文档库 最新最全的文档下载
当前位置:文档库 › 培优训练之直线与圆的位置关系切线专题

培优训练之直线与圆的位置关系切线专题

培优训练之直线与圆的位置关系切线专题
培优训练之直线与圆的位置关系切线专题

《直线与圆的位置关系、切线》

培优训练

参考答案与试题解析

一.选择题(共12小题)

1.(2013?杨浦区二模)⊙O的半径为R,直线l与⊙O有公共点,如果圆心到直线l的距离为d,那么d与R的大小关系是(B)

A.d≥R B.d ≤R C.d>R D.d <R

考点:直线与圆的位置关系.

专题:探究型.

分析:直接根据直线与圆的位置关系进行解答即可.

解答:解:∵直线l与⊙O有公共点,

∴直线与圆相切或相交,即d≤R.

故选B.

点评:本题考查的是直线与圆的位置关系,即判断直线和圆的位置关系:设⊙O的半径为r,

圆心O到直线l的距离为d,当d<r时,直线l和⊙O相交;当d=r时,直线l和⊙O相切;当

d>r时,直线l和⊙O相离.

2.(2014?嘉定区一模)已知⊙O的半径长为2cm,如果直线l上有一点P满足PO=2cm,那么

直线l与⊙O的位置关系是(D)

A.相切B.相交C.相离或相切D.相切或相交

考点:直线与圆的位置关系.

分析:根据直线与圆的位置关系来判定.判断直线和圆的位置关系:①直线l论.和⊙O相切?d=r;

③直线l和⊙O相离?d>r.分OP垂直于直线l,lOP和⊙不垂直直线O相交?dl<两种情况讨r;②直线解答:解:当OP垂直于直线l时,即圆心O到直线l的距离d=2=r,⊙O与l相切;

当OP不垂直于直线l时,即圆心O到直线l的距离d<2=r,⊙O与直线l相交.

故直线l与⊙O的位置关系是相切或相交.

故选D.

点评:本题考查直线与圆的位置关系.解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.

3.(2013?宝应县二模)在平面直角坐标系中,以点(3,﹣5)为圆心,r为半径的圆上有且仅有两点到x轴所在直线的距离等于1,则圆的半径r的取值范围是(D)

A.r>4 B.0 <r<6 C.4≤r<6 D.4 <r<6

考点:直线与圆的位置关系.

专题:压轴题.

分析:根据题意可知,本题其实是利用圆与直线y=1和直线y=﹣1之间的位置关系来求得半径r的取值范围,根据相离时半径小于圆心到直线的距离,相交时半径大于圆心到直线的距离即可求得r的范围.

解答:解:根据题意可知到x轴所在直线的距离等于1的点的集合分别是直线y=1和直线y=﹣1,

若以点(3,﹣5)为圆心,r为半径的圆上有且仅有两点到x轴所在直线的距离等于1,

那么该圆与直线y=﹣1必须是相交的关系,与直线y=1必须是相离的关系,

所以r的取值范围是|﹣5|﹣|﹣1|<r<|﹣5|+1,

.6<r<4即.

故选D.

解决本题要认真分析题意,理清其中的数量关系.看似求半径与x轴之间的关系,其实是利用圆点评:

与直线y=1和直线y=﹣1之间的位置关系来求得半径r的取值范围.

4.(2014?张家港市模拟)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已

AC=3,BC=6,则⊙O的半径是(知D AE=2,)

D..B.4 C A.3 24

切线的性质;圆周角定理;相似三角形的判定与性质;射影定理.考点:压轴题.专题:

延长EC交圆于点F,连接DF分析:.则根据90°的圆周角所对的弦是直径,得DF是直径.根据射影定理先求直径,再得半径.

解:延长EC交圆于点F,连接解答:DF.

则根据90°的圆周角所对的弦是直径,得DF是直径.

∵DE∥BC,

∴△ADE∽△

ABC.

∴.则DE=4.

在直角△ADF中,根据射影定理,得

=4.EF=

DF=根据勾股定理,得,=4

2.则圆的半径是故选

D.

点评:此题要能够通过作辅助线,把直径构造到直角三角形中.熟练运用相似三角形的性质、圆周角定理的推论以及射影定理和勾股定理.

5.(2013?青岛)直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是(C)

A.r<6 B.r =6 C.r>6 D.r ≥6

考点:直线与圆的位置关系.

专题:探究型.

分析:直接根据直线与圆的位置关系进行判断即可.

解答:解:∵直线l与半径为r的⊙O相交,且点O到直线l的距离d=6,

∴r>6.

故选C.

点评:本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小r

<d?相交O和⊙l关系完成判定.直线

6.(2013?徐汇区二模)在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是(B)

A.相离B.相切C.相交D.无法确定

考点:直线与圆的位置关系.

分析:过B作BD⊥AC交CA的延长线于D,求出BD,和⊙B的半径比较,即可得出答案.解答:

解:过B作BD⊥AC交CA的延长线于D,

∵∠BAC=150°,

∴∠DAB=30°,

AB=×2=1,∴BD=即B到直线AC的距离等于⊙B的半径,

∴半径长为1的⊙B和直线AC的位置关系是相切,

故选B.

本题考查了直线与圆的位置关系的应用,主要考查学生的推理能力.点评:

7.(2014?天津)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于(C)

B.2 5°C.40°D.5 A.20°0°

切线的性质;圆心角、弧、弦的关系.考点:几何图形问题.专题:

连接OA,根据切线的性质,即可求得∠C的度数.分析:

解:如图,连接OA解答:,

∵AC是⊙O的切线,

∴∠OAC=90°,

∵OA=OB,

∴∠B=∠OAB=25°,

∴∠AOC=50°,

∴∠C=40°.

故选:C.

本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.点评:

8.(2014?无锡)如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,)A,其中正确结论的个数是(AB=2BC;③BD=BC;②AD=CD个结论:①3给出下

面.

A. 3 B.2 C. 1 D.0

切线的性质.:考点几何图形问题.专题:

连接OD,CD是⊙分析:O的切线,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等0所对的直角边等于斜边的一半,继而得30BDC=30°,再结合在直角三角形中边三角形,∠C=∠到结论①②③成立.

解:如图,连接OD,解答:

∵CD是⊙O的切线,

∴CD⊥OD,

∴∠ODC=90°,

又∵∠A=30°,

∴∠ABD=60°,

∴△OBD是等边三角形,

∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.

∴∠C=∠BDC=30°,

∴BD=BC,②成立;

∴AB=2BC,③成立;

∴∠A=∠C,

∴DA=DC,①成立;

综上所述,①②③均成立,

故答案选:

A.

九年级圆基础知识点,(圆讲义)

一对一授课教案 学员姓名:____何锦莹____ 年级:_____9_____ 所授科目:___数学__________ 上课时间:____ 年月日_ ___时分至__ __时_ __分共 ___小时 一、圆的定义: 1. 描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随 之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径. 2 圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作“O ⊙”,读作“圆O”. 3 同圆、同心圆、等圆: 圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆. 注意:同圆或等圆的半径相等. 1. 弦:连结圆上任意两点的线段叫做弦. 2. 直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍. 3. 弦心距:从圆心到弦的距离叫做弦心距. 4. 弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作AB,读作弧AB. 5. 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 6. 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. 7. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.

8. 弓形:由弦及其所对的弧组成的图形叫做弓形. 1. 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1?的圆心 角,我们也称这样的弧为1?的弧.圆心角的度数和它所对的弧的度数相等. 2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角. 3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半. 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90?的圆周角所对的弦是直径. 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦相等,所对的弦的弦心距相等. 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等. 一、圆的对称性 1. 圆的轴对称性:圆是轴对称图形,对称轴是经过圆心的任意一条直线. 2. 圆的中心对称性:圆是中心对称图形,对称中心是圆心. 3. 圆的旋转对称性:圆是旋转对称图形,无论绕圆心旋转多少角度,都能与其自身重合. 二、垂径定理 1. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 2. 推论1:⑴平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; ⑵弦的垂直平分线经过圆心,并且平分弦所对的两条弧; ⑶平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 3. 推论2:圆的两条平行弦所夹的弧相等. 练习题;

直线与圆的位置关系-培优题型

直线与圆的位置关系 题型培优 一、考点·方法·破译 1. 理解掌握圆的切线、割线的概念,懂得直线与圆的三种位置关系及判别依据; 2. 理解掌握切线的性质定理、判定定理,能熟练运用会根据需要添加辅助线; 3. 理解掌握切线长定理,能利用切线相关定理进行推理论证。 二、经典· 考题· 赏析 题型1(泉州)已知直线y =kx (k ≠0)经过点(3,-4),(1)求k 的值;(2)将该直线向上平移m (m >0)个单位,若平移后得到直线与半径为6的⊙O 相离(点O 为坐标原点),试求m 的取值范围 【变式题组】 1.(辽宁)如图,直线y = 3 3 x +3 与 x 轴、y 轴分别相交 于A,B 两点,圆心P 的坐标为 (1,0),⊙P 与y 轴相切于点O ,若将⊙P 沿x 轴向左移动,当⊙P 与该直线相交时, 横坐标为整数的点P 有个 2.(永州)如图,在平面直角坐标系内,O 为原点,A 点的坐标为(-3,0),经过A 、O 两点作半径为5 2的⊙O ,交 y 轴的负半轴于点B (1)求B 点的坐标; (2)过B 点作⊙C 的切线交x 轴于点D ,求直线BD 的解析式 题型2(襄樊)如图所示,AB 是⊙O 的直径,点D 在AB 的延长线上, DC 切⊙O 于C ,若∠A =25°,则∠D 等于( ) A. 40° B.50° C.60° D.70° 【变式题组】 3.(徐州、南京)如图,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点C ,则AB 的长为( ) A .4cmB . 5cmC . 6cmD .8cm 4.(南充)如图,从⊙O 外一点P 引⊙O 的两条切线P A 、PB ,切点分别是A ,B,若P A =8cm ,C 是AB 上的一个动点(点C 与A 、B 两点不重合),过点C 作⊙O 的切线,分别交P A 、PB 于点D 、E ,则△PED 的周长是 . 5.(徐州)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠C =18°,则∠CDA =. 6.(荆门)如图,Rt △ABC 中,∠C =90°,AC =6,BC =8,则△ABC 的内切圆半径r =. 题型3(日照)如图,⊙O 的直径AB =4,C 为圆周上一点,AC =2,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点E (1)求∠AEC 的度数; (2)(2)求证:四边形OBEC 是菱形 【变式题组】

初中一对一精品辅导讲义:圆与圆的位置关系.docx

教学目标 重点、难点考点及考试要求1、了解圆与圆的五种位置关系; 2、经历探索两圆的位置关系与两圆半径、圆心距的数量关系间的内在联系的过程,并运用相关结论解决问题; 1、位置关系与对应数量关系的运用 2、两圆的位置关系对应数量关系的探索 1、圆与圆的五种位置关系 2、两圆的位置关系与两圆半径、圆心距的数量关系 教学内容 第一课时圆与圆的位置关系知识点梳理 课前检测 1、⊙ O的半径是 6,圆心到直线l的距离为 3,则直线l与⊙ O的位置关系是() A.相交B.相切C.相离D.无法确定 2、如图 1,AB与⊙ O切于点 B, AO=6 ㎝, AB= 4 ㎝,则⊙ O的半径为() A、4 5 ㎝ B、25 ㎝ C、2 13㎝ D、13 ㎝ 3、如图 2,已知⊙ 0 的直径 AB与弦 AC的夹角为 35°,过 C点的切线 PC与 AB的 延长线交于点 P,则么∠ P 等于() A.150B.200C.250D.300 图 1图2图3 4、如图 3,AB与⊙ O切于点 C, OA=OB,若⊙ O的直径为 8cm,AB=10cm,那么 OA的长是() A.41B.40 C. 14 D. 60 5、已知:如图,△ ABC中, AC=BC,以 BC为直径的⊙ O交 AB于点 D,过点 D 作 DE⊥ AC于点 E,交 BC的延长线于点 F. 求证:( 1) AD=BD;(2)DF是⊙ O的切线.

知识梳理 (一)两圆位置关系的定义 注:( 1)找到分类的标准: ①公共点的个数; ②一个圆上的点是在另一个圆的内部还是外部 (2)两圆相切是指两圆外切与内切 (3)两圆同心是内含的一种特殊情况 (二)两圆位置关系与两圆半径、圆心距的数量关系之间的联系:两圆的半径分别为R、r ,圆心距为 d,那么 两圆外离 d > R+r 两圆外切 d =R+r 两圆相交R- r< d < R+ r ( R≥ r ) 两圆内切 d =R-r (R > r ) 两圆内含 d < R-r (R > r ) (三) . 借助数轴进一步理解两圆位置关系与量关系之间的联系

高中数学-圆与圆的位置关系教案

圆与圆的位置关系教案 【教学目标】 1.能根据给定圆的方程,判断圆与圆的位置关系. 2.通过圆与圆的位置关系的学习,体会用代数方法解决几何问题的思想. 3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯. 【教学重难点】 教学重点:能根据给定圆的方程,判断圆与圆的位置关系. 教学难点:用坐标法判断两圆的位置关系. 【教学过程】 ㈠复习导入、展示目标 问题:如何利用代数与几何方法判别直线与圆的位置关系? 前面我们运用直线与圆的方程,研究了直线与圆的位置关系,这节课我们用圆的方程,讨论圆与圆的位置关系. ㈡检查预习、交流展示 1.圆与圆的位置关系有哪几种呢? 2.如何判断圆与圆之间的位置关系呢? ㈢合作探究、精讲精练 探究一:用圆的方程怎样判断圆与圆之间的位置关系? 例1.已知圆 C 1:01322 2 =++++y x y x ,圆C 2 : 02342 2 =++++y x y x ,是 判断圆C 1 与圆C 2 的位置关系. 解析:方法一,判断圆与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据连心线的长与两半径长的和或两半径长的差的绝对值的大小关系,判断圆与圆的位置关系. 解:(法一) 圆C 1 的方程配方,得4 923)1(2 2 = +?? ? ??++y x . 圆心的坐标是??? ??- -23,1,半径长2 3 1 =r . 圆C 2 的方程配方,得4 1723)2(2 2 = +? ? ? ??++y x .

圆心的坐标是?? ? ??--23,2,半径长 2 172= r . 连心线的距离为1, 217321+= +r r ,2 3 1721-=-r r . 因为 2 17 312317+<<-, 所以两圆相交. (法二) 方程 01322 2 =++++y x y x 与02342 2 =++++ y x y x 相减,得 2 1 = x 把2 1= x 代入01322 2=++++y x y x ,得 011242 =++y y 因为根的判别式016144>-=?,所以方程011242 =++y y 有两个实数根,因此两 圆相交. 点评:巩固用方程判断圆与圆位置关系的两种方法. 变式2 2 2 2 (1)(2)(2)1(2)(5)16x y x y ++-=-+-=与的位置关系 解:根据题意得,两圆的半径分别为1214r r ==和,两圆的圆心距 5.d == 因为 12d r r =+,所以两圆外切. ㈣反馈测试 导学案当堂检测 ㈤总结反思、共同提高 判断两圆的位置关系的方法: (1)由两圆的方程组成的方程组有几组实数解确定; (2)依据连心线的长与两半径长的和12r r +或两半径的差的绝对值的大小关系. 【板书设计】 一.圆与圆的位置关系 (1)相离,无交点 (2)外切,一个交点 (3)相交,两个交点;

培优训练之《直线与圆的位置关系、切线》专题

直线与圆的位置关系、切线》 培优训练 参考答案与试题解析 一.选择题(共12小题) 1. (2013杨浦区二模)00的半径为R,直线I与OO有公共点,如果圆心到直线I的距离为d ,那么d与R的大小关系是(B ) A d >R B d WR C d >R D d v R 考点:直线与圆的位置关系. 专题:探究型. 分析:直接根据直线与圆的位置关系进行解答即可. 解:???直线I与O0有公共点, 解答: ??直线与圆相切或相交,即d W R. 故选B. 点评: 本题考查的是直线与圆的位置关系,即判断直线和圆的位置关系:设O0的半径为r,圆心O 到直线I的 距离为d ,当d v r时,直线I和OO相交;当d=r时,直线I和00相切;当d > r 时,直线I和O0相离. 2. (2014?嘉定区一模)已知OO的半径长为2cm ,如果直线I上有一点P满足PO=2cm ,那么直线I与00的位 置关系是(D ) A相切B相交C相离或相切D相切或相交

第1页共19页

考点:直线与圆的位置关系? 分析: 情据讨线与相位置关系熠直线l和判断直线和?圖的位置分JOP垂直于直直线l和G OP相垂直直线r;(两直解答:解:当0P垂直于直线I时,即圆心0到直线I的距离d=2=r ,00与I相切; 当OP不垂直于直线I时,即圆心O到直线I的距离d v 2=r , 00与直线I相交. 故直线I与00的位置关系是相切或相交. 故选D. 点评:本题考查直线与圆的位置关系 .解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定. 3. (2013宝应县二模)在平面直角坐标系中,以点(3, - 5)为圆心,r为半径的圆上有且仅有两点到x轴所在直线的距离等于1,则圆的半径r的取值范围是(D) A r >4 B 0v r v 6 C 4 < r V D 4 v r v 6

数学:4.2.2《圆与圆的位置关系》教案(新人教A必修2)

4..2.2圆与圆的位置关系 教学目的:让学生掌握用解方程组法或求圆心之间距离与两圆半径之和、两圆半径之 差之间的关系判断圆与圆的位置关系。 教学重点:圆与圆位置关系的判断。 教学难点:圆与圆位置关系的判断。 教学过程 一、复习提问 初中学过圆与圆有几种位置关系?怎样用数量关系表示圆与圆的位置关系? 设两圆半径为r 1,r 2,圆心距为d ,关系如下表(用数轴也可以表示)。 外离 外切 相交 内切 内含 d >r 1+r 2 d >r 1+r 2 r 1-r 2<d <r 1+r 2 d =r 1-r 2 d <r 1+r 2 二、新课 例3、已知圆C 1:x 2+y 2+2x +8y -8=0,圆C 2:x 2+y 2-4x -4y -2=0,试判 断圆C 1与圆C 2的关系。 解法一:圆C 1与圆C 2的方程联立,得到方程组: ①-②,得:x +2y -1=0, 即y =21x 代入①,并整理,得: x 2-2x -3=0 此方程的判别式:△=16>0 方程有两个不同的实数根,所以两圆有两个公共点,解上述方程,可求得两个交

点坐标。 解法二:把圆C1化成标准方程:(x+1)2+(y+4)2=25, 圆心为点(-1,-4),半径为5 圆C2化成标准方程:(x-2)2+(y-2)2=10, 圆心为点(2,2),半径为10 两圆的连心线长(圆心距)为: 2 2)2 - + -=35 - (- 4 1 ( )2 两圆半径之和:r1+r2=5+10 两圆半径之差:r1-r2=5-10 因为5-10<35<5+10,即r1-r2<35<r1+r2 所以,两圆相交,有两个公共点 解答此题之前,也可以根据圆心和半径画出两个圆的草图,看两圆有无交点,对解题有一定的帮助。 练习:P141 作业:P1444、5、6、7

与圆有关的位置关系(讲义)

与圆有关的位置关系(讲义)?知识点睛 1.点与圆的位置关系 d表示__________的距离,r表示___________. ①点在圆外?_____________; ②点在圆上?_____________; ③点在圆内?_____________. 三点定圆定理:_________________________________. 注:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心. 2.直线与圆的位置关系 d表示__________________的距离,r表示__________. ①直线与圆相交?____________; ②直线与圆相切?____________; ③直线与圆相离?____________. 切线的判定定理:__________________________________ __________________________________________________; 切线的性质定理:__________________________________.*切线长定理:______________________________________ __________________________________________________.注:与三角形各边都相切的圆叫做三角形的内切圆,内切圆 的圆心是三角形三条角平分线的交点,叫做三角形的内心.*3. 圆与圆的位置关系 d表示__________的距离,R表示________,r表示 _________. ①圆与圆外离?_________________; ②圆与圆外切?_________________; ③圆与圆内切?_________________; ④圆与圆内含?_________________; ⑤圆与圆相交?_________________. 4.圆内接正多边形 _______________________________叫做圆内接正多边形,这个圆叫做该正多边形的_________. 正多边形的中心:___________________________________; 正多边形的半径:___________________________________; A

第二章 直线与圆的位置关系单元提升培优测试题(含答案)

第2章《直线与圆的位置关系》单元提升培优测试题 一、选择题(本题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的. 1﹒如图,∠APB =30°,O 为P A 上一点,且PO =6,以点O 为圆心,半径为OB 的位置关系是( ) A ﹒相离 B ﹒相切 C ﹒相交 D ﹒以上三种情况均有可能 第1题图 第2题图 第3题图 第4题图 2﹒如图,AB 是⊙O 的直径,点C 在⊙O 上,AE 是⊙O 的切线,A 为切点,连结BC 并延长交AE 于点D .若∠AOC =80°,则∠ADB 的度数为( ) A ﹒20° B ﹒40° C ﹒50° D ﹒60° 3﹒如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于 E , F , G 三点,过点D 作⊙O 的切线DM ,交BC 于M ,切点为N ,则DM 的长为( ) A ﹒ 133 B ﹒92 C D ﹒4﹒如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm 和3cm ,大圆的弦AB 与小圆相切,则劣弧AB 的长为( ) A ﹒2π B ﹒4π C ﹒6π D ﹒8π 5﹒如图,P A ,PB 是⊙O 的两条切线,A 、B 为切点,AC 是⊙O 的直径.若∠P =40°,则∠BAC 的度数为( ) A ﹒20° B ﹒25° C ﹒30° D ﹒40° 第5题图 第6题图 第7题图 第8题图 6﹒如图,如果等边△ABC 的内切圆⊙O 的半径为2,那么△ABC 的面积为( ) A ﹒ B ﹒ C ﹒ D ﹒7﹒如图,以半圆O 中的一条弦BC (非直径)为对称轴将弧BC 折叠后与直径AB 交于点D , 若 AD =2 ,且AB =10,则CB 的长为( )

人教新课标版数学高一必修二练习 4.2.2圆与圆的位置关系

第四章 4.2 4.2.2 一、选择题 1.圆C1:x2+y2+4x+8y-5=0与圆C2:x2+y2+4x+4y-1=0的位置关系为() A.相交B.外切 C.内切D.外离 [答案] C [解析]由已知,得C1(-2,-4),r1=5,C2(-2,-2),r2=3,则d=|C1C2|=2,∴d =|r1-r2|.∴两圆内切. 2.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是() A.(x-3)2+(y-5)2=25 B.(x-5)2+(y+1)2=25 C.(x-1)2+(y-4)2=25 D.(x-3)2+(y+2)2=25 [答案] B [解析]设⊙C2上任一点P(x,y),它关于(2,1)的对称点(4-x,2-y)在⊙C1上,∴(x-5)2+(y+1)2=25. 3.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a、b应满足的关系式是() A.a2-2a-2b-3=0 B.a2+2a+2b+5=0 C.a2+2b2+2a+2b+1=0 D.3a2+2b2+2a+2b+1=0 [答案] B [解析]利用公共弦始终经过圆(x+1)2+(y+1)2=4的圆心即可求得.两圆的公共弦所在直线方程为:(2a+2)x+(2b+2)y-a2-1=0,它过圆心(-1,-1),代入得a2+2a+2b +5=0. 4.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r=() A.5 B.4 C.3 D.2 2 [答案] C [解析]设一个交点P(x0,y0),则x20+y20=16,(x0-4)2+(y0+3)2=r2,∴r2=41-8x0+6y0,

人教版九年级数学与圆有关的位置关系讲义(含解析)(2020年最新)

第11讲与圆有关的位置关系 知识定位 讲解用时:3分钟 A、适用范围:人教版初三,基础偏上 B、知识点概述:本讲义主要用于人教版初三新课,本节课我们首先学习与圆有 关的三类位置关系:点与圆的位置关系、直线与圆的位置关系以及圆与圆的位置关系,重点掌握各种与圆位置关系的判断方法,其次学习切线的有关性质与判定以及切线长定理及应用,能够结合已知题意证明相关切线,最后掌握圆的外接三角形与三角形内切圆概念。本节课的重点是三类位置关系的判断方法以及切线的性质与判定定理,属于中考重点内容,也是难点之一,希望同学们能够好好学习,扎实基础。 知识梳理 讲解用时:25分钟 与圆有关的位置关系 (1)点与圆的位置关系 点与圆的位置关系有3种,设⊙O的半径为r,点P到圆心的距离OP=d,则有: ⊙点P在圆外⊙d>r ⊙点P在圆上⊙d=r ⊙点P在圆内⊙d<r 注意: 点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆 心距离与半径的关系可以确定该点与圆的位置关系。

(2)直线与圆的位置关系 直线和圆的3种位置关系: ⊙相离:一条直线和圆没有公共点; ⊙相切:一条直线和圆只有一个公共点,这条直线叫圆的切线,唯一的公共点叫切点; ⊙相交:一条直线和圆有两个公共点,这条直线叫圆的割线; 判断直线和圆的位置关系: ⊙直线l和⊙O相交⊙d<r ⊙直线l和⊙O相切⊙d=r ⊙直线l和⊙O相离⊙d>r (3)圆与圆的位置关系 ⊙外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部; ⊙外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部; ⊙相交:两个圆有两个公共点; ⊙内切:两个圆有唯一公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部; ⊙内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部。 判断圆和圆的位置关系: ⊙两圆外离⊙d>R+r; ⊙两圆外切⊙d=R+r; ⊙两圆相交⊙R﹣r<d<R+r(R≥r); ⊙两圆内切⊙d=R﹣r(R>r); ⊙两圆内含⊙d<R﹣r(R>r).

讲义_直线与圆的位置关系

一、直线和圆的位置关系的定义、性质及判定 1、设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表: 从另一个角度,直线和圆的位置关系还可以如下表示:

二、切线的性质及判定 1. 切线的性质: 定理:圆的切线垂直于过切点的半径. 推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心. 2. 切线的判定: 定义法:和圆只有一个公共点的直线是圆的切线; 距离法:到圆心距离等于半径的直线是圆的切线; 定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线长和切线长定理: ⑴ 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长. ⑵ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. ①切线的判定定理 设OA 为⊙O 的半径,过半径外端A 作l ⊥OA ,则O 到l 的距离d=r ,∴l 与⊙O 相切.因此,我们得到:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 注:定理的题设①“经过半径外端”,②“垂直于半径”,两个条件缺一不可.结论是“直线是圆的切线”.举例说明:只满足题设的一个条件不是⊙O 的切线. _A _ l _ l _A _ l

上 ②切线的性质定理及其推论 切线的性质定理:圆的切线垂直于过切点的半径. 三、三角形内切圆 1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形. 2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形. 3.直角三角形的内切圆半径与三边关系 (1) (2) 图(1)中,设a b c ,,分别为ABC ?中A B C ∠∠∠,,的对边,面积为S 则内切圆半径(1)s r p =,其中()12p a b c =++; 图(2)中,90C ∠=?,则()1 2 r a b c =+- 四、典例分析:切线的性质及判定 _ O _F _E _ D _ C _ B _ A _ C _ B _ A _ C _ B _ A _c _ b _a _c _ b _a _T _A

初中数学《圆》全章讲义有例题培训讲学

《圆》 内容简介:1、圆的相关概念;2、垂径定理;3、圆心角、圆周角定理;4、与圆有关的位置关系; 5、切线及切线长定理; 6、弧长及扇形面积。 【知识要点1】 圆的概念 集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 例1 已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB上的点,且AC=BD.求证:AD=BC. 例2 如图,在⊙O中,AB,CD为⊙O的两条直径,AE=BF,求证四边形CEDF 是平行四边形.

点与圆的位置关系 1、点在圆内?d r ?点A在圆外; 【知识要点3】 直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r +; 外切(图2)?有一个交点?d R r =+; 相交(图3)?有两个交点?R r d R r -<<+; 内切(图4)?有一个交点?d R r =-; 内含(图5)?无交点?d R r <-; r R d 图3r R d r R d 图4 r R d 图5 r R d

九年级(上)培优讲义第6讲与圆有关的位置关系

C O A B P 第6讲: 与圆有关的位置关系 一、建构新知 1.判别直线是圆的切线有两种方法,如果直线与圆有交点,则连接交点与圆心,证这条线段垂直于直线即可;如果直线与圆没有直接的联系,则过圆心作直线的垂线段,证垂线段等于圆的半径即可。 2.求线段的长度有以下常用的方法: (1)用勾股定理,适用于已知两边的直角三角形中; (2)用相似三角形,适用于有相似三角形的图形中; (3)面积法,适用于有直角三角形的图形中有高的存在。 3.圆的切线性质、判定,与圆有关的基本性质,直角三角形相关知识等.在运用切线的性质时,若已知切点,连接切点和圆心,得垂直;若不知切点,则过圆心向切线作垂直,即“知切点连半径,无切点作垂直”. 4.圆的切线垂直于过切点的半径,可以把直线和圆的位置关系问题转化为直角三角形的问题解决;根据同圆的半径相等,可以建立等腰三角形解答问题. 5. 从整体把握图形,找全等、相似、等腰三角形;求线段的长要从局部入手,若是直角三角形则用勾股定理,若是相似则用比例式求,要掌握一些求线段长的常用思路和方法. 二、经典例题 例1. 如图,已知AB 是⊙O 的直径,P 为⊙O 外一点,且OP ∥BC ,∠P =∠BAC . (1)求证:P A 为⊙O 的切线; (2)若OB =5,OP =25 3 ,求AC 的长.

例2. 如图AB 是⊙O 的直径,AC 、 DC 为弦,∠ACD =60°,P 为AB 延长线上的点,∠APD =30°. (1)求证:DP 是⊙O 的切线; (2)若⊙O 的半径为3cm ,求图中阴影部分的面积. 例3.如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF =∠ABC . (1)求证:AB =AC ; (2)若AD =4,cos ∠ABF =5 4 ,求DE 的长.

直线与圆的位置关系的培优.

直线与圆的位置关系的培优 1、如图,已知在△ABC中,∠ACB=90°,BC是⊙O的直径,AB交⊙O于D,E是AC上一点。(1)、若E是AC的中点,则DE是⊙O的切线,为什么? (2)、若DE是⊙O的切线,则E是AC的中点,为什么? 2. 如图,直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上一点,DE平分∠ADC,CE 平分∠BCD,以AB为直径的圆与边CD有怎样的位置关系? 3.已知:如图,AB是⊙O的直径,BC是⊙O的切线,连AC交⊙O于D,过D作⊙O的切线EF,交BC于E点.求证:OE//AC. 切线相关拓展 1. 已知正三角形的边长为6,则该三角形的外接圆半径,内切圆的半径各为____________。

N 2、三角形的三边长分别为5㎝、12㎝、13㎝,则三角形的内切圆的面积为________ 3、已知三角形的内切圆半径为3cm ,三角形的周长为18cm ,则该三角形的面积为 。 4.已知△ABC 的内切圆O 与各边相切于D 、E 、F ,那么点O 是△DEF 的( ) A .三条中线交点 B .三条高的交点 C .三条角平分线交点 D .三条边的垂直平分线的交点 5.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4.若以C 为圆心,R 为半径所作的圆与斜边AB 只有一个公共点,则R 的取值范围是 6.如图,PA,PB 是⊙O 的两条切线PA=8,过AB 弧上一点C,作切线分别交PA,PB 于D,E,若∠P=40°,求∠DOE .三角形PDE 的周长等于 7.如图,ΔABC 中,∠C=90°,圆O 分别与AC 、BC 相切于M 、N ,点O 在AB 上,如果AO=15㎝,BO=10㎝,求圆O 的半径. 8、在Rt △ABC 中,∠A =900,点O 在BC 上,以O 为圆心的⊙O 分别与AB 、AC 相切于E 、F ,若AB =a ,AC =b ,则⊙O 的半径为( ) A 、ab B 、 ab b a + C 、b a ab + D 、2 b a + . . . .

圆与圆的位置关系

精心整理第三讲直线与圆的位置关系、圆与圆的位置关系 第一部分知识梳理 一.直线与圆的位置关系 1.直线与圆的三种位置关系

如图,设⊙O的半径为r,圆心O到直线l的距离为d,得出直线和圆的三种位置关系: (1)直线l和⊙O相离?d r > 此时:直线和圆没有公共点. (2)直线l和⊙O相切?d r = . (1)如果一条直线与圆只有一个公共点,那么这条直线是圆的切线. (2)到圆心的距离等于半径的直线是圆的切线. (3)经过半径的外端且垂直与这条半径的直线是圆的切线. 证明直线是圆的切线的两种情况: (1)当不能说明直线与圆是否有公共点时,应当用“圆心到直线的距离等于半径

长”来判定直线与圆相切. (2)当已知直线与圆有公共点时,应当用判定定理,即“经过半径外端且垂直于半径的直线是圆的切线”,简单地说,就是“联半径,证垂直”. 二.圆与圆的位置关系 1.圆与圆的五种位置关系 在同一个平面内,两个不等的圆的位置关系共有五种:外离、外切、相交、内切、 ( ( ( ( ( 2. 注:当两圆相切时分为两种情况:外切和内切. 3.相交两圆的性质 相交两圆的性质:相交两圆的连心线垂直平分两圆的公共弦. 注:当两圆相交时分为两种情况:圆心在公共弦的同侧和圆心在公共弦的两侧. 第二部分例题精讲

例1如图,已知Rt ABC ?中,∠C=90°,AC=3,BC=4 (1)圆心为点C、半径长R为2的圆与直线AB有怎样的位置关系? (2)圆心为点C、半径长R为4的圆与直线AB有怎样的位置关系? (3)如果以点C为圆心的圆与直线AB有公共点,求⊙C的半径R的取值范围. . 已知Rt ABC ?中,∠ABC=90°,AB=3,BC=4,以B为圆心作⊙B. (1)若⊙B与斜边AC只有唯一一个公共点,求⊙B的半径长R的取值范围. (2)若⊙B与斜边AC没有公共点,求⊙B的半径长R的取值范围. 例2已知:直线AB经过⊙O上的点C,并且

高考数学圆与圆的位置关系讲义

高三第一轮复习数学---点与圆、直线与圆、 圆与圆的位置关系 一、教学目标:通过练习掌握基本知识,并能综合运用所学知识正确解题 二、教学重点:综合运用所学知识正确解题 三、教学过程: (一)主要知识: 1、 若圆(x-a)2+(y-b) 2=r 2,那么点(x 0,y 0)在 ()()()()()()?? ???>-+-?<-+-?=-+-?2 2020220202 2020r b y a x r b y a x r b y a x 圆外圆内圆上 2、直线与圆的位置关系 直线与圆有三种位置关系:相离、相切和相交。有两种判断方法: (1) 代数法(判别式法)?? ?????相离相切相交000 (2) 几何法,圆心到直线的距离?? ????>?=?<相离相切相交r d r d r d 一般宜用几何法。 3、弦长与切线方程,切线长的求法 (1)弦长求法一般采用几何法:弦心距d ,圆半径r ,弦长l ,则2222r l d =?? ? ??+ (2)改写圆方程写出圆的切线方程:(x 0,y 0)为切点的圆的切线方程,分别以x 0x, y 0y,2 ,200y y x x ++改写圆方程中的x 2,y 2,x,y (3) 切线长()()22020002020r b y a x F Ey Dx y x d --+-=++++= 4、圆与圆的位置关系 相离?+>2121r r O O 外切?+=2121r r O O 相交?+<<-212121r r O O r r 内切?-=2121r r O O 内含?-<2121r r O O

5、圆系方程 (1)以(a,b)为圆心的圆系方程:()()()022 2≠=-+-r r b y a x 。 (2)过两圆0:111221=++++F y E x D y x C 和0:222222=++++F y E x D y x C 的交点的圆系方程:()022********=+++++++++F y E x D y x F y E x D y x λ但不含C 2 1-=λ时,()()()0:212121=-+-+-F F y E E x D D l 为两圆公共弦所在直线方程 其中当两圆相切时,L 为过两圆公共切点所在直线的方程。 (二)例题分析: 例1、已知圆x 2+y 2+x-6y+m=0与直线x+2y-3=0相交于P,Q 两点,O 为原点,且OP ⊥OQ ,求实数m 的值。 解法一设P(x 1,y 1), Q(x 2,y 2),由OP ⊥OQ, 得: k OP k OQ = -1即y 1x 1 y 2x 2 = -1即x 1x 2+y 1y 2=0 ① 另一方面(x 1,y 1),(x 2,y 2)是方程组??? x+2y-3=0 x 2+y 2+x-6y+m=0 的实数解, 即x 1,x 2是5x 2+10x+4m-27=0 ② 的两个实数根,∴x 1+x 2=-2,x 1x 2=4m-275 ③ 又P,Q 在直线x+2y-3=0上,∴y 1y 2=14 (3-x 1)(3-x 2)= 14 [9-3(x 1+x 2)+x 1x 2] 将③代入得y 1y 2= m+125 ④ 将③④代入①知:m=3. 代入方程②检验?>0成立. ∴m=3 解法二将3=x+2y 代入圆的方程知:x 2+y 2+13 (x+2y)(x-6y)+ m 9 (x+2y)2=0, 整理得:(12+m)x 2+4(m-3)x y+(4m-27)y 2=0由于x ≠0可得(4m-27)( y x )2+4(m-3) y x +12+m=0,∴k OP , k OQ 是上方程的两根, 由k OP k OQ = -1知: m+124m-27 =-1, 解得:m=3. 检验知m=3为所求. 【思维点拨】这是用韦达定理解题的典型题,在以后的圆锥曲线中也有同类型题,注意?>0的检验 练习(变式1):若直线ax+by=1与圆x 2+y 2=1相交,则点P(a,b)的位置是( ) A 、在圆上 B 、在圆外 C 、在圆内 D 、都有可能 变式2、过点(2,1)的直线中,被x 2+y 2-2x+4y=0截得的最长弦所在的直线方程是( A ) A 、3x-y-5=0 B 、 3x+y-7=0 C 、 x+3y-5=0 D 、x-3y+1=0 例2、已知圆C :,25)2()1(22=-+-y x 直线 )(047)1()12(:R m m y m x m l ∈=--+++. (1) 证明不论m 取什么实数,直线与圆恒交于两点; (2) 求直线被圆C 截得的弦最小时的方程. 解 (1)l 的方程为(x+y-4)+m(2x+y-7)=0 ∵m ∈R ∴x+y-4=0,且2x+y-7=0,得x=3, y=1

培优训练之直线与圆的位置关系切线专题

《直线与圆的位置关系、切线》 培优训练 参考答案与试题解析 一.选择题(共12小题) 1.(2013?杨浦区二模)⊙O的半径为R,直线l与⊙O有公共点,如果圆心到直线l的距离为d,那么d与R的大小关系是(B) A.d≥R B.d ≤R C.d>R D.d <R 考点:直线与圆的位置关系. 专题:探究型. 分析:直接根据直线与圆的位置关系进行解答即可. 解答:解:∵直线l与⊙O有公共点, ∴直线与圆相切或相交,即d≤R. 故选B. 点评:本题考查的是直线与圆的位置关系,即判断直线和圆的位置关系:设⊙O的半径为r, 圆心O到直线l的距离为d,当d<r时,直线l和⊙O相交;当d=r时,直线l和⊙O相切;当 d>r时,直线l和⊙O相离. 2.(2014?嘉定区一模)已知⊙O的半径长为2cm,如果直线l上有一点P满足PO=2cm,那么 直线l与⊙O的位置关系是(D) A.相切B.相交C.相离或相切D.相切或相交 考点:直线与圆的位置关系. 分析:根据直线与圆的位置关系来判定.判断直线和圆的位置关系:①直线l论.和⊙O相切?d=r; ③直线l和⊙O相离?d>r.分OP垂直于直线l,lOP和⊙不垂直直线O相交?dl<两种情况讨r;②直线解答:解:当OP垂直于直线l时,即圆心O到直线l的距离d=2=r,⊙O与l相切; 当OP不垂直于直线l时,即圆心O到直线l的距离d<2=r,⊙O与直线l相交. 故直线l与⊙O的位置关系是相切或相交. 故选D. 点评:本题考查直线与圆的位置关系.解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定. 3.(2013?宝应县二模)在平面直角坐标系中,以点(3,﹣5)为圆心,r为半径的圆上有且仅有两点到x轴所在直线的距离等于1,则圆的半径r的取值范围是(D) A.r>4 B.0 <r<6 C.4≤r<6 D.4 <r<6

考点26 圆的方程,直线和圆的位置关系学生版(2021年高考艺体生基础生考点培优讲义

考点26 圆的方程 [玩前必备] 1.圆的定义 在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径. 2. 圆的标准方程 (1) 以(a ,b )为圆心,r (r >0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2. (2) 特殊的,以(0,0)为圆心,r (r >0)为半径的圆的标准方程为x 2+y 2=r 2. 3. 圆的一般方程 方程 x 2+y 2+Dx +Ey +F =0可变形为????x +D 22 +????y +E 22 =D 2+E 2 -4F 4 . (1) 当 D 2+ E 2-4 F >0 时,方程表示以????-D 2,-E 2为圆心,D 2+E 2-4F 2 为半径的圆; (2) 当D 2+E 2-4F =0时,该方程表示一个点????-D 2,-E 2; (3) 当D 2+E 2-4F <0时,该方程不表示任何图形. 4. 直线与圆的位置关系的判断方法 设直线l :Ax +By +C =0(A ,B 不全为0),圆为(x -a )2+(y -b )2=r 2(r >0),d 为圆心(a ,b )到直线l 的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ. 5. (1) 圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含. (2) 判断两圆位置关系的方法 设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 2 2(r 2>0).圆心距O 1O 2=d ,则

6.(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则(l 2)2=r 2-d 2. (2)代数方法:运用根与系数的关系及弦长公式: 设直线与圆的交点为A (x 1,y 1),B (x 2,y 2), 则|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. 注意:常用几何法研究圆的弦的有关问题. [玩转典例] 题型一 求圆的方程 例1 (2020·河南濮阳.高三期末)若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为( ) A .(x -2)2+(y ±2)2=3 B .(x -2)2+(y ±3)2=3 C .(x -2)2+(y ±2)2=4 D .(x -2)2+(y ±3)2=4 [玩转跟踪] 1. (1)圆心在y 轴上且经过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0 D .x 2+y 2-10x =0 (2) 已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为______________. 题型二 判断直线与圆的位置关系 例2 (2020·福建高三期末)若直线 :1(0)l y kx k =+<与圆2 2:4230C x x y y ++-+=相切,则直线l 与圆2 2:(2)3D x y -+=的位置关系是( ) A .相交 B .相切 C .相离 D .不确定 [玩转跟踪] 1.(2020·包头市田家炳中学高三期中)直线y =x ﹣1与圆x 2+y 2=1的位置关系为( ) A .相切 B .相离 C .直线过圆心 D .相交但直线不过圆心 题型三 直线与圆相交弦长问题 例3 在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. [玩转跟踪] 1.(2020·河南濮阳)斜率为1的直线l 被圆x 2+y 2=4x 截得的弦长为4,则l 的方程为( ) A .y =x ﹣3 B .y =x +3 C .y =x ﹣2 D .y =x +2

相关文档
相关文档 最新文档