倍频原理:有公式如

22

cos

1

sin2wx

wx

-=

(,通公式可知,乘法器可实现倍频功能,同时也带来直流分量。所以,在其后有整流选频滤波电路,实现去高频和直流分量功能。而选频的计算公式如下:

图(3)

3、分频电路如图(4)所示,其中包括JK触发器,和选频整流滤波电路。JK触发器是实现分频,其原理是利用JK触发器的保持和翻转功能实现分频,产生方波。然后通过选频滤波电路实现选频和滤波,去除方波中的高频谐波部分和直流分量,保持基波,使其产生正弦波。其计算公式如下:

图(4)

四、总原理图及元器件清单

1.总原理图

2.元件清单

型号参数名称

五、安装与调试

1、在LC三点式正弦波振荡电路中,只需讨论其输出频率相关的元器件参数,我们需要其输出的是大于12MHz的频率,由图(2)可知,影响其输出频率的元器件是C1,C6和L3,其输出频率计算公式如下:

代人参数算出结果为f=13.2MHz,而经过调试结果表明,其结果是正确的,结果如图(5)所示:

图(5)图(6)图(7)

2、在倍频放大电路中,其中乘法器和选频整流滤波电路可实现二倍频和四倍频,乘法器实现频率的放大,而滤波电路实现去除直流和高频分量。其所用到的公式如下:

22cos 1sin 2wx wx -=)(,LC

f π21= 其二倍频的组成元件为C8=1pf 和L6=34uH ,四倍频的组成元件为C9=1pf 和L7=8.54uH,代人公式分别得f2=26.4MHz,f4=52.8MHz 。测试结果如图(6)、(7)所示。

3、在分频电路中,其由JK 触发器及选频整流滤波电路组成,如图(4)所示。JK 触发器利用其保持及翻转特性,把正弦波转换成方波并实现分频,然后经过选频滤波电路转换为二分频和四分频的正弦波。所用到的公式如下:

选频整流滤波电路的二分频和四分频电路分别由C10=1pf 和L4=0.54uH 、及C11=1pf 和L5=2.16uH 组成,其分别代入公式得f ’2=6.5MHz,f ’4=3.2MHz 。测试结果如图(8)、

(9)所示。

图(8)图(9)

六、性能测试与分析

1、LC 三点式正弦波振荡电路

此振荡电路可实现5-30MHz 范围的频率,可以通过改变C6来控制。刚开始时,输入的直流电源和输出的正弦波没有经过滤波而得到的正弦波是很不稳定,后来经过查阅资料及与同学讨论,我才发现输入的直流电源也是有噪音波的,但后来发现在输入直流电源加了滤波后还是效果不大,最后在输出的正弦波也加滤波后,图形才稳定下来。如图(10)所示。

2、二、四倍频电路

如图(3)所示,初始时并不了解要在乘法器后加选频整流滤波电路,就直接输出了。不过图形是不进人意,因为在正弦波相乘后会有直流分量和一些高频谐波。后来在其后加了滤波电路,效果便出来了,如图(10)所示。

3、二、四倍频电路

如图(4)所示,开始时我也没有加选频整流滤波电路,输出的是能实现分频的方波,后来经过了解到方波含有基波及许多高频谐波和直流分量,这是傅里叶的知识。然后我设计了选频整流滤波电路,使其只输出基波。如图(11)所示。

图(10)图(11)

七、结论与心得

1、结论:

本次课程设计,在完成倍频电路和分频电路的设计中,本文采用的乘法器和滤波整流电路实现了倍频功能,采用JK触发器和滤波整流电路实现了分频功能。实验表明,此方案是可行的。

2、心得:

这次实习可以说很困难,因为需要设计电路,而我对于模电一窍不通,所以,我面临巨大的考验,我接过别人设计的电路图,自己研究,虽然没有弄明白,但是也是一次不错的经历,以后会慢慢的珍惜这种课程活动,增加自己的思考和创作能力。

八、参考文献

1、模拟电子技术

2、数字电子技术

3、百度

经典模拟、数字电路设计

实验一 单级阻容耦合放大器设计 一、设计任务书 1.已知条件 电源电压V cc =+12V,信号源U s =10mV,内阻R s =600Ω,负载R L =2k Ω。 2.主要技术指标 输入电阻R i >2k Ω,频率响应20Hz ~500kHz,输出电压U o ≥0.3V,输出电阻R O <5k Ω,电路工作稳定。 3.实验用仪器 双踪示波器一台,信号发生器一台,直流稳压电源一台,万用表一台。 二、电路设计 1.电路形式讨论 由于电压增益A V =U O /U S =30,采用一级放大电路即可,要求电路工作稳定,采用分压式电流负反馈偏置电路,输入电阻比较大和频率响应比较宽,引入一定的串联负反馈,电路如图。 2.具体电路设计 (1)静态工作点选择 I CQ =2mA,V BQ =3V (选择硅管) (2)晶体管的选择 78) (2 =+=L s i V R R R A β取100, U CEO >V CC =12V,I CM >2I CQ =4mA, P CM >I CQ V CC =24mW, f T >1.5βf H =75MHz 选择9014:U CEO >20V,I CM >100mA, P CM >300mW,f T >80MHz,Cb'c<2.5pF (3)元件参数的计算 R E =(V BQ -0.7)/I CQ ≈1.2k Ω I BQ =I CQ /β=20μA 则 Ω== k I V R BQ BQ B 15102,R B2=15k Ω Ω=-= k I V V R BQ BQ CC B 45101,取标称值47k Ω Ω≈++=k mA I mV r EQ be 6.1) (26) 1(300β, 取R F =10Ω.则Ω=++=k R r R F be i 16.2)1('β Ω==k R R R R i B B i 12.2////'21,取A V =40,

电工基础知识大全

电工基础知识大全 电工基础知识大全电工识图口诀巧记忆 一,通用部分 1,什麽叫电路? 电流所经过的路径叫电路。电路的组成一般由电源,负载和连接部分(导线,开关,熔断器)等组成。 2,什麽叫电源? 电源是一种将非电能转换成电能的装置。 3,什麽叫负载? 负载是取用电能的装置,也就是用电设备。 连接部分是用来连接电源与负载,构成电流通路的中间环节,是用来输送,分配和控制电能的。 4,电流的基本概念是什麽? 电荷有规则的定向流动,就形成电流,习惯上规定正电荷移动的方向为电流的实际方向。电流方向不变的电路称为直流电路。 单位时间内通过导体任一横截面的电量叫电流(强度),用符号I 表示。 电流(强度)的单位是安培(A),大电流单位常用千安(KA)表示,小电流单位常用毫安(mA),微安(μA)表示。 1KA=1000A 1A=1000 mA 1 mA=1000μA

5,电压的基本性质? 1)两点间的电压具有惟一确定的数值。 2)两点间的电压只与这两点的位置有关,与电荷移动的路径无关。 3)电压有正,负之分,它与标志的参考电压方向有关。 4)沿电路中任一闭合回路行走一圈,各段电压的和恒为零。 电压的单位是伏特(V),根据不同的需要,也用千伏(KV),毫伏(mV)和微伏(μV)为单位。 1KV=1000V 1V=1000 mV 1mV=1000μV 6,电阻的概念是什麽? 导体对电流起阻碍作用的能力称为电阻,用符号R表示,当电压为1伏,电流为1安时,导体的电阻即为1欧姆(Ω),常用的单位千欧(KΩ),兆欧(MΩ)。 1MΩ=1000KΩ 1KΩ=1000Ω 7,什麽是部分电路的欧姆定律? 流过电路的电流与电路两端的电压成正比,而与该电路的电阻成反比,这个关系叫做欧姆定律。用公式表示为:I=U/R 式中:I——电流(A);U——电压(V);R——电阻(Ω)。 部分电路的欧姆定律反映了部分电路中电压,电流和电阻的相互关系,它是分析和计算部分电路的主要依据。 8,什麽是全电路的欧姆定律?

六分频加法电路的设计

六分频加法电路的设计 1相关原理分析 1.1计数器 计数器是实现分频电路的基础,计数器包括普通计数器和约翰逊计数器两种,这两种电路均可用于分频电路中。 最普通的计数器莫过于加法(减法)计数器。以3位二进制计数器为例,计数脉冲CP 通过计数器时,每输入一个计数脉冲,计数器的最低位(记为Q0,后面的依次记为Q1、Q2、)翻转一次,Q1、Q2、都以前一级的输出信号作为触发信号。分析这个过程,不难得出输出波形。 图1-1 3位二进制计数器时序图 由上很容易看出Q0 的频率是CP的1/2,即实现了2分频,Q1则实现了4分频,同理Q2实现了8分频。这就是加法计数器实现分频的基本原理。 约翰逊计数器是一种移位寄存器,采用的是把输出的最高位取非,然后反馈送到最低位触发器的输入端。约翰逊计数器在每一个时钟下只有一个输出发生变化。同样以3为二进制为例。假设最初值或复位状态是000,则依次是000、001、011、111、110、100、000这样循环。由各位的输出可以看出,约翰逊计数器最起码能实现2分频。 1.2两种计数器的比较 从以上分析可以看出约翰逊计数器没有充分有效地利用寄存器的所有状态,而且如果

由于噪声引入一个无效状态,如010,则无法恢复到有效循环中去,需要加入错误恢复处理。但其较之加法计数器也有它的好处。同一时刻,加法计数器的输出可能有多位发生变化,因此当使用组合逻辑对输出进行译码时,会导致尖峰脉冲信号。而约翰逊计数器可以避免这个问题。 1.3 计数器的选择 本次训练要求设计的是加法分频电路,选择的是加法计数器。加法计数器实现分频较之约翰逊计数器简单,编程也容易理解一些,对于初学者也较容易上手。在前面已经讲过加法计数器实现2n的分频的方法,现在就不在赘述。 1.4 偶数分频器 如前所述,分频器的基础是计数器,设计分频器的关键在于输出电平翻转的时机。偶数分频最易于实现,要实现占空比为50%的偶数N分频,一般来说有两种方案:一是当计数器计数到N/2-1时,将输出电平进行一次翻转,同时给计数器一个复位信号,如此循环下去;二是当计数器输出为0到N/2-1时,时钟输出为0或1,计数器输出为N/2到N-1时,时钟输出为1或0,当计数器计数到N-1时,复位计数器,如此循环下去。可以根据以上两种方案设计电路和程序。 2 六分频加法电路 2.1 电路的结构设计 前面已经讲到过关于2n分频可以直接通过计数器获得。而对于一些非2的整数次幂的分频,如本次课设的6分频,还需要在基本计数器电路描述中加上复位控制电路。 图2-1 加法分频电路的RTL视图

硬件电路设计基础知识

硬件电子电路基础

第一章半导体器件 §1-1 半导体基础知识 一、什么是半导体 半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率)(如:硅Si 锗Ge等+4价元素以及化合物)

二、半导体的导电特性 本征半导体――纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略) 1、半导体的导电率会在外界因素作用下发生变化 ?掺杂──管子 ?温度──热敏元件 ?光照──光敏元件等 2、半导体中的两种载流子──自由电子和空穴 ?自由电子──受束缚的电子(-) ?空穴──电子跳走以后留下的坑(+) 三、杂质半导体──N型、P型 (前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。 ?N型半导体(自由电子多) 掺杂为+5价元素。如:磷;砷P──+5价使自由电子大大增加原理:Si──+4价P与Si形成共价键后多余了一个电子。 载流子组成: o本征激发的空穴和自由电子──数量少。 o掺杂后由P提供的自由电子──数量多。 o空穴──少子 o自由电子──多子 ?P型半导体(空穴多) 掺杂为+3价元素。如:硼;铝使空穴大大增加 原理:Si──+4价B与Si形成共价键后多余了一个空穴。 B──+3价 载流子组成:

o本征激发的空穴和自由电子──数量少。 o掺杂后由B提供的空穴──数量多。 o空穴──多子 o自由电子──少子 结论:N型半导体中的多数载流子为自由电子; P型半导体中的多数载流子为空穴。 §1-2 PN结 一、PN结的基本原理 1、什么是PN结 将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。 2、PN结的结构 分界面上的情况: P区:空穴多 N区:自由电子多 扩散运动: 多的往少的那去,并被复合掉。留下了正、负离子。 (正、负离子不能移动) 留下了一个正、负离子区──耗尽区。 由正、负离子区形成了一个内建电场(即势垒高度)。 方向:N--> P 大小:与材料和温度有关。(很小,约零点几伏)

模拟电路课程设计..

模拟电子技术课程设计任务书 一、课程设计的任务 通过理论设计和实物制作解决相应的实际问题,巩固和运用在《模拟电子技术》中所学的理论知识和实验技能,掌握常用模拟电路的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。 二、课程设计的基本要求 1、掌握电子电路分析和设计的基本方法。包括:根据设计任务和指标初选电路;调查研究和设计计算确定电路方案;选择元件、安装电路、调试改进;分析实验结果、写出设计总结报告。 2、培养一定的自学能力、独立分析问题的能力和解决问题的能力。包括:学会自己分析解决问题的方;对设计中遇到的问题,能通过独立思考、查询工具书和参考文献来寻找解决方案,掌握电路测试的一般规律;能通过观察、判断、实验、再判断的基本方法解决实验中出现的一般故障;能对实验结果独立地进行分析,进而做出恰当的评价。 3、掌握普通电子电路的生产流程及安装、布线、焊接等基本技能。 4、巩固常用电子仪器的正确使用方法,掌握常用电子器件的测试技能。 5、通过严格的科学训练和设计实践,逐步树立严肃认真、一丝不苟、实事求是的科学作风,并逐步建立正确的生产观、经济观和全局观。

三、课程设计任务 课题4 逻辑信号电平测试器的设计 (一)设计目的 1、学习逻辑信号电平测试器的设计方法; 2、掌握其各单元电路的设计与测试方法; 3、进一步熟悉电子线路系统的装调技术。 (二)设计要求和技术指标 在检修数字集成电路组成的设备时,经常需要使用万用表和示波器对电路中的故障部位的高低电平进行测量,以便分析故障原因。使用这些仪器能较准确地测出被测点信号电平的高低和被测信号的周期,但使用者必须一面用眼睛看着万用表的表盘或者示波器的屏幕,一面寻找测试点,因此使用起来很不方便。 本课题所设计的仪器采用声音来表示被测信号的逻辑状态,高电平和低电平分别用不同声调的声音来表示,使用者无须分神去看万用表的表盘或示波器的荧光屏。 1、技术指标: (1)测量范围:低电平<1V,高电平>3V; (2)用1.5KH Z的音响表示被测信号为高电平; (3)用500H Z的音响表示被测信号为低电平;

硬件电路设计基础知识

硬件电路设计基础知识 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

硬件电子电路基础

第一章半导体器件 §1-1 半导体基础知识一、什么是半导体

半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率)(如:硅Si 锗Ge等+4价元素以及化合物) 二、半导体的导电特性 本征半导体――纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略) 1、半导体的导电率会在外界因素作用下发生变化 掺杂──管子 温度──热敏元件 光照──光敏元件等 2、半导体中的两种载流子──自由电子和空穴 自由电子──受束缚的电子(-) 空穴──电子跳走以后留下的坑(+) 三、杂质半导体──N型、P型 (前讲)掺杂可以显着地改变半导体的导电特性,从而制造出杂质半导体。 N型半导体(自由电子多) 掺杂为+5价元素。如:磷;砷 P──+5价使自由电子大大增加 原理: Si──+4价 P与Si形成共价键后多余了一个电子。 载流子组成:

o本征激发的空穴和自由电子──数量少。 o掺杂后由P提供的自由电子──数量多。 o空穴──少子 o自由电子──多子 P型半导体(空穴多) 掺杂为+3价元素。如:硼;铝使空穴大大增加 原理: Si──+4价 B与Si形成共价键后多余了一个空穴。 B──+3价 载流子组成: o本征激发的空穴和自由电子──数量少。 o掺杂后由B提供的空穴──数量多。 o空穴──多子 o自由电子──少子 结论:N型半导体中的多数载流子为自由电子; P型半导体中的多数载流子为空穴。 §1-2 PN结 一、PN结的基本原理 1、什么是PN结 将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。

分频电路的设计

分频电路的设计 在数字电路的设计中,我们会经常遇到分频电路,而且分频电路输出信号频率的稳定性、精确度与整个电路的稳定性有着很大的关系。本文就一些常用分频电路作一总结。 一、n2分频 众所周知,2分频是最简单的分频,通常用D触发器用作反相器即可以实现2分频,要 想实现n2分频,最简单的方法就是将2分频电路级联,n级联在一起就构成了n2分频。 我们以n=5为例,用MAX+plus II进行仿真,电路如图1所示,我们得到的波形如图2所示: 图1 图2 由波形我们可以看出,该电路能实现32分频,但由于它采用的是行波时钟,Q4的输出t。n越大,延时就越大。 与CLK之间延时为5 co 改进图1的电路,我们可以采用同步计数来实现32分频,如图2所示,其中5BITcounter 是在MAX+plus II中用生成的5位二进制加法计数器。Q4输出就是32分频的信号,波形如图4所示。

图3 图4 t。保证了系统的同由于图3是采用同步计数器,所以每个输出的延时都一样,都为 co 步运行。 同样的道理,若n增大时,我们只要改变计数器的位数即可。 二、2n分频 在数字电路的设计中,2n分频也是经常遇到的。对于2n分频,我们常采用两级分频的方法,第一级用来n分频,第二级用作2分频,这样做的目的就是保证输出信号有50%的占空比,若对占空比无要求则可任意实现n分频。 以n=25为例,在MAX+plus II中,利用构造一个5bit模为25的加法计数器,电路如图5所示,out即为50分频后的输出,波形如图6所示。 图5

图6 从图6可以看出,out 与输入时钟CLK 之间的延时是2co t =6ns 。 三、M N 2分频 在一些特殊的数字电路中,可能会用到M N 2分频,由于分频是小数,我们不可能对输入 信号精确地分频,只能保证输出信号的平均频率与理想的分频频率相等。我们这里以26/3分频为例来介绍这种分频方法。 分析:26/3分频的实质就是在26个CLK 周期内产生3个周期的输出信号。我们还是采用采用两级分频方法,目的是为了保证占空比为50%,第一级分频倍数为13/3,即13个CLK 周期内产生3个周期的输出信号。这样我们构造一个模13的4bit 加法计数器,利用门电路输出三个周期信号,计数器从0计到3时A 输出1,计到7时B 输出1,计到12时C 输出1,将A 、B 、C 三路信号相或就得到我们想要的波形,电路如图7所示,波形如图8所示。 图7

电子电路设计的基础知识

电子电路设计的基础知识 一、电子电路的设计基本步骤: 1、明确设计任务要求: 充分了解设计任务的具体要求如性能指标、内容及要求,明确设计任务。 2、方案选择: 根据掌握的知识和资料,针对设计提出的任务、要求和条件,设计合理、可靠、经济、可行的设计框架,对其优缺点进行分析,做到心中有数。 3、根据设计框架进行电路单元设计、参数计算和器件选择: 具体设计时可以模仿成熟的电路进行改进和创新,注意信号之间的关系和限制;接着根据电路工作原理和分析方法,进行参数的估计与计算;器件选择时,元器件的工作、电压、频率和功耗等参数应满足电路指标要求,元器件的极限参数必须留有足够的裕量,一般应大于额定值的1.5倍,电阻和电容的参数应选择计算值附近的标称值。 4、电路原理图的绘制: 电路原理图是组装、焊接、调试和检修的依据,绘制电路图时布局必须合理、排列均匀、清晰、便于看图、有利于读图;信号的流向一般从输入端或信号源画起,由左至右或由上至下按信号的流向依次画出务单元电路,反馈通路的信号流向则与此相反;图形符号和标准,并加适当的标注;连线应为直线,并且交叉和折弯应最少,互相连通的交叉处用圆点表示,地线用接地符号表示。 二、电子电路的组装 电路组装通常采用通用印刷电路板焊接和实验箱上插接两种方式,不管哪种方式,都要注意: 1.集成电路:

认清方向,找准第一脚,不要倒插,所有IC的插入方向一般应保持一致,管脚不能弯曲折断; 2.元器件的装插: 去除元件管脚上的氧化层,根据电路图确定器件的位置,并按信号的流向依次将元器件顺序连接; 3.导线的选用与连接: 导线直径应与过孔(或插孔)相当,过大过细均不好;为检查电路方便,要根据不同用途,选择不同颜色的导线,一般习惯是正电源用红线,负电源用蓝线,地线用黑线,信号线用其它颜色的线;连接用的导线要求紧贴板上,焊接或接触良好,连接线不允许跨越IC或其他器件,尽量做到横平竖直,便于查线和更换器件,但高频电路部分的连线应尽量短;电路之间要有公共地。 4.在电路的输入、输出端和其测试端应预留测试空间和接线柱,以方便测量调试; 5.布局合理和组装正确的电路,不仅电路整齐美观,而且能提高电路工作的可靠性,便于检查和排队故障。 三、电子电路调试 实验和调试常用的仪器有:万用表、稳压电源、示波器、信号发生器等。调试的主要步骤。 1.调试前不加电源的检查 对照电路图和实际线路检查连线是否正确,包括错接、少接、多接等;用万用表电阻档检查焊接和接插是否良好;元器件引脚之间有无短路,连接处有无接触不良,二极管、三极管、集成电路和电解电容的极性是否正确;电源供电包括极性、信号源连线是否正确;电源端对地是否存在短路(用万用表测量电阻)。 若电路经过上述检查,确认无误后,可转入静态检测与调试。 2.静态检测与调试 断开信号源,把经过准确测量的电源接入电路,用万用表电压档监测电源电压,观察有无异常现象:如冒烟、异常气味、手摸元器件发烫,电源短路等,如发现异常情况,立即切断电源,排除故障; 如无异常情况,分别测量各关键点直流电压,如静态工作点、数字电路各输入端和输出端的高、低电平值及逻辑关系、放大电路输入、输出端直流电压等是否在

倍频电路设计

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:倍频电路设计 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务: 1. 采用晶体管或集成电路设计一个倍频电路; 2. 额定电压5V,电流10~15 mA ; 3. 输入频率4MHz,输出频率12 MHz 左右; 4. 输出电压≥ 1 V,输出失真小; 5. 完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 1.2011年6月3日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。 2.2011年6月4日至2011年6月9日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。 3. 2011年6月10日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要..................................................................... I Abstract.................................................................. II 1 绪论 (1) 2 设计内容及要求 (2) 2.1 设计目的及主要任务 (2) 2.1.1 设计的目的 (2) 2.1.2 设计任务及主要技术指标 (2) 2.2 设计思想 (2) 3 设计原理及方案 (3) 3.1 设计原理 (3) 3.1.1锁相环组成介绍 (3) 3.1.2锁相环原理 (5) 3.1.3 NE564芯片介绍 (6) 3.2 设计方案 (7) 4 电路制作及硬件调试 (9) 5 心得体会 (10) 参考文献 (11)

实验六--Verilog设计分频器计数器电路答案

实验六 Verilog设计分频器/计数器电路 一、实验目的 1、进一步掌握最基本时序电路的实现方法; 2、学习分频器/计数器时序电路程序的编写方法; 3、进一步学习同步和异步时序电路程序的编写方法。 二、实验内容 1、用Verilog设计一个10分频的分频器,要求输入为clock(上升沿有效),reset(低电平复位),输出clockout为4个clock周期的低电平,4个clock周期的高电平),文件命名为fenpinqi10.v。 2、用Verilog设计一异步清零的十进制加法计数器,要求输入为时钟端CLK(上升沿)和异步清除端CLR(高电平复位),输出为进位端C和4位计数输出端Q,文件命名为couter10.v。 3、用Verilog设计8位同步二进制加减法计数器,输入为时钟端CLK(上升沿有效)和异步清除端CLR(低电平有效),加减控制端UPDOWN,当UPDOWN为1时执行加法计数,为0时执行减法计数;输出为进位端C和8位计数输出端Q,文件命名为couter8.v。 4、用VERILOG设计一可变模数计数器,设计要求:令输入信号M1和M0控制计数模,当M1M0=00时为模18加法计数器;M1M0=01时为模4加法计数器;当M1M0=10时为模12加法计数器;M1M0=11时为模6加法计数器,输入clk上升沿有效,文件命名为mcout5.v。 5、VerilogHDL设计有时钟时能的两位十进制计数器,有时钟使能的两位十进制计数器的元件符号如图所示,CLK是时钟输入端,上升沿有效;ENA是时钟使能控制输入端,高电平有效,当ENA=1时,时钟CLK才能输入;CLR是复位输入端,高电平有效,异步清零;Q[3..0]是计数器低4位状态输出端,Q[7..0]是高4位状态输出端;COUT是进位输出端。 三、实验步骤 实验一:分频器 1、建立工程

倍频器设计

一、 题目:倍频器 (1) 采用晶体管设计一个倍频电路; (2) 额定电压9.0V ,电流10~15mA ; (3) 输入频率1.5MHz ,输出频率4.5MHz 左右; (4) 输出电压>1.5V ,输出失真小 二、 原理图 如图整体以丙类功率放大器为基架电路。电路左侧C 1和L 1构成滤波电路,R e 和C e 构成射极偏置稳定电路。C 和L 构成选频电路,右侧耦合变压器构成输出匹配网络,C 2、L 2和电源构成串馈馈电电路。 三、 multisim 仿真图 倍频器谐振点在c n l n ωω1= 由于是三倍倍频器,所以n=3,即c l ωω31 3=,所以f lc π2*31=。而根据题目f=1.5MHz 。所以选择C=35pF ,L=35.48μh 。 其余部分的电路器件选择常用参数,C 1=0.1μF , L 1=20mH ,R e =1k Ω,C e =0.1μF ,C 2=0.1μF ,L 2=20mH ,R 2=1k Ω,直流电压源

根据题目选择9V。模拟电路图如下 四、调试过程及输出结果分析:在C、L经计算确定之后,对其它电容电阻电感进行了小幅调试。 (1)函数发生器产生频率为1.5Mhz,振幅1Vp的正弦波。 观测输出信号,频率计数器显示4.17MHz,基本在4.5MHz左右,符合题目要求。

随后是输出信号的波形,可以看出失真还是比较小的,输出电压U>1.5V, 符合题目要求。 (2)随后尝试了一下输入信号为三角波或者方波的情况。两者输出信号都是 4.5Mhz左右的波形,只是输出为正弦波,输出电压都符合U>1.5V,失真比较小。 输入为三角波时:

锁相环倍频器

锁相环倍频器

摘要 倍频器(frequency multiplier)使输出信号频率等于输入信号频率整数倍的电路。输入频率为f1,则输出频率为f0=nf1,系数n为任意正整数,称倍频次数。倍频器用途广泛,如发射机采用倍频器后可使主振器振荡在较低频率,以提高频率稳定度;调频设备用倍频器来增大频率偏移;在相位键控通信机中,倍频器是载波恢复电路的一个重要组成单元。 利用非线性电路产生高次谐波或者利用频率控制回路都可以构成倍频器。倍频器也可由一个压控振荡器和控制环路构成。它的控制电路产生一控制电压,使压控振荡器的振荡频率严格地锁定在输入频率f1的倍乘值f0=nf1上。

目录 一课题目 (4) 二课题介绍 (4) 三关键词 (4) 四锁相环介绍 (4) 五CD4046介绍 (6) 六CD4518介绍 (10) 七锁相环倍频器设计电路及工作原理 (12) 八电路元件清单 (13) 九焊接与制作 (13) 十实物图 (14) 十一心得体会 (14) 十二参考文献 (15) 十三致谢 (15)

题目锁相环倍频器 一.本次课程设计主要是配合《模拟电子技术》和数字电子技术》理论课程而设置的一次实践性课程,祈祷巩固所学知识,加强综合实力,培养电路设计能力,提高实验技术,启发创新思想的效果。 二.课程介绍 倍频器有晶体管倍频器、变容二极管倍频器、阶跃恢复二极管倍频器等。用其他非线性电阻、电感和电容也能构成倍频器,如铁氧体倍频器等。非线性电阻构成的倍频器,倍频噪声较大。这是因为非线性变换过程中产生的大量谐波使输出信号相位不稳定而引起的。倍频次数越高,倍频噪声就越大,使倍频器的应用受到限制。在要求倍频噪声较小的设备中,可采用根据锁相环原理构成的锁相环倍频器和同步倍频器。 三.关键词 锁相环CD4046 CD4518 四.锁相环介绍 锁相环(phase-locked loop):为无线电发射中使频率较 为稳定的一种方法,。锁相的意义是相位同步的自动控制,能够完成两个电信号相位同步的自动控制闭环系统叫做锁相环,简称PLL。它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域。锁相环主要由相位比较器(PC)、压控振荡器(VCO)。低通滤波器三部分组成,如图1所示。

分频器的设计2014-1-10 10.29.8

武汉理工大学《微机原理与接口技术》课程设计报告书

号:
0121105830129
课 程 设 计
题 学 专 班 姓
目 院 业 级 名
分频信号发生器的分析与设计 自动化学院 电气工程及自动化 电气 1107 班 成涛 陈静 教授
指导教师
2014 年
01 月
09 日

武汉理工大学《微机原理与接口技术》课程设计报告书
课程设计任务书
学生姓名: 指导教师: 题 目: 成涛 专业班级: 电气 1107 班 陈静 教授 工作单位: 自动化学院 分频信号发生器的分析与设计
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰 写等具体要求) 1. 设:有一输入方波信号 f0(<1MHz) 。要求输出信号:f1=f0/N,N 通过键盘 输入。 2. 画出简要的硬件原理图,编写程序。 3. 撰写课程设计说明书。 内容包括:摘要、 目录、 正文、 参考文献、 附录 (程 序清单) 。正文部分包括:设计任务及要求、方案比较及论证、软件设计说明(软 件思想,流程,源程序设计及说明等) 、程序调试说明和结果分析、课程设计收 获及心得体会。
时间安排: 12 月 26 日----- 12 月 28 日 查阅资料及方案设计 12 月 29 日----- 01 月 0 2 日 编程 01 月 03 日-----0 1 月 07 日 调试程序 01 月 08 日----- 01 月 09 日 撰写课程设计报告
指导教师签名: 系主任(或责任教师)签名:
年 年
月 月
日 日

电路基础知识点大全

电路图:用规定的符号表示电路连接情况的图。填写以下电路图符号: 二、探究不同物质的导电性能 四、电压 1 电压的作用 1 )电压是形成电流的原因:电压使电路中的自由电荷定向移动形成了电流。电源是 提供电压的装置。 (2)电路中获得持续电流的条件:①电路中有电源(或电路两端有电压);②电路是 连通的。 、认识电路 1. 电路的基本组成: 将其他能转化为电能的装置 用电器——将电能转化为其他形式能的装置 开关——控制电路的通断 导线——起连接作用,传输电能 2. 电源 开关 灯泡 变阻器 电流表 电压表 3. 电路的连接方式:串联和并联 1. 导体:容易导电的物体。如:常见金属、 酸碱盐的水溶液、人体、大地、石墨等。 容易导电的原因:有大量的自由电荷。 具体情况:金属中有大量的自由电子;酸碱 盐的水溶液中有大量的自由离子) 2. 绝缘体:不容易导电的物体。如:油、酸碱盐的晶体、陶瓷、橡胶、纯水、空气等。 不容易导电的原因:几乎没有自由电荷。 3. 良好的导体和绝缘体都是理想的电工材料,导体和绝缘体没有明显的界限。 三、电流 1. 电流的形成:电荷的定向移动形成电流。(在金属导体中,能够做定向移动的是自由电 子;在酸 碱盐溶液中,能够做定向移动的是正离子和负离子) 2. 电流的方向:正电荷定向移动的方向为电流方向。按照这个规定, 负电荷定向移动的方 向和电流方向相反。 3. 电流用字母 I 表示,国际单位是安培,简称安,符号 A 。 比安小的单位还有毫安(mA 和微安(卩A ): 1A=10 mA 1 mA=10 3 卩 A 4. 实验室常用的电流表有两个量程:0— 0.6A (分度值0.02A ); 0—3A (分度值 0.1A )

数电实验锁相环倍频器

实验11 锁相环倍频器 121180166 琛 一、实验目的 1学习数字锁相环集成电路,锁相环倍频器的基础知识。 2根据数字锁相环74HC/HCT4046的数据手册,分析、设计数字锁相环倍频器,学习根据集成电路数据手册分析、设计电路的的一般方法。 二、实验器材 双踪示波器、方波信号发生器、数字万用表、CD4046、74LS47。 三、实验预习、研究、思考题 1 锁相环锁定与失锁的标志是什么?如何用示波器来判断? 答:锁定的标志是输出信号和输入信号频率相同,仅有相位的不同。用示波器判断,可以调节输入电压,若输出信号与输入信号相位差不变化,频率一致,即两信号相对稳定,则完成锁相。 2 锁相环的锁定围主要由哪些因素决定? 答:由CD4046技术手册可知,期锁定围由R1、R2、C1三个主要参数决定。具体值要看这三个参数的关系图。其中,C1、R1决定中心频率,R2、C1决定最低频率,R1、R2决定最高频率和最低频率比值。 3 CD4046有两个相位比较器,有何区别?74HC4046有3个相位比较器,有何区别?

答:对于CD4046,两个相位比较器分别为异或相位比较器(NOR )即PC1,其相位锁定围为0——180°;相位——频率比较器(PFD ),即PC2,其相位锁定围为-360°——360°。其中PC1比较容易锁定,但是要求输入信号50%占空比,或者是波形较好小信号。若条件达到尽可能用PC1,否则使用PC2已达到稳定的锁相。一般多用PC2,比较容易满足条件。 对于74HC4046,除去CD4046已有的两个触发器外,还有第三个触发器 JK 触发相位比较器(JK ),即PC3,其相位锁定围是0——360°。选择方式与CD4046类似。 4 试推导有一个零点的二阶系统的单位阶跃响应的时域表达式和超调量的表达式。 答:对于有一个零点的二阶系统,其H(s)= b as s b as 2+++,其中a=2ζω,b=ω2,这是一个冲激响应。其对应阶跃响应为G (s )=b as s b as 2+++*s 1。对其进行拉普拉斯逆变换可知,由于表达式过于复杂,故使用matlab 进行拉普拉斯逆变换可得,g (t )=1 - (cosh(t*(a^2/4 - b)^(1/2)) - (a*sinh(t*(a^2/4 - b)^(1/2)))/(2*(a^2/4 - b)^(1/2)))/exp((a*t)/2)

简单分频时序电路的设计(三分频)

单位:嵌入式系统实验室 姓名:汤晓东 内容:简单分频时序电路的设计(三分频) 时间:2010-7-7 3.练习三 模块源代码: //-------------------文件名div3.v---------------------------------- module div3(clk_in,clk_out,reset ); input clk_in,reset; output clk_out; wire clk_out; integer n1,n2; reg clk1,clk2; always @(posedge clk_in or negedge reset) //检测clk_in的上升沿 begin if (!reset) begin n1=0; clk1<=1'b0; //clk1是对clk_in的三分频 end // 但是占空比为1/3 else if (n1==2) begin n1=0; clk1<=1'b1; end else begin n1=n1+1; clk1<=1'b0; end end always @(negedge clk_in or negedge reset) //检测clk_in的下降沿 begin if (!reset) begin n2=0; clk2<=1'b0; //clk2也是对clk_in的三分频 end else if (n2==2) //占空比为1/3,但是与clk1相差begin //半个时钟周期 n2=0; clk2<=1'b1; end else begin n2=n2+1; clk2<=1'b0; end

基于FPGA的光电编码器四倍频电路设计

收稿日期:2006-11 作者简介:钞靖(1983—),女,硕士研究生,研究方向为数控系统及其运动控制等。 基于FPG A 的光电编码器四倍频电路设计 钞 靖,王小椿,姜 虹 (北京交通大学机电学院,北京100044) 摘要:分析光电编码器四倍频原理,提出了一种基于可编程逻辑器件FPG A 对光电编码器输出信号倍频、鉴相、计数的具体方法,有利于提高被控对象的测量精度和控制精度。 关键词:FPG A;光电编码器;四倍频 中图分类号:TP212.14 文献标识码:B 文章编号:1006-2394(2007)06-0017-02 Fourfold Frequency M ulti pli ca ti on C i rcu it D esi gn of I ncre m en t a l O pto 2electr i c Encoder Ba sed on FPGA CHAO J ing,WANG Xiao 2chun,J I A NG Hong (Mechanical and Electrical Contr ol Engineering Depart m ent,Beijing J iaot ong University,Beijing 100044,China ) Abstract:This article researches on the incre mental op t o 2electric encoder and analyze its f ourf old frequency multi 2p licati on p rinci p le,it gives a method based on FPG A t o multi p ly the signal of the incre mental op t o 2electric encoder,dif 2ferentiates its phase and counts its nu mber,the contr oled object πs p recisi on of measure and contr ol can be heightened . Key words:FPG A;incre mental op t o 2electric encoder;f ourf old frequency multi p licati on 1 引言 光电编码器是一种高精度的角位置测量传感器,由于其具有分辨率高、响应速度快、体积小、输出稳定等特点,被广泛应用于电机伺服控制系统中。通常,光电编码器可分为绝对式和增量式两种 [2] 。在数控机 床伺服电机的位置检测装置中一般采用增量式光电编码器,将其安装在电机轴的非负载端,跟随电机轴转动,其反馈信号则通过驱动器传递给运动控制器,构成对伺服电机的闭环控制。本文根据四倍频的基本原理,利用可编程逻辑器件FPG A 设计了一种对于增量式光电编码器的四倍频电路,其结构简单、性能可靠,可提高被控对象的测量精度和控制精度。2 四倍频电路设计原理 增量式光电编码器实际上是一种旋转式角位移检测装置,它根据轴所转过的角度,输出一系列脉冲,能将机械转角变换成电脉冲,其输出信号如图1所示。A 、B 两相信号是相位相差90°的正交方波脉冲串,每 个脉冲代表被测对象旋转了一定的角度,A 、B 之间的相位关系则反映了被测对象的旋转方向,即当A 相超 前B 相,转动方向为正转;当B 相超前A 相,转动方向为反转。Z 信号是一个代表零位的脉冲信号,可用于调零、对位 。 (a )编码器正转输出   (b )编码器反转输出   图1 光电编码器输出信号 对于每个确定的编码器,每转过固定角位移θ,就 对应一个脉冲信号,故其量化误差为θ/2。若将A 或B 信号四倍频,则在此θ角位移内,就会产生4个脉冲信号,其量化误差下降为θ/8,从而使光电编码器的角位移测量精度提高4倍。由于伺服系统中编码器的转速具有不可预见性,造成脉冲周期T 具有不确定的特点,从而无法使用锁相环等常用倍频方案。详细观察图1可发现,在脉冲周期T 内,A 、B 两相信号共产生了四次变化,尽管T 不确定,但由于A 、B 两相方波信号之间相位关系确定,使这四次变化在相位上平均分布。 ? 71?2007年第6期 仪表技术

工程师常用模拟电路设计1

工程师常用模拟电路设计、计算、仿真及制作 湖北民族大学杨庆 概述 模拟电路是电子技术类工程师必须熟练掌握的课程,在模拟电路中有许多基本电路是工程师们在设计电子系统必不可少的。例如,几乎绝大部分的电子系统都需要将交流电源变为直流电源,供电子系统使用,因此整流、滤波、稳压等模拟电路就成为电子工程师必须熟练掌握的电路。又如,各种传感器采集的信号通常都非常微弱,必须放大到一定程度,才能利用计算机处理,因此各种放大电路也就是工程师们必须熟练掌握的电路。但是在实际工作中,模拟电路往往并没有引起工程师们的足够重视。有鉴于此,本书将模拟电路中的常用电路的设计、计算、仿真及制作做一个归纳,供工程师及电子爱好者参考。 第一章二极管及其应用电路 1.1整流二极管及其应用电路 1.1.1二极管半波整流及电容滤波电路 1)二极管半波整流电路 最简单的二极管整流电路是二极管半波整流电路,其电路原理如图1.1所示。半波整流电路的计算参数主要有如下: V L=0.45V1 V D=V1 I L=V L/R L=0.45V1/R L 2)二极管半波整流电容滤波电路 二极管半波整流电容滤波电路如图1.2所示。半波整流电容滤波电路的计算参数主要有如下: V L=0.6V2 V D=V2 I L=V L/R L=0.6V2/R L 半波整流电路由于其纹波太大,应用较少,但在对电压要求不高时,由于其电路简单,仍然有一些应用,特别在输入交流电压的频率较高时,应用不少。 电路图1.1和电路图1.2仿真如图1.3及1.4所示。

D1 RL V1XSC1 A B Ext Trig + +_ _+_ 二极管半波整流电路简单,只要二极管极性注意不接反就行。 1.1.2二极管全波整流电路 1)二极管全波整流电路 常见的二极管全波整流电路如图1.5所示。全波整流电路的计算参数主要有如下: V L =0.9V 1 V D =2V 1 I L =V L /R L =0.9V 1/R L 全波整流电路需用一个双绕组变压器,通过二极管D1、D2将变压器次级电压V1整流变成两个同向的半波整流电压在RL 上合成为一个全波整流电压,其仿真波形图如图1.7所示。 2)二极管全波整流电容滤波电路 图1.1二极管半波整流电路图1.2二极管半波整流电容滤波电路 图1.3图1.1仿真输出电压波形图1.4图1.2仿真输出电压波形 图1.5全波整流电路

微波电路及设计的基础知识

微波电路及设计的基础知识 1. 微波电路的基本常识 2. 微波网络及网络参数 3. Smith圆图 4. 简单的匹配电路设计 5. 微波电路的计算机辅助设计技术及常用的CAD软件 6. 常用的微波部件及其主要技术指标 7. 微波信道分系统的设计、计算和指标分配 8. 测试及测试仪器 9. 应用电路举例

微波电路及其设计 1.概述 所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。此外,还有毫米波(30~300GHz)及亚毫米波(150GHz~3000GHz)等。 实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频(RF)电路”等等。 由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。 作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。 另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。 2.微波电路的基本常识 2.1 电路分类 2.1.1 按照传输线分类 微波电路可以按照传输线的性质分类,如:

图1 微带线 图2 带状线 图3 同轴线 图4 波导

图5 共面波导 2.1.2 按照工艺分类 微波混合集成电路:采用分离元件及分布参数电路混合集成。 微波集成电路(MIC):采用管芯及陶瓷基片。 微波单片集成电路(MMIC):采用半导体工艺的微波集成电路。 图6微波混合集成电路示例 图7 微波集成电路(MIC)示例

锁相环电路设计

锁相环的原理 2007-01-23 00:24 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的 输入信号与内部的振荡信号同步,利用锁相 环路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL)。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。 2.锁相环的工作原理 锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为: (8-4-1) (8-4-2) 式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。则模拟乘法器的输出电压u D为: 用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u C (t)。即u C(t)为: (8-4-3) 式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:

相关文档