文档库 最新最全的文档下载
当前位置:文档库 › 不等式中字母的取值范围知识讲解

不等式中字母的取值范围知识讲解

不等式中字母的取值范围知识讲解
不等式中字母的取值范围知识讲解

不等式中字母的取值范围 习题

一,根据不等式的解集确定字母取值范围

例l 、如果关于x 的不等式(a+1)x>a+1.的解集为x<1,则a 的取值范围是 ( )

A .a<0

B .a<一l

C .a>l

D .a>一l

解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B .

练习一:根据性质:

1、已知a ,b 是常数,不等式ax+b >0,

当 时,不等式的解集是x >a

b -

; 当 时,不等式的解集是x <a

b -。 2、若ax <a-1的解集是x <a a 1-,则a 3、若(a+1)x >a+1的解集是x <1,则a

4、若(m-1)x >m-1的解集是x <1,则m

5、若关于x 的不等式x-m ≥-1的解集如图所示,则m 。

练习二:综合拓展:

1、已知三角形的三边长分别为6,x-2,4,则x 的取值范围是

分析:

2、若()04232

=--+-a x y y ,且x 为负数,则a

分析:

练:若()0332=++++m y x x ,且y 为负数,则m

3、如果x x +=+11,2323--=+x x ,则x 的取值范围是

分析:

练:如果1212-=-x x ,x x 3553-=-,则x 的取值范围是

练习三:与方程(组)的解有关:

1、已知y=2x-3,要是y ≥x ,求x 的取值范围

2、若关于x 的方程3x+3k=2的解是正数,则k

练:①当k 取何值时,关于x 的方程1)(3k 2-2

1+-=k x x 的解是负数

②关于x 的方程3x+2n=2的解是非负数,则n

③当k 为何值时,关于x 的方程3x=5-4k 的解小于-3

二,根据不等式组的解集确定字母取值范围

例2、不等式组???>≤

最终版不等式的字母取值范围的确定方法.doc

精选 不等式的字母取值范围的确定方法 . 4.如果关于x 的不等式(a+1)x>2a+2.的解集为x<2,则a 的取值范围是 ( ) A.a<0 B .a<一l C .a>l D .a>一l 5.不等式a ≤x ≤3只有5个整数解,则a 的范围是 6.已知关于x 的不等式x -2a <3的最大整数解是-5,求a 的取值范围. 7.已知不等式13 a x ->的每一个解都是x <3的解,求a 的取值范围。 8.如果关于x 的不等式(a+1)x>2a+2.的解集为x<2,则a 的取值范围是 ( ) A .a<0 B .a<一l C .a>l D .a>一l 9.已知a 、b 为常数,若ax+b>0的解集为x<13 ,则bx -a<0的解集为( ) A 、x>-3 B 、x<-3 C 、x>3 D 、x<3 10.已知关于x 的不等式x-2a >4的解是正数,则a 的范围是 ; 已知关于x 的不等式x-a <3的解是负数,则a 的范围是 . 11.如果关于x 的不等式(1)5a x a -<+和24x <的解集相同,则a 的值为______.若不等 式 132 x a x a --->的解集与x <6的解集相同,则a 的取值范围_____. 12.若不等式(2k+1)x<2k+1的解集是x >1,则k 的范围是 。 13.已知不等式4x -a ≤0,只有四个正整数解,那么正数a 的取值范围是 14.若不等式2x <4的解都能使关于x 的一次不等式(a ﹣1)x <a+5成立,则a 的取值范围是( ) A .1<a ≤7 B .a ≤7 C .a <1或a ≥7 D .a=7 15.已知关于x 的不等式2x -a >3的解是正数,求a 的取值范围 16.若不等式x <a 只有4个正整数解,则a 的取值范围是 。

含参不等式恒成立问题中求参数取值范围一般方法(教师版)

恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()m ax a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()m in a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 解:根据题意得:21a x x + ->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立, 设()23f x x x =-+,则()2 3924f x x ??=--+ ??? 当2x =时,()max 2f x = 所以2a > 例2、已知(],1x ∈-∞时,不等式() 21240x x a a ++-?>恒成立,求a 的取值范围。 解:令2x t =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:22 1t a a t +-<, 要使上式在(]0,2t ∈上恒成立,只须求出()2 1t f t t +=在(]0,2t ∈上的最小值即可。 ()22211111124t f t t t t t +????==+=+- ? ? ???? 11,2t ??∈+∞???? ()()min 324f t f ∴== 234a a ∴-< 1322 a ∴-<< 二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例3、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a -<-即:4a >时,()()min 2730f x f a =-=-≥ 73 a ∴≤又4a >所以a 不存在;

含字母参数的一元一次不等式

含字母参数的一元一次不等式(组) 1、关于x 的不等式3x >m 的解集为x >6 ,则m 的值为 . 2、关于x 的不等式-2x +a ≥2的解集如图所示,则a 的值为 . 3、关于x 的不等式组24x a x b +? 的解集是-3??>?的解集是x > a,则a 的取值范围是 . 5、若关于x 的不等式组???>+>3 1x m x 的解集为x >3,则m 的取值范围是 . 6、关于x 的不等式组2x x m ≤??+-m x x 032无解,则m 的取值范围是 . 9.若关于x 的不等式组x m n x m n +?的解集是-2?无解,则m 的取值范围是 . 11.若关于x 的不等式组0x a x ≤??>? 只有3个正整数解,则a 的取值范围是_ __. 12、关于x 的不等式2x -a >0的负整数解为-1,-2,则a 的取值范围 . 13、关于x 的不等式x -4≤a 的正整数解为1, 2,3,则a 的取值范围 . 14、若关于x 的不等式组? ??->-≥-1230x a x 的整数解共有5个,则a 的取值范围是_ __. 15、关于x 的不等式组???≤->0 3x a x 有三个整数解,则a 的取值范围是_ __.

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

求一元一次不等式(组)中字母参数取值范围专题(作业)

求字母参数取值范围专题(作业) 易错点:字母的取值能不能取到临界点,可以用检验法 一、 逆用不等式组的解集求字母的值 1、若不等式组3>??>?x x m 的解集为5>x 则m=_______ 2、若不等式组1253 -??-?? ?? ≤?x x a 无解,则a 的取值范围_______ 7、若不等式组3≥?? ≤?x x a 无解,则a 的取值范围是_______ 8、若不等式组无解,则a 的取值范围是 _________ . 9、若不等式 无解,化简|3﹣a|+|a ﹣2|= _________ . 10、若不等式组 无解,则a _________ b (用“>”、“=”、“<”填空). 11、如果不等式组 无解,则不等式2x+2<mx+m 的解集是 _________ . 12、如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a , b 的有序数对(a ,b )共有 _____ 个. 常考例题:13、已知不等式组?????>>-a x x 1513的解集为x >2,则a 的取值范围_______ 变式训练:14、已知不等式组?????≥>-a x x 1513的解集为x >2,则a 的取值范围_______ 15、若不等式组3>?? >?x x a 的解集为3>x 则a 的取值范围是_______ 16、若不等式组3>?? >?x x a 的解集为>x a 则a 的取值范围是_______ 17、若不等式组3>??≥?x x a 的解集为3>x ,则a 的取值范围是_______ 18、已知a ,b 是实数,若不等式(2a ﹣b )x+3a ﹣4b <0的解是 ,则不等式(a ﹣4b )x+2a ﹣3b >0的解是 _________ .

求一元一次不等式(组)中字母参数取值范围专题(作业)教学提纲

精品文档 精品文档 求字母参数取值范围专题(作业) 易错点:字母的取值能不能取到临界点,可以用检验法 一、 逆用不等式组的解集求字母的值 1、若不等式组3>??>?x x m 的解集为5>x 则m=_______ 2、若不等式组1253-??-?? ?? ≤?x x a 无解,则a 的取值范围_______ 7、若不等式组3≥?? ≤?x x a 无解,则a 的取值范围是_______ 8、若不等式组无解,则a 的取值范围是 _________ . 9、若不等式 无解,化简|3﹣a|+|a ﹣2|= _________ . 10、若不等式组 无解,则a _________ b (用“>”、“=”、“<”填空). 11、如果不等式组 无解,则不等式2x+2<mx+m 的解集是 _________ . 12、如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a , b 的有序数对(a ,b )共有 _____ 个. 常考例题:13、已知不等式组?????>>-a x x 1513的解集为x >2,则a 的取值范围_______ 变式训练:14、已知不等式组?????≥>-a x x 1513的解集为x >2,则a 的取值范围_______ 15、若不等式组3>?? >?x x a 的解集为3>x 则a 的取值范围是_______ 16、若不等式组3>?? >?x x a 的解集为>x a 则a 的取值范围是_______ 17、若不等式组3>?? ≥?x x a 的解集为3>x ,则a 的取值范围是_______

专题三角形中的最值与取值范围问题

专题 三角形中的最值与取值范围问题 三角形中的边与角的最值与取值范围问题,是复习过程中的难点,在高考中考查形式灵活,常常在知识的交汇点处命题,与函数、几何、不等式等知识结合在一起。我们知道三角形只要满足三个条件,那么这个三角形就基本唯一确定了,而少于三个条件时,有些边角周长面积就可以变化,从而就有了求这些量的取值范围问题。这类问题的实质是将几何问题转化为代数问题,求解主要是充分运用三角形的内角和定理,正余弦定理,面积公式,基本不等式,三角恒等变形,三角函数的图像和性质来进行解题,非常综合,是解三角形中的难点问题。下面对这类问题的解法做下探讨。 类型一:已知一角+对边 例题1:在?ABC 中,A=60°, (1)ABC ?面积的最大值; (2)b c +的取值范围; (3)2b c +的最大值; (4)BC 边上高的最大值。 类型二:已知一角+边的等量关系 例题2:在?ABC 中,A=60°,1b c +=,求 (1)ABC S ?的最大值; (2)a 的取值范围; (3)周长的取值范围。 类型三:已知一角+面积 例题3:在?ABC 中,A=60°,ABC S ?= (1)b c +的最小值; (2)a 的最小值。 (3)周长的最小值。 (4) 112b c +的最小值。 类型四:已知角的等量关系 例题4:在?ABC 中,A=2B ,则c b 的取值范围为

变式:在锐角?ABC 中,A=2B ,则c b 的取值范围为 类型五:已知两边,求面积的最值 例题5:在?ABC 中,已知1,2AB BC ==,求 (1)ABC S ?的最大值; (2)角C 的取值范围。 类型六:已知一边+另两边的等量关系 例题6:在?ABC 中,已知6,10BC AB AC =+ =,求ABC S ?的最大值。 变式:在?ABC 中,已知6,BC AC ==,求ABC S ?的最大值。 类型七:三边的等量关系 例题7:在?ABC 中,角A ,B ,C 所对的边分别为a,b,c,若2222a b c +=,求cos C 的最小值。

求参数取值范围一般方法

求参数取值范围一般方法 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 例2、已知(],1x ∈-∞时,不等式()21240x x a a ++-?>恒成立,求a 的取值范围。 1.若不等式x 2+ax+1≥0,对于一切x ∈[0, 2 1]都成立,则a 的最小值是__ 2.设124()lg ,3 x x a f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。 3.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例1、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 例2:若不等式02)1()1(2 >+-+-x m x m 的解集是R ,求m 的范围。 例3.关于x 的不等式0622<+++m m mx x 在[]20,上恒成立,求实数m 的取值范围. 变式:若函数m m mx x y 622+++=在[]20,上有最小值16,求实数m 的值. 1.已知752+->x x x a a 0(>a 且)1≠a ,求x 的取值范围. 2.求函数)(log 2x x y a -=的单调区间.

不等式(组)的字母取值范围的确定方法 -作业

不等式(组)的字母取值范围的确定方法 一、根据不等式(组)的解集确定字母取值范围 例1、如果关于x 的不等式(a+1)x>2a+2。的解集为x<2,则a 的取值范围是( )。 A.a<0 B.a<-1 C.a>1 D.a>-1 例2、已知不等式组153 x a x a <+??有四个整数解,则a 的取值范围是 . 例4、已知不等式组?? ?<+>-b x a x 122的整数解只有5、6。求a 和b 三、根据含未知数的代数式的符号确定字母的取值范围 例5、已知方程组213(1)21(2) x y m x y m +=+-----??+=------?满足x+y<0,则( ) A.m>-1 B.m>1 C.m<-1 D.m<1 例6、已知2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围. 四、逆用不等式组解集求解 例7、如果不等式组260x x m -≥??≤? 无解,则m 的取值范围是 . 例8、不等式组? ??>≤??,有解,则实数a 的取值范围是 . 不等式(组)中待定字母的取值范围 不等式(组)中字母取值范围确定问题,技巧性强,灵活多变,难度较大,常常影响和阻碍学生正常思维的进行,下面简略介绍几种解法,以供参考。 图2

高中数学专题复习含参不等式与参变量的取值范围

含参不等式与参变量的取值范围 一、选择题 1. 已知方程1||+=ax x 有一负根且无正根,则实数a 的取值范围是 A. a >-1 B. a=1 C. a ≥1 D. a ≤1 2. 设)(1 x f -是函数1)((2 1)(>-= -a a a x f x x 的反函数,则使1)(1 >-x f 成立的x 的取值范围是 ) ,.[) ,21.() 21,.() ,21.(222+∞---∞+∞-a D a a a C a a B a a A 3. 在R 上定义运算○×:x ○×y=x(1–y),若不等式(x –a )○×(x + a)<1对任意实数x 成立 2 1 23.2 3 21.20.11.<<- <<- <<<<-a D a C a B a A 的取值范围是 恒成立,则时,不等式(当的取值范围是,则实数的解集为若不等式的取值范围是 都有意义,则对已知函数的取值范围是 值,则)上有最大 ,在(存在,且,若,其中已知的取值范围是 数有且仅有三个解,则实若设的取值范围是 有解,则实数若不等式可以是的取值范围的充分条件,则是若集合a x x x D C B A a R x a x a D C B A a x x x x f b D b C b B b A b x f x f b a x a x b x x b ax x f D C B A a x x f x x f x a x f m D m C m B m A m m x x b D b C b B b A b B A a a b x x B x x x A a a a x x log )1)2,1(.10)2,.(),2()2,.(]2,2.()2,2.(4)2(2)2(.9)21,161.()21,321.[]21,641.[)21,1281.[)2 1 ,0()log (log )(.81 0.1.12 1 .1.11)()(lim 0,0)1,0(] 0,1()(.7] 1,.(),1.[)2,.(]2,1.[)()0)(1() 0(3)(.62 .2 .1 .1 .|3||5|.521.13.20.02."""1"},|||{},01 1 |{.422220<-∈-∞+∞--∞--<-+-∈+-=≤<≥≤<>->>??? ??∈---∈+=-∞+∞-∞=? ??>-≤-=≥>≥><-+-<≤--<<-≤<<≤-≠=<-=<+-=→- φ

不等式(组)中参数范围的求法

不等式(组)中参数范围的求法 一. 利用不等式的性质求解 例1 已知关于x 的不等式5)1(>-x a 的解集为a x -<15,则a 的取值范围为( ) (A )0>a (B ) 1>a (C ) 0a 故选(B ) 例2 如果关于x 的不等式(2a -b)x +a -5b>0的解集为x< 107,求关于x 的不等式ax>b 的解集。 解析:由不等式(2a -b)x +a -5b>0的解集为x<107 ,可知: 2a -b<0,且 51027b a a b -=-,得b=35 a 。 结合2a -b<0,b=35 a ,可知b<0,a<0。 则ax> b 的解集为x<35。 评注:这道题的内涵极为丰富,它牵涉到不等式的基本性质,不等式的解的意义,不等式的求解,它将式的的恒等变形、不等式、方程融合在一起,以不等式为背景,形成了一道精巧的小综合题。 例3若满足不等式513)2(3≤---≤a x a 的x 必满足53≤≤x ,则a 的取值范围是 ( ) (A )2>a (B ) 2a 时, 2 63243-+≤≤-+a a x a a 由题意,得52 632433≤-+≤≤-+≤a a x a a 解之,得8≥a 当2=a 时,不等式无解 当2

(全)基本不等式应用,利用基本不等式求最值的技巧,题型分析

基本不等式应用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2 ≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取 “=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a + ≥+ ≥+ ≤即 或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 ( 2 2 2 b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知54 x < ,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404 x x < ∴-> ,1 1425434554y x x x x ? ?∴=-+ =--+ + ?--? ? 231≤-+= 当且仅当15454x x -= -,即1x =时,上式等号成立,故当1x =时,m ax 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

求一元一次不等式(组)中字母参数取值范围专题(作业)说课讲解

求一元一次不等式(组)中字母参数取值范围 专题(作业)

求字母参数取值范围专题(作业) 易错点:字母的取值能不能取到临界点,可以用检验法 一、 逆用不等式组的解集求字母的值 1、若不等式组3>??>?x x m 的解集为5>x 则m=_______ 2、若不等式组1253-??-?? ?? ≤?x x a 无解,则a 的取值范围_______ 7、若不等式组3≥?? ≤?x x a 无解,则a 的取值范围是_______ 8、若不等式组无解,则a 的取值范围是 _________ . 9、若不等式 无解,化简|3﹣a|+|a ﹣2|= _________ . 10、若不等式组 无解,则a _________ b (用“>”、“=”、“<”填空). 11、如果不等式组 无解,则不等式2x+2<mx+m 的解集是 _________ . 12、如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a , b 的有序数对(a ,b )共有 _____ 个. 常考例题:13、已知不等式组?????>>-a x x 1513的解集为x >2,则a 的取值范围_______ 变式训练:14、已知不等式组?????≥>-a x x 1513的解集为x >2,则a 的取值范围_______ 15、若不等式组3>?? >?x x a 的解集为3>x 则a 的取值范围是_______ 16、若不等式组3>??>?x x a 的解集为>x a 则a 的取值范围是_______

不等式(组)的字母取值范围.

不等式字母范围的确定练习一 1.写出不等式组的解集 (1)???≥>22x x (2)???<<22x x (3)???≥≤22x x (4)???≤>2 2x x 变式1:若a<2, 请确定下列不等式组的解集 (1)???≥>a x x 2 (2)???<a x x 2 变式2:(1)若不等式组???≥>a x x 2的解集是2>x ,则a 的取值范围为 (2)若不等式组???≥≤a x x 2的解集 时2≤≤x a ,则a 的取值范围为 (3)若不等式组?? ?≥≤a x x 2无解,则a 的取值范围为 2.若不等式组???≤>a x x 0只含有三个整数1、2和3,则a 的取值范围为 ; 变式1:若不等式组? ??<>a x x 0只含有三个整数1、2和3,则a 的取值范围为 ; 变式2:关于x 的不等式组010x a x ->?? ->?,只有3个整数解,则a 的取值范围是 ; 3.若不等式组12x x m <≤??>?有解,则m 的取值范围是( ).A .m<2 B .m≥2 C .m<1 D .1≤m<2 4. 不等式a ≤x ≤3只有5个整数解,则a 的范围是 5、已知a b <<0,那么下列不等式组中有解的是 ( )A .???<>b x a x B .???-<->b x a x C .???-<>b x a x D .???>-a x x 1无解,则a 的取值范围是( )A .a ≤1 B .a ≥1 C . a <1 D .a >1 7、已知关于x 的不等式组? ??--0x 230a x >>的整数解共有5个,求a 的取值范围。 8. 已知关于x 的不等式x -2a <3的最大整数解是-5,求a 的取值范围. 9. 已知不等式13 a x ->的每一个解都是x <3的解,求a 的取值范围。

一元一次不等式的含参问题

《含参数的一元一次不等式组的解集》教学设计 教材分析:本章内容在学习了《一元一次方程》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用数轴直观的得到一元一次不等式组的解集,它是解决本节课内容《含参数的一元一次不等式组的解集》的基础和关键,通过本节课知识的学习,学生能对初中数学中的分类讨论、数形结合的思想方法有进一步的认识,养成独立思考的习惯,也能加强与同学的合作交流意识与创新意识,为今后生活和学习中更好运用数学作准备。 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 (3)德育目标:加强同学之间的合作交流与探讨,体验数学发现带来的乐趣。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握分类讨论和数形结合的数学思想。学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。(2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。教学准备(预习学案)

1、⑴不等式组? ??-≥>12x x 的解集是 . ⑵不等式组???-<-<12x x 的解集是 . ⑶不等式组???≥≤14x x 的解集是 . ⑷不等式组???-≤>4 5x x 的解集是 . 2、关于x 的不等式组12x m x m >->+??? 的解集是1x >-,则m = . 3、如图是表示某个不等式组的解集,则该不等式组的整数解的个数是( ) A. 4 B. 5 C. 6 D. 7 4、不等式组? ??--≤-.32,281x >x x 的最小整数解是( ) A .-1 B .0 C .2 D .3 5、满足21≤<-x 的所有整数为___________ __. 6、满足21≤≤-x 的所有整数为________________ __. 7、请写出一个只含有三个整数1、2和3的解集为 。 预习要求: 1、复习上节课的知识,考察学生对一元一次不等式组的解集的四种情况的熟悉程度, 能直接根据下面口诀求出不等式组的解集:同大取大;同小取小;大小小大(大于较小的数,小于较大的数)在中间;大大小小(大于较大的数,小于较小的数)不存在. 2、根据不等式组的解集,结合数轴,能找出满足条件的解(如整数解),并能注意“a x <”与“a x ≤”的区别,为本节课的拓展应用打下基础。 教学步骤: 一、例题教学 例1、 1、关于x 的不等式3m-x<5的解集x>2,求m 的值。 2、不等式 mx-2<3x+4的解集是 , 则m 的取值范围是 变式1.如果不等式(m ﹣2)x >m ﹣2的解集为x <1,那么( ) A .m≠2 B.m >2

不等式中字母的取值范围

不等式中字母的取值范围 习题 一,根据不等式的解集确定字母取值范围 例l 、如果关于x 的不等式(a+1)x>a+1.的解集为x<1,则a 的取值范围是 ( ) A .a<0 B .a<一l C .a>l D .a>一l 解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B . 练习一:根据性质: 1、已知a ,b 是常数,不等式ax+b >0, 当 时,不等式的解集是x >a b - ; 当 时,不等式的解集是x <a b -。 2、若ax <a-1的解集是x <a a 1-,则a 3、若(a+1)x >a+1的解集是x <1,则a 4、若(m-1)x >m-1的解集是x <1,则m 5、若关于x 的不等式x-m ≥-1的解集如图所示,则m 。 练习二:综合拓展: 1、已知三角形的三边长分别为6,x-2,4,则x 的取值范围是 分析: 2、若()04232 =--+-a x y y ,且x 为负数,则a 分析: 练:若()0332=++++m y x x ,且y 为负数,则m 3、如果x x +=+11,2323--=+x x ,则x 的取值范围是

分析: 练:如果1212-=-x x ,x x 3553-=-,则x 的取值范围是 练习三:与方程(组)的解有关: 1、已知y=2x-3,要是y ≥x ,求x 的取值范围 2、若关于x 的方程3x+3k=2的解是正数,则k 练:①当k 取何值时,关于x 的方程1)(3k 2-2 1+-=k x x 的解是负数 ②关于x 的方程3x+2n=2的解是非负数,则n ③当k 为何值时,关于x 的方程3x=5-4k 的解小于-3 二,根据不等式组的解集确定字母取值范围 例2、不等式组???>≤

含参不等式

《不等式(组)的字母取值范围的确定方法》教学设计 教材分析:本章内容是北师大新版八年级数学(下)第二章,是在学习了《一元一次方程》和《一次函数》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用口诀或数轴直观的得到一元一次不等式组的解集。 学情分析:在学习了一元一次不等式组的解法之后,学生就会经常遇到求一元一次不等式组中字母系数的值或求其取值范围的问题. 不少学生对解决这样的问题感到十分困难. 事实上,只要能灵活运用不等式组解集的知识即可顺利求解. 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握逆向思维和数形结合的数学思想。 学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。 (2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。 教学准备 1、复习上节课的知识,考察学生对一元一次不等式组的解集的四种情况的熟悉程度, 能直接根据下面口诀求出不等式组的解集:大大取大;小小取小;大小小大中间找;大大小小找不到. 2、根据不等式组的解集,结合数轴,能找出满足条件的解(如整数解),并能注意“a x <”与“a x ≤”的区别,为本节课的拓展应用打下基础。 1、⑴不等式组???-≥>1 2x x 的解集是 . ⑵不等式组???-<-<12x x 的解集是 . ⑶不等式组?? ?≥≤14x x 的解集是 . ⑷不等式组???-≤>45x x 的解集是 . 一、已知不等式的解集确定字母系数的问题 1. 逆向运用“大大取大”求解参数 分析:逆向运用大大取大归结为:若不等式组???>>b x a x 的解集为b x >,则b a ≤ 例1.(2014恩施市) 如果一元一次不等式组???>>a x x 3的解集为a x >,则a 的取值范围是:( ) A. a >3 B. a ≥3 C. a ≤3 D. a <3 变式练习1:若不等式组? ??<->+m x x x 544的解集是3

不等式中的取值范围求法

不等式中的取值范围求法 不等式是高中数学的重要内容,与各部分联系紧密,是历年高考的命题重点,在考查不等式的命题中以求取值范围问题居多,解决此类问题的方法体现了等价转换、函数与方程、分类讨论、数形结合等数学思想。 1、 不等式的性质法 利用不等式的基本性质,注意性质运用的前提条件。 例1:已知 f x ax c f f ()()()=--≤≤--≤≤2411125,且,,试求f ()3的取值范围。 解:由(1)(2)4f a c f a c =-??=-? 解得[][]1(2)(1)31(2)4(1)3a f f c f f ?=-????=-?? ∴=-= ?--≤≤∴-≤?≤-≤≤-∴≤-?≤∴-+≤?-≤+-≤≤f a c f f f f f f f f f ()()()()()()()()()()3983253 112583832403 41153531203 8353832531403203 1320ΘΘ,, ,即 评:解此类题常见的错误是:依题意得

-≤-≤--≤-≤41 11452a c a c ()() 用(1)(2)进行加减消元,得 03173≤≤≤≤a c ,() 由f a c f ()()397327=--≤≤得 其错误原因在于由(1)(2)得(3)时,不是等价变形,使范围越加越大。 2、 转换主元法 确定题目中的主元,化归成初等函数求解。此方法通常化为一次函数。 例2:若不等式 2x -1>m(x 2-1)对满足-2≤m ≤2的所有m 都成立,求x 的取值范围。 解:原不等式化为 (x 2-1)m -(2x -1)<0 记f(m)= (x 2-1)m -(2x -1) (-2≤m ≤2) 根据题意有:?????<=<=01)-(2x -1)-2(x f(2)01)-(2x -1)--2(x f(-2)22 即:?????<->+0 1-2x 2x 03-2x 2x 22 解得2 31x 271+<<+- 所以x 的取值范围为 3、化归二次函数法 根据题目要求,构造二次函数,结合二次函数实根分布等相关知识,求出参数取值范围。

不等式(组)的字母取值范围的确定方法

不等式(组)的字母取值围的确定方法 一、根据不等式(组)的解集确定字母取值围 例l 、如果关于x 的不等式(a+1)x>2a+2.的解集为x<2,则a 的取值围是 ( ) A .a<0 B .a<一l C .a>l D .a>一l 解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B . 例2、已知不等式组15 3x a x a <+??有四个整数解,则a 的取值围是 . 分析:由题意,可得原不等式组的解为8-b x a x 122的整数解只有5、6。求a 和b 的围. 解:解不等式组得?? ? ??-<+>212b x a x ,借助于数轴,如图2知:2+a 只能在4与5之间。 21-b 只能在6与7之间. ∴4≤2+a<5, 6<2 1 -b ≤7, ∴2≤a<3, 13一l B .m>l C .m<一1 D .m<1 解:(1)十(2)得,3(x+y)=2+2m ,∴x+y = 223 m +<0.∴m<一l ,故选C . 例6、(省市2007年)已知2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值围. 解:由2a -3x +1=0,可得a=312x -;由3b -2x -16=0,可得b=216 3x +. 又a ≤4<b , 所以, 312x -≤4<216 3 x +, 解得:-2<x ≤3. 四、逆用不等式组解集求解 例7、如果不等式组260 x x m -≥??≤? 无解,则m 的取值围是 . 分析:由2x 一6≥0得x ≥3,而原不等式组无解,所以3>m ,∴m<3. 解:不等式2x-6≥0的解集为x ≥3,借助于数轴分析,如图3,可知m<3. 图 1 图2 图3

相关文档 最新文档