文档库 最新最全的文档下载
当前位置:文档库 › 高温熔盐相变蓄热材料

高温熔盐相变蓄热材料

相变材料的储热

相变材料的储热 摘要:热能储存可以通过蓄热材料的冷却、加热、熔化、凝固。气化、化学反应等方式实现。它是一种平衡热能供需和使用的手段。热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热。 关键词:相变;储热;复合材料; 引言:相变材料(PCM)在其本身发生相变的过程中,可以吸收环境的热(冷)量,并在需要时向环境放出热(冷)量,从而达到控制周围环境温度的目的。相变储能技术通过相变材料相变时吸收或放出大量热量以达到能量存储的目的,是常用于缓解能量供求双方在时间、强度及地点上不匹配的有效方式。 正文 一、相变储热材料应用的意义 当今社会能源短缺及环境污染成为我们所面临的重要难题。开发利用可再生能源对节能和环保具有重要的现实意义。发展热能存储技术尤为重要,热能存储就是把通过一定的方式把占时应用不到应用不完的多余的热和废热存储起来,适时还可以另作他用。该技术在太阳能的利用、电力的“移峰填谷”、气废热和余热的回收利用、工业与民用建筑和空调的节能等领域具有广泛的应用前景,目前已成为世界范围内的研究热点。 二、相变储能材料分类及材料的选择 1、相变储热材料的分类 (1)从材料的化学组成来看,主要分为无机相变材料和有机相变材料。无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物。与无机类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点。其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料的研究使用中受到广泛的重视。 但石蜡类相变储能材料热导率较低,也限制了其应用范围。为有效克服石蜡类有机化合物相变储能材料的缺点,同时改善相变材料的应用效果及拓展其应用范围,复合相变储能材料应运而生。复合相变材料由较稳定的有机化合物和具有较高导热系数的无机物颗粒制备而得,因而复合相变材料具有稳定的化学性质,无毒无腐蚀性或毒性和腐蚀性小。同时它的导热能力较有机物有较大的改善。 (2)从蓄热过程中材料相态的变化方式来看,分为固-液相变、固-固相变、固-气相变和液-气相变四类。由于后两种相变方式在相变过程中伴随着大量气体的产生,是材料的体

相变蓄热技术在热泵中的应用

相变蓄热技术在热泵中的应用 汪南,杨硕,朱冬生 (华南理工大学化学与化工学院传热强化与过程节能教育部重点实验室,广州, 510640) 摘要:本文综述了蓄热技术的研究进展及其在热泵中的应用,并重点介绍了一种相变蓄热式热泵热水器,最后对这种技术的发展进行了展望。 关键词:蓄热相变热泵热水器 0 前言 能源是一个国家经济增长和社会发展的重要物质基础,随着人类对能源的需求量不断增大,能源问题越来越引起人们的重视。但是,大多数能源存在间断性和不稳定性的特点,导致大量热能在时间与空间匹配上的不平衡性,从而使得一方面能源短缺,另一方面又有大量余热被白白浪费。因此,合理利用能源、提高能源利用率是当务之急。 蓄能技术就是采用适当的方式,利用特定的装置,将暂时不用的或者多余的热能通过一定的储能材料储存起来,等到需要时再利用的方法,是提高能源利用效率和保护环境的重要技术。相变蓄热技术在太阳能、工业余热、废热利用以及电力调峰等方面具有很大的潜在应用优势,近年来引起了众多科研工作者的重视。 1 蓄热技术的研究进展 1983年,美国Telkes博士在蓄热技术方面做了大量工作[1]。她对水合盐,尤其是十水硫酸钠(Na2S04?10H2O)进行了长期的研究,对Na2S04?10H2O的相变寿命进行了多达1000次的实验,并预测该材料可相变2000次,并在马萨诸塞州建起了世界上第一座PCM被动太阳房。20世纪70年代早期,日本三菱电子公司和东京电力公司联合进行了用于采暖和制冷系统的相变材料的研究,他们研究了水合硝酸盐、磷酸盐、氟化物和氯化钙。在相变材料应用方面,他们特别强调制冷和空调系统中的储能。东京科技大学工业和工程化学系的Yoneda等人研究了一系列可用于建筑物取暖的硝酸共晶水合盐,从中筛选出性能较好的MgCl2?6H20和Mg(NO3)2?6H2O共晶盐(熔点59.1℃)。位于Ibaraki的电子技术实验室对相变温度范围为200~300℃的硝酸盐及它们的共晶混合物进行了研究。德国GawronK和Schroder J在对-65~0℃的温度范围内相变性能的研究后,推荐在储冷中采用NaF-H20共晶盐(-3.5℃);在低温储热或热泵应用中采用KF?4H20;在建筑物采暖系统中,采用CaCl2?6H20(29℃)或Na2HP04(35℃)。Krichel绘制了大量PCMs的物性图表。他认为石蜡、水合盐和包合盐(elath-rate)是100℃以下储能用相变材料的最佳候选材料。 我国对蓄热相变的理论和应用也进行了广泛的研究[2-9],中国科学技术大学从1978年开始进行相变储热的研究,陈则韶、葛新石、张寅平等人[10~12]在相变材料热物性测定和相变过程导热分析方面做了大量工作,申请了多项专利。1983年,华中师范大学阮德水等[13]对典型的无机水合盐Na2S04?10H2O

新材料的产业链、分类及应用

新材料学习资料 一、新材料分类: 按材料的属性划分有金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。 1、金属材料:包括纯金属、合金、金属材料金属间化合物和特种金属材料等。 2、无机非金属材料:陶瓷、砷化镓半导体等 3、有机高分子材料:主要是碳、氢、氧、氮等 4、先进复合材料:指可用于加工主承力结构和次承力结构、其刚度和强度性能相当于或超过铝合金的复合材料。 按材料的使用性能分,有结构材料和功能材料。 1、结构材料主要是利用材料的力学和理化性能,以满足高强度、高刚度、高硬度、耐高温、耐磨、耐蚀、抗辐照等性能要求。 2、功能材料主要是利用材料具有的电、磁、声、光热等效应,以实现某种功能,如半导体材料、磁性材料、光敏材料、热敏材料、隐身材料和制造原子弹、氢弹的核材料等。 二、新材料类型: 1、复合新材料:由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。 复合材料的基体材料分为金属和非金属两大类: 金属基体常用的有铝、镁、铜、钛及其合金。 非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 复合新材料在新能源和交通市场上的应用: (1)清洁、可再生能源用复合材料,包括风力发电用复合材料、烟气脱硫装置用复合材料、输变电设备用复合材料和天然气、氢气高压容器。 (2)汽车、城市轨道交通用复合材料,包括汽车车身、构架和车体外覆盖件,轨道交通车体、车门、座椅、电缆槽、电缆架、格栅、电器箱等。 (3)民航客机用复合材料,主要为碳纤维复合材料。热塑性复合材料约占10%,主要产品为机翼部件、垂直尾翼、机头罩等。中国未来20年间需新增支线飞机661架,将形成民航客机的大产业,复合材料可建成新产业与之相配套。 (4)船艇用复合材料,主要为游艇和渔船,游艇作为高级娱乐耐用消费品在欧美有很大市场,由于中国鱼类资源的减少、渔船虽发展缓慢,但复合材料特有的优点仍有发展的空间。 2、超导材料:有些材料当温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。 超导材料主要分为合金材料(如铝合金、铜合金、铁合金、镁合金和高温合金等)和化合物材料(如超导陶瓷)两种。 超导材料最诱人的应用是:(1)发电、输电和储能。(2)超导磁悬浮列车。(3)超导计算机等

相变储热材料的制备与应用

相变储热材料的制备与应用 摘要:热能储存可以通过蓄热材料的冷却、加热、熔化、凝固。气化、化学反应等方式实现。它是一种平衡热能供需和使用的手段。热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热。 关键词:相变;储热;复合材料 一、相变材料在国内外的发展状况 国外对相变储能材料的研究工作始于20世纪60年代。最早是以节能为目的,从太阳能和风能的利用及废热回收,经过不断的发展,逐渐扩展到化工、航天、电子等领域。近年来最主要的研究和应用集中在建筑物的集中空调、采暖及被动式太阳房等领域。国外研究机构和科研人员对蓄热材料的理论研究工作,尤其是对蓄热材料的组成、蓄热容量随热循环变化情况、相变寿命、储存设备等进行了详细的研究,在实际应用上也取得了很大进展。 相对于已经进入实用阶段的发达国家,我国在20世纪70年代末80年代初才开始对蓄热材料进行研究,所以国内相变储能材料的理论和应用研究还比较薄弱。上世纪90年代中期以来,国内研究重点开始转向有机相变材料和复合定形相变材料的研究开发。 二、相变储热材料的分类 (1)从材料的化学组成来看,主要分为无机类相变材料和有机类相变材料,而在课堂上我们主要讲解的是有机类相变材料。无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物。与无机类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点。其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料的研究使用中受到广泛的重视。但石蜡类相变储能材料热导率较低,也限制了其应用范围。为有效克服石蜡类有机化合物相变储能材料的缺点,同时改善相变材料的应用效果及拓展其应用范围,复合相变储能材料应运而生。复合相变材料由较稳定的有机化合物和具有较高导热系数的无机物颗粒制备而得,因而复合相变材料具有稳定的化学性质,无毒无腐蚀性或毒性和腐蚀性小。同时它的导热能力较有机物有较大的改善。 (2)根据使用的温度不同又可以分为高、中、低温相变储热材料。一般使用温度高于100℃的相变储热材料称为高温相变储热材料。以熔融盐、氧化物和金属及其合金为主。使用温度低于100℃为中、低温相变储热材料,这类相变材料以水合盐、石蜡类、脂酸类为主,在低温类中也有利用液-气相变型的,如液氮、氦。 (3)从蓄热过程中材料相态的变化方式来看,可分为固液、固气、液气、固固四种相变。由于固气和液气两种方式相变是有大量气体产生,使材料的体积变的很大,所以实际中很少采用这两种方式。 三、相变材料的分类选择因素 (1)合适相变温度; (2)较大的相变潜热; (3)合适的导热性能;

毕业设计正文相变蓄热器和实验台设计说明

1 引言 1.1 概述 能源是人类赖以生存的基础,随着全球工业的迅猛发展,能源问题越来越为人们所关注。但是在许多能源利用系统中(如太阳能系统、建筑物空调和采暖系统、冷热电联产系统、废热利用系统等)存在着能量供应和需求之间时间性的差异,即存在着供能和耗能之间的不协调性,从而造成了能量利用的不合理性和大量浪费。有效解决这些问题的技术途径之一就是采用储能系统,它是缓解能量供求双方在时间、强度及地点上不匹配的有效方式,是合理利用能源及减轻环境污染的有效途径,是广义热能系统优化运行的重要手段,而且使相应系统可按平均负荷设计,节约系统的初投资,对电网负荷峰、谷时间段电价分计的地区,它还可降低系统的运行费用。 热能储存的方式主要有显热储热、潜热储热和化学反应储热等三种。显热储热主要是利用蓄热材料的温度变化来储存热能,其蓄热密度小,温度波动较大。但这种蓄热材料本身可以从自然界直接获得,如水,岩石活卵石材料等,化学稳定性好,价廉易得。在传热方面,可以采用直接接触式换热,或者传热流体本身就是蓄热介质,因而蓄、放热过程中强化传热技术相对比较简单,成本低。 潜热储热也称相变蓄热,是利用相变材料(PCM)的相转变潜热进行热能储存,具有蓄热密度高、温度波动小(储、放热过程近似等温)、过程易控制等特点[1-3]。发生的相变过程有四种,常被利用的相变过程有固-液、固-固相变两种类型,而固-气和液-气相变虽然可以储存较多热量,但因气体占有的体积大,使体系增大,设备复杂,所以一般不用于储热。固-液相变是通过相变材料的熔化过程进行热量储存,通过相变材料的凝固过程来放出热量。而固-固相变则是通过相变材料在发生相变时固体分子晶体结构有序-无序的转变而可逆地进行储、放热。 化学反应储热是利用可逆化学反应通过热能与化学热的转换储热的,它在受热和受冷时可发生可逆反应,分别对外吸热或放热,这样就可把热能储存起来。其主要优点是蓄热量大,而且如果反应过程能用催化剂或反应物控制,可长期蓄存热量。 综合比较三种热能储存方式,相变蓄热以其储热密度大、蓄热器结构紧凑、体积小、热效率高、吸放热温度恒定、易与运行系统匹配、易于控制等突出的优点,日趋成为储热系统的首选系统,在许多节能和新能源利用领域具有诱人的应用前景,因而对相变蓄

相变式蓄热材料

相变蓄热球 基本原理: 相变蓄热是依靠物质相变过程(固-液态转化)中必须吸收或放出大量相变潜热的物理现象进行能量的存储和释放。由于单位体积的相变蓄热材料能够蓄存的能量远远大于单位体积的显热蓄能材料能够承受的范围,因此相变蓄热材料具有极大的应用范围。但合适的相变材料研发一直是全世界的热点和难点。 经过长期研究,开发出具有完全自主知识产权的中温相变蓄热材料SXC-CZ。该蓄热材料依靠物质相变过程中转移大量相变潜热,可提供79摄氏度供热平台,蓄能能力达到同体积常压水的7倍。 相变蓄热球是相变蓄热产品和相变蓄热应用工程中最基础的结构产品。它以良好的热传导材料为载体,填充锦立独有的SXC-CZ相变蓄热材料,在保持良好的相变蓄热性能的情况下,大大方便了产品的安装和工程的实施,它可广泛应用于各种蓄热产品和场所,在相同的效能下,它比取代传统的水蓄热体积将缩小7倍以上。

1. 79摄氏度的相变温度满足多种蓄热要求 2.优秀的蓄热性能,在相同体积下,蓄热能力是石蜡的3倍 3.良好的热传导性,热传导速度是石蜡10倍 4.物理性能非常稳定,可长期使用无衰减 5.标准化设计,易于蓄热产品的开发和蓄热工程中的应用基本参数: 二、 蓄热球产品说明 蓄热球又称球状蓄热体,蓄热小球具有热震稳定性好、蓄热量大、强度高、易清洗、可重复利用等优点。适用于气体及非气体燃料工业炉的蓄热球燃烧系统选用。

联盛高效蓄热球,比表面积可达到240m2/m3。众多蓄热小球将气流分割成很小流股,气流在蓄热体中流过时,形成强烈的紊流,有效的冲破了蓄热体表面的附面层,又由于球径很小,传导半径小、热阻小、密度高、导热性好,故可实现蓄热式烧嘴频繁且快速换向的要求。 蓄热球可利用20~30次/h的换向,高温烟气流经蓄热体床层后内便可将烟气降至130℃左右排放。 高温煤气和空气流经蓄热体在相同路径内即可分别预热到 仅比烟气温度低100℃左右,温度效率高达90%以上。 因蓄热小球体积十分小巧,加之小球床的流通能力强,即使积灰后阻力增加也不影响热换指标。 蓄热球具有抗氧化、抗渣性强的特点。 蓄热球主要用于冶金行业热风炉蓄能蓄热用的耐火球。蓄热球具有纯度、高强度大、热震稳定性好,使用寿命长等优点,蓄热球是一种以AL2O3、高岭土、合成骨料,莫来石晶体等材质制成。按照滚制和机压成型法两种。该产品具有强度高、抗热震性优良、更换清洗方便、使用寿命长等优点。蓄热瓷球主要有陶瓷小球、多孔圆柱瓷球、多孔圆瓷球三种,该产品具有耐高温、抗腐蚀、热震稳定性好、密度高、热阻小、强度高、蓄放热量大、导热性能好等显著优点,特别适应于空气分离设备蓄热器和钢铁厂高炉煤气加热炉作蓄热填料,该技术是通过对煤气和空气进行双预热,即使低热值的劣质

新材料定义和分类

新材料定义:新材料是指那些新出现或已在发展中的、具有传统材料所不具备的优异性能和特殊功能的材料。新材料与传统材料之间并没有截然的分界,新材料在传统材料基础上发展而成,传统材料经过组成、结构、设计和工艺上的改进从而提高材料性能或出现新的性能都可发展成为新材料。 新材料按结构组成分,有金属材料、无机非金属材料、有机高分子材料、先进复合材料四大类。按材料性能分,有结构材料和功能材料。按照新材料的用途和性质,《中国新材料产品与技术指导目录》将新材料产品分为新型金属材料、新型建筑材料、新型化工材料、电子信息材料、生物医用材料、新型能源材料、纳米及粉体材料、新型复合材料、新型稀土材料、高性能陶瓷材料、新型碳材料、新材料制备技术与设备等十多类具体技术领域。 1、电子信息材料 (1)微电子材料:晶圆、封装料、光刻胶、金丝、浆料、电子化学品、IGBT、功率MOS (2)光电子材料:光棒光纤、光器件、光盘、磁记录材料 (3)平板显示材料:偏光片、滤光片、玻璃、液晶、PDP稀土荧光粉、OLED发光料 (4)固态激光材料:人工晶体、非线性光学材料、特种玻璃、镀膜材料 2、节能新材料 (1)半导体照明材料:衬底、外延片、MO源、高纯气体、封装料

(2)光伏电池材料:多晶硅、单晶硅、薄膜、玻璃 (3)新能源材料:燃料电池电极、固体氧化物、二次电池电极、膜、锂离子聚合物、储氢合金粉及其他储氢材料 3、纳米材料 4、先进复合材料 玻璃纤维、芳纶、碳化硅、石墨、硼纤维、钢纤维、晶须、人工合成耐磨材料、树脂基、金属基、陶瓷基复合材料、碳/碳复合材料、硬质合金刀片、摩擦材料、复合材质材料 5、先进金属材料 (1)超级钢:新普碳、超合金、复相、专用钢、耐高温耐磨耐腐蚀材料、特种材、非晶合金(金属玻璃) (2)贵金属与有色:高纯贵金属、铝镁钛轻合金及材、特种铜材 6、化工新材料 有机硅、有机氟、工程塑料及塑料合金、特种橡胶、特种纤维、特种涂料、制冷剂、精细化工产品 7、先进陶瓷材料 功能陶瓷(微波、瓷介电子元件、压电、敏感、透明)结构陶瓷(蜂窝、耐磨、高温、高韧、涂层、陶瓷基复合) 8、稀土材料 高纯稀土、助剂、催化剂、永磁、发光、储氢 9、磁性材料 软磁、永磁、磁记录材料、磁器件

相变蓄热材料综述

相变蓄热材料综述 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

相变虚热材料综述蓄热技术是提高能源利用效率和保护环境的重要技术,可用于解决热能供给与需求失配的矛盾,在太阳能利用、电力“移峰填谷”、废热和余热的回收利用以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,是世界范围内的研究热点.目前,主要的蓄热方法有显热蓄热、潜热蓄热和化学反应蓄热三种.显热蓄热是利用物质的温度升高来存储热量的.利用陶瓷粒、水、油等的热容进行蓄热,把已经高温或低温变换的热能贮存起来加以利用,如固体显热蓄热的炼铁热风炉、蓄热式热交换器、蓄热式燃烧器等,通常的显热蓄热方式简单,成本低,但储存的热量小,其放热不能恒温的缺点化学反应蓄热是指利用可逆化学反应的结合热储存热能.发生化学反应时,可以有催化荆,也可以没有催化剂一种高密度高能量的蓄热方式,它的储能密度一般高于显热和潜热,此种储能体系通过催化剂和产物分离易于能量长期储存.潜热蓄热(相变蓄热)是利用物质在凝固/熔化、凝结/气化、凝华/升华以及其他形式的相变过程中,都要吸收或放出相变潜热的原理来进行能量储存的技术.利用相变材料相变时单位质量(体积)潜热,蓄热量非常大能把热能贮存起来加以利用,如空间太阳能发电用蓄热器,深夜电力调峰用蓄热器,其储能比显热一个数量级,而且放热温度恒定,但其储热介质一般有过冷、相分离、易老化等缺点。 一相变蓄热材料的分类 根据相变种类的不同,相变蓄热一般分为四类:固一固相变、固一液相变、液一气相变及固一气相变。由于后两种相变方式在相变过程中伴随有

相变材料

浅谈相变储能材料的热能储存技术及其应用 云南师范大学能环学院再生B班马侯君(12416181) (云南师范大学太阳能研究所 650500) 摘要:由于相变储能材料具有储能密度高、储能放能近似等温、过程易控制等特点,因此,采用相变储能材料的热能储存技术是提高热能转化和回收利用效率的重要途径,也是储存可再生能源的有效方式之一。鉴于可供选用的相变储能材料种类多、相变温度范围大,使其在许多工程应用中具有较大的吸引力,筒要介绍利用相变储能材料的热能储存技术及其在工程中的多种应用。本文对热能存储技术的主要类型和技术原理进行了简要介绍,讨论了建筑采暖系统中热能 存储技术的应用现状及发展的趋势。 关键词:相变储能材料热能储存技术工程应用建筑采暖 1 引言 利用相变储能材料的热能储存技术是协调能源供求矛盾、提高能源利用效率和保护环境的重要技术,也是储存和回收利用短期或长期需求能源的一种有效途径。它在工业与民用建筑的采暖、空调、温室、太阳能热利用、工业生产过程的热能回收和利用等多个领域得到了广泛的应用,并已逐步成为世界范围高度重视的研究领域。特别是随着相变储能材料的基础和应用研究的不断深入,利用相变储能材料的热能储存技术的应用深度和广度都将不断拓展。为此,本文着重介绍相变储能材料及其研究,以及利用各种相变储能材料的热能储存技术在工程中的多种应用。 2 相变储能材料及其研究 相变储能材料的种类 人们对相变储能材料的研究可以追溯到20世纪70年代,近几十年来国内外研究人员对相变储能材料的研究和开发进行了大量的研究工作,取得了一定的研究成果,得到了具有温度变化小、储能密度大、过程易控制并适于利用材料的相变潜热进行热能储存的多种相变储能材料。根据其相变形式可分为固-液相变储能材料、固-固相变储能材料、固-气相变储能材料、液-气相变储能材料4类,虽然固-气相变和液-气相变具有的相变热大,但其体积上的大变化使相变储能系统变得复杂和不实用,因此,后两种相变储能材料在实际应用中很少被选用,应用较多的相变储能材料主要是固-液相变储能材料和固-固相变储能材料两类。 固-液相变储能材料 在固-液相变储能材料中,主要有无机相变储能材料、有机相变储能材料及其共融混合物3类。 (1)无机相变储能材料 无机相变储能材料包括结晶水合盐、熔融盐、金属合金和其它无机物。其中,水合盐是适于温度范围在 0"--150℃的潜热式储存的典型无机相变储能材料,它也是中低温相变储能材料中重要的一类,其优点是价格便宜、单位体积储能密度大、一般呈中性;缺点是过冷度大和易析出分离,需要通过添加成核剂和增稠剂进行处理。常用作相变储能材料的结晶水合盐热物理性能见表1。 表1 常用作相变储能材料的结晶水合盐热物理性能

蓄冷材料相变温度与相变潜热实验研究

第18卷第5期2000年10月 低温与特气L ow T emper ature and Specialty Gases V ol.18,No.5 O ct.,2000 工艺与设备 蓄冷材料相变温度与相变潜热实验研究 X 方贵银 (中国科学技术大学热科学与能源工程系,安徽合肥 230027) 摘要:阐述了自行研制的蓄冷材料相变温度与相变潜热实验装置的特点,并在该实验装置上测试了蓄冷材料的相变温度和相变潜热,获得了较准确的结果。该方法简单易行,可用于工程上测量相变蓄冷材料的热物性。关键词:蓄冷空调;蓄冷材料;相变温度;相变潜热;实验测试 中图分类号:T B64 文献标识码:A 文章编号:1007-7804(2000)05-0019-03 1 前 言 相变蓄冷材料热物性及其工作性能的研究具有重要的意义。材料的热物性及工作性能既是衡量其性能优劣的标尺,又是其应用系统设计及性能评估的依据。 测定相变温度、相变潜热及比热的方法可分为三类: 1.一般卡计法[1,2] ; 2.差热分析法(Differential Thermal Analy sis ,简称DT A )[3]; 3.示差扫描量热计法[4](Differential Scanning Calorimetry,简称DSC),它利用示差扫描量热计, 可以绘制相变材料整个相变过程中的能量-时间曲线。由于实验条件限制,下面采用的实验方法与典型方法不完全相同,可用于工程上进行蓄冷材料的性能测试。 2 蓄冷材料相变温度的测试 2.1 实验装置与实验方法 图1为实验装置图。实验装置主要由XWC-301自动平衡记录仪、铜—康铜热电偶、冰瓶、保温瓶、蓄冷材料(PCM ) 等构成。 图1 测试蓄冷材料相变温度的实验装置 1.保温瓶; 2.高密度聚乙烯塑料球; 3.相变蓄冷材料(PCM ); 4.冰水混合物; 5.铜—康铜热电偶; 6.保温材料; 7.导热油; 8.冰瓶; 9.自动平衡记录仪。 该实验采用冷却的方法测定蓄冷材料的相变凝固温度。它是将热电偶插入相变蓄冷球内,并将相变蓄冷球放入冰水混合物内冷却,由平衡记录仪记录热电偶由于相变蓄冷材料温度变化而引起的热电 势变化,然后由热电势转换成温度,得出蓄冷材料温度变化曲线。2.2 实验结果与分析 图2为某公司生产的蓄冷球内蓄冷材料的冷却 X 收稿日期:2000-08-28

新材料分类

主要的新材料分类 新材料作为高新技术的基础和先导,应用范围极其广泛,它同信息技术,生物技术一起成为二十一世纪最重要和最具发展潜力的领域.同传统材料一样,新材料可以从结构组成,功能和应用领域等多种不同角度对其进行分类,不同的分类之间相互交叉和嵌套. 新材料主要有传统材料革新和新型材料的推出构成,随着高新技术的发展,新材料与传统材料产业结合日益紧密,产业结构呈现出横向扩散的特点. 新材料的分类:按照应用领域来分,一般把新材料归为以下几大类: 1 信息材料 电子信息材料及产品支撑着现代通信,计算机,信息网络,微机械智能系统,工业自动化和家电等现代高技术产业.电子信息材料产业的发展规模和技术水平,在国民经济中具有重要的战略地位,是科技创新和国际竞争最为激烈的材料领域.微电子材料在未来10~15年仍是最基本的信息材料,光电子材料将成为发展最快和最有前途的信息材料.信息材料主要可以分为以下几大类: 集成电路及半导体材料:以硅材料为主体,新的化合物半导体材料及新一代高温半导体材料也是重要组成部分,也包括高纯化学试剂和特种电子气体;光电子材料: 激光材料,红外探测器材料,液晶显示材料,高亮度发光二极管材料,光纤材料等领域;新型电子元器件材料:磁性材料,电子陶瓷材料,压电晶体管材料,信息传感材料和高性能封装材料等. 当前的研究热点和技术前沿包括柔性晶体管,光子晶体,SiC,GaN,ZnSe等宽禁带半导体材料为代表的第三代半导体材料,有机显示材料以及各种纳米电子材料等. 2 能源材料 全球范围内能源消耗在持续增长,80%的能源来自于化石燃料,从长远来看,需要没有污染和可持续发展的新型能源来代替所有化石燃料,未来的清洁能源包括氢能,太阳能,风能,核聚变能等.解决能源问题的关键是能源材料的突破,无论是提高燃烧效率以减少资源消耗,还是开发新能源及利用再生能源都与材料有着极为密切的关系. 传统能源所需材料:主要是提高能源利用效率,现在集中在要发展超临界蒸汽发电机组和整体煤气化联合循环技术上,这些技术对材料的要求都十分苛刻,如工程陶瓷,新型通道材料等;氢能和燃料电池:氢能生产,储存和利用所需的材料和技术,燃料电池材料等;绿色二次电池:镍氢电池,锂离子电池以及高性能聚合物电池等新型材料;太阳能电池:多晶硅,非晶硅,薄膜电池等材料;核能材料:新型核电反应堆材料. 新能源材料就材料种类主要包括专用薄膜,聚合物电解液,催化剂和电极,先进光电材料,特制光谱塑料和涂层,碳纳米管,金属氢化物浆料,高温超导材料,低成本低能耗民用工程材料,轻质,便宜,高效的绝缘材料,轻质,坚固,复合结构材料,超高温合金,陶瓷和复合材料,抗辐射材料,低活性材料,抗腐蚀及抗压力腐蚀裂解材料,机械和抗等离子腐蚀材料.当前研究热点和技术前沿包括高能储氢材料,聚合物电池材料,中温固体氧化物燃料电池电解质材料,多晶薄膜太阳能电池材料等. 3 生物材料 生物材料是和生命系统结合,用以诊断,治疗或替换机体组织,器官或增进其功能的材料.它涉及材料,医学,物理,生物化学及现代高技术等诸多学科领域,已成为21世纪主要支柱产业之一. 现在几乎所有类型的材料在健康治疗中都已得到应用,主要包括金属和合金,陶瓷,高分子材料,复合材料和生物质材料.高分子生物材料是生物医用材料中最活跃的领域;金属生物材料仍是临床应用最广泛的承力植入材料,医用钛及其合金,以及Ni-Ti形状记忆合金的研究与开发是一个热点;无机生物材料近年来越来越受到重视. 目前,国际生物医用材料研究和发展的主要方向,一是模拟人体硬软组织,器官和血液等的组

一种新型高温复合相变蓄热材料的制备pdf

第31卷第5期2006年10月 昆明理工大学学报(理工版)Journal of Kun m ing University of Science and Technol ogy (Science and Technol ogy )Vol .31 No .5 Oct .2006 收稿日期:2005-09-09.基金项目:云南省自然科学基金重点项目(项目编号:2002C0003Z ). 第一作者简介:张兴雪(1979~),女,在读硕士生.主要研究方向:新型能源材料. 一种新型高温复合相变蓄热材料的制备 张兴雪,王华,王胜林,张翅远 (昆明理工大学电力工程学院,云南昆明650051) 摘要:采用粉末烧结工艺将相变材料Na 2CO 3和基体材料Mg O 进行复合,制成一种新型高温复合相变蓄热材料.通过XRD 和TG ?DT A 分析,结果表明:由Na 2CO 3/Mg O 构成的复合相变蓄热材料具有良好的化学相容性,在845℃时出现吸热峰.通过对其蓄热密度的计算可知:制备成的蓄热材料具有蓄热密度高的特点,能够实现高温蓄热. 关键词:相变材料;高温蓄热;潜热蓄热 中图分类号:TK02文献标识码:A 文章编号:1007-855X (2006)05-0017-03 Prepara ti on of a New Com posite La ten t Therma l Energy Storage M a ter i a l a t H i gh Te m pera tures ZHAN G Xi ng 2xue ,W AN G Hua,W AN G She ng 2li n,ZHAN G Ch i 2yuan (Faculty of Electric Po wer Engineering,Kun ming University of Science and Technol ogy,Kun ming 650051,China ) Abstract:A ne w type of high te mperature phase change material was obtained thr ough the powder sintering method,compounding Mg O as matrix and Na 2CO 3as phase change material .XRD analysis sho ws that the mate 2rial has g ood che m ical compatibility and TG -DT A analysis shows that an endother m ic peak arises at 845℃.Calculati ons indicate that the composite PC M is characterized by high ther mal energy st orage density and heat st orage at high te mperatures . Key words:phase change material (PC M );heat st orage at high te mperatures;latent -heat ther mal st orage 0引言 常用的高温蓄热材料可分为显热式和潜热式.显热式高温蓄热材料具有性能稳定、价格便宜等优点,但其蓄热密度低,蓄热装置体积庞大;潜热式高温蓄热材料虽然存在着高温腐蚀、价格较高等问题,但因其蓄热密度高,蓄热装置结构紧凑,而且吸—放热过程近似等温,易于运行控制和管理,因而引起人们极大的关注[1]. 在高温蓄热方面,其核心为高温蓄热介质的选择.潜热蓄热介质主要有无机盐和金属等,其中在无机盐潜热蓄热介质中以碱金属碳酸盐的效果最好,它们在温度范围、蓄热密度以及稳定性等方面都比较适宜,价格也比较低廉[2].选用Na 2CO 3与Mg O 制备相变蓄热材料,采用直接接触换热方式,不需要换热器,能减少蓄热材料用量和缩小容器尺寸,因而可以较大幅度提高蓄热系统的经济性.同时这种高温复合相变蓄热材料对提高能源利用率和开发新能源都具有重要的意义. 1实验 1.1原料的选择 无机盐/陶瓷基复合相变蓄热材料,在结构上是把相变材料和陶瓷基体材料纯机械性地复合在一起,相变材料的熔化和凝固过程是在陶瓷基体材料中进行,所以对相变材料和陶瓷材料的选择相当苛刻.首先保证二者在高温下有良好的化学相容性和化学稳定性;二是熔融盐与陶瓷体间要有较好的润湿特性;三是

相变蓄热材料综述

相变虚热材料综述 蓄热技术是提高能源利用效率和保护环境的重要技术,可用于解决热能供给与需求失配的矛盾,在太阳能利用、电力“移峰填谷”、废热和余热的回收利用以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,是世界范围内的研究热点.目前,主要的蓄热方法有显热蓄热、潜热蓄热和化学反应蓄热三种.显热蓄热是利用物质的温度升高来存储热量的.利用陶瓷粒、水、油等的热容进行蓄热,把已经高温或低温变换的热能贮存起来加以利用,如固体显热蓄热的炼铁热风炉、蓄热式热交换器、蓄热式燃烧器等,通常的显热蓄热方式简单,成本低,但储存的热量小,其放热不能恒温的缺点化学反应蓄热是指利用可逆化学反应的结合热储存热能.发生化学反应时,可以有催化荆,也可以没有催化剂一种高密度高能量的蓄热方式,它的储能密度一般高于显热和潜热,此种储能体系通过催化剂和产物分离易于能量长期储存.潜热蓄热(相变蓄热)是利用物质在凝固/熔化、凝结/气化、凝华/升华以及其他形式的相变过程中,都要吸收或放出相变潜热的原理来进行能量储存的技术.利用相变材料相变时单位质量(体积)潜热,蓄热量非常大能把热能贮存起来加以利用,如空间太阳能发电用蓄热器,深夜电力调峰用蓄热器,其储能比显热一个数量级,而且放热温度恒定,但其储热介质一般有过冷、相分离、易老化等缺点。 一相变蓄热材料的分类 根据相变种类的不同,相变蓄热一般分为四类:固一固相变、固一液相变、液一气相变及固一气相变。由于后两种相变方式在相变过程中伴随有

大量气体的存在,使材料体积变化较大,因此尽管它们有很大的相变热,但在实际应用中很少被选用,固一固相变和固一液相变是实际中采用较多的相变类型。根据材料性质的不同,一般来说相变蓄热材料可分为:有机类、无机类及混合类相变蓄热材料。其中,石蜡类、脂酸类是有机类中的典型相变蓄热材料;结晶水合盐、熔融盐和金属及合金等是无机类中的典型相变蓄热材料。混合类又可分为:有机混合类、无机混合类及无机一有机混合类。 根据使用温度范围的不同,潜热蓄热材料(相变蓄热)又可分为分为高、中、低温三种. 1低温相变蓄热材料 低温相变蓄热材料主要有无机和有机两类无机相变材料主要包括结晶水合盐、熔融盐、金属或合金.结晶水合盐通常是中、低温相变蓄能材料中重要的一类,具有价格便宜,体积蓄热密度大,熔解热大,熔点固定,热导率比有机相变材料大,一般呈中性等优点.但在使用过程中会出现过冷、相分离等不利因素,严重影响了水合盐的广泛应用决过冷的办法主要有两种,一种是加入微粒结构与盐类结晶物相类似的物质作为成核剂.例如,Dr.Telkes经过千余次试验后发现在Na2SO。·10HzQ中加入硼酸能明显地降低过冷度;另一种是保留一部分固态相变材料,即保持一部分冷区,使未融化的一部分晶体作为成核剂,这种方法文献上称为冷指(Cold finger)法,虽然操作简单,但行之有效∞J.为了解决相分离的问题,防止残留固体物沉积于容器底部,人们也研究了一些方法,一种是将容器做成盘状,将这种很浅的盘状容器水平放臵有助于减少相分离;另一种更有效的方法是在混合物中添加合适的增稠剂,防止混合物中成分的分离,但并不妨碍

相变材料

相变材料的种类 摘要:相变储能材料对于能源的开发与应用具有重要意义。综述了相变储能材料的分类、相变特性、并展望其今后的发展方向。 关键字:无机相变材料;有机相变材料;储能;进展; 前言 相变材料是指随温度变化而改变形态并能提供潜热的物质。相变材料由固态变为液态或由液态变为固态的过程称为相变过程,这时相变材料将吸收或释放大量的潜热。相变材料可分为有机和无机相变材料。亦可分为水合相变材料和蜡质相变材料。相变材料具有在一定温度范围内改变其物理状态的能力。相变材料的分类相变材料主要包括无机PCM 、有机PCM 和复合PCM 三类。根据相变的方式不同,又可分为固—固相变,固液相变, 固气相变,液气相变.由于后两种相变方式在相变过程中伴随有大量气体存在,使材料体积变化较大,因此尽管它们有很大的相变热,但实际应用较少。根据使用的温度不同又可分为低温,中温,高温三种。 无机相变材料 固 -液相变材料是指在温度高于相变点时 ,物固相变为液相吸收热量 ,当温度下降时物相又由液相变为固相放出热量的一类相变材料。目前 , 固 -液无机盐高温相变材料主要为高温熔融盐、部分碱、混合盐。高温熔融盐主要有氟化物、氯化物、硝酸盐、硫酸盐等。它们具有较高的相变温度 ,从几百摄氏度至几千摄氏度 ,因而相变潜热较大。固 -固相变储能材料是利用材料的状态改变来储、放热的材料。目前 ,此类无机盐高温相变储能材料已研究过的有SCN NH 4,2KHF 等物质。2KHF 的熔化温度为 196 ℃,熔化热为 142 kJ/kg;SCN NH 4从室温加热到 150 ℃发生相变时 ,没有液相生成 ,相转变焓较高 ,相转变温度范围宽 ,过冷程度轻 ,稳定性好 ,不腐蚀 ,是一种很有发展前途的储能材料。 无机盐高温相变复合储能材料近年来 ,高温复合相变储能材料应运而生 ,其既能有效克服单一的无机物或有机物相变储能材料存在的缺点 ,又可以改善相变材料的应用效果以及拓展其应用范围。因此 ,研制高温复合相变储能材料已成为储能材料领域的热点研究课题之一。目前,已研究的无机盐高温复合相变材料

相变蓄冷

广州赛能冷藏科技有限公司 北京绿浩然环保科技有限公司 广州齐天冷藏技术有限公司 南通昊川工贸有限公司 上海苏振能源科技有限公司 北京优冷科技有限公司 1、北京建筑工程学院环境与能源工程系 《低温相变蓄冷材料蓄冷热力特性实验研究》-本文采用实验方法测试了低温相变蓄冷材料(水合盐A 和B 二元盐溶液)蓄冷过程中温度场的分布, 用间接法测试了相变容器不同半径序列下的浓度值, 对选定的两种相变水合盐体系的相变过程进行了研究, 得出了两种体系给定浓度下的凝固点、过冷度等信息。研究结果对低温相变蓄冷材料的选择具有指导作用。 2、清华大学 《低温相变蓄冷材料蓄冷特性实验研究》-为使蓄冷技术能在医药、食品等行业对环境温度有特殊要求( 低于0 ) 的场所得到应用, 扩大蓄冷技术的应用范围, 对一种相变温度约为- 12的低温相变蓄冷材料TH -12进行了蓄放冷性能的实验研究。结果表明, 该材料具有很好的重复性, 是一种适于工业应用的低温蓄冷材料。 3、顺德职业技术学院机电工程系 《纳米TiO2- BaCl2- H2O 复合低温相变蓄冷材料的制备》-研究了TiO2 纳米颗粒在共晶盐BaCl2 水溶液中的分散行为, 考察了分散剂的种类和浓度以及溶液的pH 值对TiO2 悬浮液的分散性及其稳定性的影响规律。采用TiO2 粒子的体积分数表征纳米TiO2 在共晶盐水溶液中的分散状态,并利用稳定机理对共晶盐水溶液中TiO2 分散稳定性作了解释。最后

获得了一种较好的制备纳米复合蓄冷材料的方法。 《低温相变蓄冷纳米流体粘度特性实验研究》-测量了TiO2-BaCl2-H2O 纳米流体的粘度,分析了粒子体积分数、温度对纳米流体粘度影响的变化规律。结果表明,纳米流体的粘度随TiO2粒子体积分数的增加呈加速上升的趋势,随温度呈反比变化; 体积分数越高的纳米流体,在较低温度下的粘度增幅比高温时大。流变曲线表明,在所配制的体积分数内,TiO2-BaCl2-H2O 纳米流体的粘度不随剪切速率的变化而变化,为典型的牛顿型流体。 《DSC 法测量低温相变蓄冷纳米流体的比热容》-介绍差示扫描量热仪( DSC) 测量液体比热容的原理和方法, 并测量4 种不同体积分数的TiO2-BaCl2-H2O纳米流体比热容。结果表明, 加入纳米粒子后其比热容都有所降低, 并随TiO2 体积分数的增大而逐渐减小。 4、重庆大学刘玉东[7]、何钦波[8-9]把纳米TiO2粉体加入BaCl2共晶盐水溶液中,配制成TiO2-BaCl2-H2O纳米流体相变蓄冷材料,并研究了复合相变蓄冷材料的热物性和蓄/ 释冷特性,其导热系数显著增加,并且能大大降低过冷度。 上海交通大学李金平博士[10]研究了制冷剂气体水合物在纳米流体中的生成过程,表明纳米粒子的加入使得气体水合物快速结晶和生长,通过此方法得到的HCFC141b气体水合物具有生成速度快、水合率高、静态生成过程等特点。 Khanafer[11]等人建立了纳米流体在二维封闭腔内的对流换热模型,模拟结果表明纳米流体具有优良的对流换热性能。 Khodadadi[6]等人利用数值计算和模拟的方法研究了Cu-H2O纳米流体的相变过程,纳米流体显示出较好的蓄/释冷特性,结冰速率比纯水明显加快。 5、华南理工大学传热强化与过程节能教育部重点实验室 《Al2O3-H2O纳米流体相变蓄冷特性研究》-在水介质中悬浮少量的纳米氧化铝颗粒(粒径20nm),通过添加分散剂和超声波振荡,制备成均匀分散的Al2O3-H2O纳米流体。对水和Al2O3-H2O纳米流体的相变蓄冷特性进行了实验比较。结果表明,加入纳米Al2O3可降低水的过冷度,缩短结冰时间;在相同的时间内,纳米流体的蓄冷量要大于纯水。 6、浙江工业大学生环学院

FTC相变蓄能保温材料

一、产品概述 FTC自调温相变节能材料是利用植物临界萃取、真空冷冻析层、蒸馏、皂化等新工艺复合而成,是根据不同温度相变点调节室温的纯天然原创科技新材料。 本材料突破传统保温材料单一热阻性能,具有热熔性和热阻性两大绝热性。通过二元相变原理,相变潜热值大,具有较高蓄热密度,蓄、放热过程近似等温的特点,节能效果明显。经国家建设部科技成果鉴定,专家一致认为“该产品引进了相变蓄能机理,潜热值较大,通过材料相变,熔化吸热,凝结放热使室内温度相对平衡,达到建筑节能,推广后会有较好的社会和经济效益,该项研究成果对相变蓄能在建筑相关应用领域有技术方面的推进,具有国内先进水平。” 二、综合特性 1、潜热节能 利用相变调温机理,通过蓄能介质的相态变化实现对热能储存和释放,从而改善室内热循环质量。当环境温度低于一定值时,相变材料由液态凝结为固态,释放热量;当环境温度高于一定值时,相变材料由固态熔化为液态,吸收热量,使室温相对平衡。 经国家权威部门检测达到节能65%要求。 相变材料可收集多余热量,适时平稳释放,梯度变化小,有效降低损耗量,室温可趋于稳定。 利用相变调温机理,可使电负荷“削峰平谷”,充分利用低谷电价,降低住户用能成本,减少能源浪费,具有可观的社会效益和经济效益。 利用相变调温机理,对建筑分户采暖,具有广泛推动作用,特别是对首层、顶层、边角处居住环境的室温,夏季隔热、冬季保温均可起到平衡作用。 在新楼装饰和旧楼改造中,克服墙面裂缝、结露、发霉、起皮等先天不足弊病。 2、安全可靠 与基底整体粘结,随意性好,无空腔,避免负风压撕裂和脱落。有效克服板材拼接后边肋、阳角外翘变形面砖脱落等问题。 材料中有机物与主墙基底存在的游离酸反应形成化合物,渗入主墙微孔隙中,形成共同体,确保干态粘结性,并改善湿态粘结保值率,具有极好粘结性。

相关文档