文档库 最新最全的文档下载
当前位置:文档库 › 时差法超声波流量计

时差法超声波流量计

时差法超声波流量计
时差法超声波流量计

时差法超声波流量计

1 引言

超声波流量计是利用超声波在流体中的传播特性来测量流量的计量仪表。凭借其非接触测流、仪表造价基本上与被测管道口径大小无关、精度高、测量范围大、安装方便、测试操作简单等自身的优势被认为是较好的大管径流量测量仪表,在电力、石油、化工特别是供水系统中被广泛应用。随着超声波流量计的技术的不断成熟和用户对它的逐渐认可,超声波流量计市场正以前所未有的发展速度向前发展。

2 超声波流量计分类

根据对信号检测的原理,超声波流量计可分为多普勒法、波束偏移法、噪声发、相关法等。 2.1 多普勒法

多普勒法是应用声学中多普勒原理,检测反射声波与发射声波之间的频率偏移量即可以测定流体的流动速度,进而测出流体流量。其工作原理如图1所示。

图1 多普勒法工作原理图 Fig.1 Theory of Doppler approach

管壁两侧分别装有发射和接收两个超声波换能器,发射器向含有固体颗粒的流体中发射频率为0f 的连续超声波。根据多普勒效应,在中间相交区的频率为1f ,接收器收到的经固体颗粒反射后的超声波频率为

2f ,当粒子流速均为u 时,其关系为:

)sin 21()sin 1()sin 1(02012C

u f C u f C u f f β

ββ-≈-=-

= (1) β

sin 2)(020f C

f f u -=

(2)

多普勒法只能用来测量含有固体颗粒的流体,比如血液、污水、蒸汽等。 2.2 波束偏移法

波束偏移法是根据测量由于流体流动而引起的超声波束偏移角来确定流体流速的。其测量原理如图2所示。

图2 波束偏移法原理图

Fig.2 Theory of beam-excursion approach

流速越大,偏移角越大,而两接收器收到的信号强度差值也越大,因此测出两接收器的信号强度差值可确定流体的流速。波束偏移法用于测量准确度要求不高的高速流体流量测量。

3 时差法原理

3.1 时差法

时差法超声波流量计就是利用声波在流体中顺流、逆流传播相同距离时存在时间差,而传播时间的差异与被测流体的流动速度有关系,因此测出时间的差异就可以得出流体的流速。基本原理如图3所示。

图3 时差法工作原理图 Fig.3 Theory of transit-time method

超声波换能器A 、B 是一对可轮流发射或接收超声波脉冲的换能器。设超声波信号在被测流体中的速度为C ,顺流从A 到B 时间为1t ,逆流从B 到A 时间为2t ,外界传输延迟总时间为0t 。则由几何关系可知

01sin cos /t v C d t ++=

θ

θ

(3)

02sin cos /t v C d t +-=

θ

θ

(4)

由于2

C >> θ2

2

sin v ,则

2

22212tan 2sin tan 2C dv v C dv t t t θ

θθ≈

-=

-=? (5) t d C v ?=

θ

tan 22

(6)

3.2 流速分布修正

在上文的讨论中,我们提到的流速V 都是理想状态下的截面平均流速。在实际中,由于流速分布不均匀,需根据流体力学原理加以修正。

v n n

v K

v 1

221

+=

=

(7)

n

n K 21

2流量修正系数+=

其中n 是和雷诺数(Re)相关的值。雷诺数(Re )一种可用来表征流体流动情况的无量纲数,是流体流动状态的一个判断依据。

表1 n 与Re 关系

Tab.1 The relationship between n and Re

Re 4.0×10^3

2.3×10^4 1.1×10^5 1.1×10^6 >2.4×10^6

n

2.0

2.6

7.0

8.8

10.0

3.3 折射角θ修正

θ角随声速C 的变化而变化,而C 又是流体温度的函数。因此,必须对θ角进行自动跟踪补偿,以达到温度补偿的目的。可通过修正C 的大小从而实现对θ修正,下文通过算法消去C ,从而避免修正问题。

4 总体设计

4.1 换能器安装

对于时差法流量计来说,通常有三种不同安装形式:平行式、Z 型、V 型

图4 换能器安装位置

Fig.4 The installation of ultrasonic transducer

本设计中,我们的换能器将采用V 字型安装,这样既可以提高系统的分辨率、方便安装,让超声波在管壁对侧反射一次的方法又可以增加路径长度、减少流速断面分布不均匀的误差。

图5 基本声学原理图 Fig.5 A coustic principium

由图5及前面讨论可知

1

cos /2sin t d v C θ

θ=

+ 2

cos /2sin t d v C θ

θ=

- (8)

θ

2sin )

(22112t t t t d v -=

(9)

式(8)中两式相减消去C,得到式(4-3),从而避免了温度影响问题。

由于超声波速度远大于流速,一般△t 很小,对系统时钟要求较高,难以实现。从而采用多脉冲计数法提高测量精度,降低硬件要求。具体原理如图6所示。

图6 多脉冲法原理图 Fig.6 Multi-beams of ultrasonic

取足够多次数N 次以后的顺逆流时间s t 和r t 。由式(11)得到时间差△t 。

1

1

)(Nt i t t N

i

s +=

∑= 21

'

)(Nt i t t N

i

r +=

∑= (10)

由于外界传输时间2t =1t ,所以

N

t t t t t s

r -=

-=?)(12 (11) 5 硬件和软件设计

5.1 系统硬件框图

主要由两部分组成:时差信号采集部分和信号处理及人机接口部分。

图7 系统硬件结构框图

Fig.7 Hardware structure of the system

从单片机是信号采集及控制电路的核心,它既要接收主单片机发来的命令,使测量模块的各部分协调工作,同时又要向主单片机回送测量数据和该部分的状态信息。考虑到性价比,我们选择了ATMEL 公司的AT89C51,它是一种低功耗、高性能CMOS8位单片机,其指令系统与8051完全兼容。 5.2 系统软件设计

主、从单片机程序设计

否 否 是

图8 主单片机程序框图 图9 从单片机程序框图 Fig.8 Flow chart of the main MCU Fig.9 Flow chart of the vice MCU

6 结论

超声波流量计由于其独特的优点在工业界获得了广泛的应用,但由于其自身特性还存在精度不高、易受影响、可靠性较差等缺点。本文在传统测量方式基础上进行改进、优化计算方式,设计了一种基于多脉冲的时差法流量计,对具体算法改进、硬件平台和软件实现进行了说明。经过部分实验性验证,证明了此方法的可行性,达到设计要求

开始 首次运行

初始化 参数设置

安装调试

开始测量/显示

键盘中断

键盘中断服务子程序

开始 接收参数及存储

接收测量命令

测量顺/逆流传播时间

测量数据的检验和发送 测量结束 结束

参考文献:

[1] 兰纯纯.时差法超声波流量计的研究[D].重庆:重庆大学,2006

[2] 李志军,赵刚,赵连环,王庆山.基于DSP的时差法气体超声波流量计的设计[J].仪表技术与传感器,2014,(3)

[3] 王清伟,邱俭军.一种提高超声波流量计测量精度的补偿算法[J].声学与电子工程,2009,(3)

[4] 牛朋恩,薄秀江,程浩.时差法超声波流量计原理及应用案例[J].自动化应用,2011,(6)

[5] 胡天浩.浅谈超声波流量计[J].油气井测试,2003,(4)

[6] 陈洁,陈玉红.单片机控制技术快速入门[M].北京,中国电力出版社,2015

[7] 霍晓丽,刘云朋.单片机原理与应用:C语言版[M].北京,清华大学出版社,2015

[8] 王池.我国流量计量发展现状[J].现代计量测试,2000,(2)

[9] 李芳,冯永葆等.超声波流量检测误差的流体力学修正研究[J].机床与液压,2005,(8)

[10] 胡汉才.单片机原理及其接口技术[M].北京:清华大学出版社.2001

[11] 王幸之,钟爱琴等.AT89系列单片机原理与接口技术[M].北京:北京航空航天大学出版社.2004

[12] T.T.Yeh and P.I.Espina,An Intelligent Ultrasonic Flow Meter for Improved Flow Measurement and Flow Calibration Facility[J].

IEEE Instrumentation and Measurement Technology Conference,2001,(23)

[13] Brassier P, Hosten B, Vulovic F. High-frequency transducers and correlation method to enhance ultrasonic gas flow metering[J].

Flow Measurement and Instrumentation,2001,(12)

[14] 鲍敏.影响气体超声波流量计计量精度的主要因素研究[D].杭州:浙江大学,2004

[15] 梁晋文.误差理论与数据处理[M].北京:中国计量出版社,2001

[16] 沙定国.误差分析与测量不确定度评定[M].北京:中国计量出版社,2003

[17] 宁晨.超生信号检测与处理在流量测量中的应用[D].合肥:中国科学技术大学,2003

[18] 王朝晖,于佰俭.流量测量新技术-----非接触测量[J].石油库与加油站,2004,(8)

[19] 陈隆道,许昌,周箭.智能仪器的双CPU技术[J].电测与仪表,1998,(1)

[20] 杨振江等编著.智能仪器与数据采集系统中的新器件及应用[M].西安:西安电子科技大学出版社,2001

声波时差计算剥蚀量

声波时差计算剥蚀量 其基本原理是:在正常压实的情况下,泥页岩的孔隙度随埋深的增大呈指数衰减,而在均匀分布的小孔隙的固结地层中,孔隙度与声波传播时间之间又存在着正比例的线性关系,因此声波时差与深度在半对数坐标系中为线性相关,并满足下列关系式: Δt=Δt0e-CH 式中,Δt:泥岩在深度H处的传播时间(μs/m); Δt0:外推至地表的传播时间(μs/m); C:正常压实趋势斜率(m-1); H:埋深(m) 具体步骤如下:首先分别对间断面上下的泥页岩声波时差~埋深曲

线进行对数回归,得到两个回归方程,取埋藏深度为0,并依据间断面之上的埋深-声波时差关系回归方程,求算出地表的声波时差值Δt0;而后将Δt0值代入间断面之下的埋深-声波时差回归方程,得到剥蚀前的地表相对于现今地表的深度(或高度),其与间断面深度的差值即为剥蚀厚度(图4-7) 发表于: 2009-03-31 20:53 只看该作者| 小中大 Δt0的理论值为620~650 μs/m,某一地区的Δt0值可根据该地区多口井正常压实曲线外推至地表平均求得。 在地层有剥蚀的地区,当不整合面以上沉积物的厚度小于剥蚀厚度时,

剥蚀前泥岩的压实情况得以保存。这时,将不整合面以下泥岩的压实趋势线外延至Δt =Δt0处即为古地表,古地表与不整合面之间的距离即为剥蚀厚度(见上图)。 简单点:就是把深度H与声波时差Δt拟合出一公式,应为H = A* Ln(Δt ) +B。其中A、B有拟合公式可以得到,当Δt =Δt0=620~6 50 或者研究区外推出来的已知值。这时H即为所求。 这个方法有一定的适用条件:可有效地用于剥蚀量较大而埋藏较浅的不整合面的剥蚀厚度估算,不整合面以上沉积物的厚度必须小于剥蚀厚度。然而,在地层埋藏达到一定深度时,由标准指数关系所计算得出的声波测量值与实测值有偏差。说明这种方法对剥蚀量不大或被剥蚀层段成岩程度不高的地区适用性较差。 沉积物在沉积、埋藏过程中,孔隙度随埋深的增大呈指数减小,又因为在具有均匀分布的小孔隙的固结地层中,孔隙度与传播时间之间存在着正比例线性关系, 因而泥页岩在正常压实情况下的声波时差-深度关系式 Δt=Δt0e-CH 式中,Δt:泥页岩在深度H处的传播时间(μs/m), Δt0:外推至地表的传播时间(μs/m) C:正常压实趋势斜率(m-1)

第八章声波测井

第八章声波测井 声波测井的物理基础 1.名词解释: (1)滑行波: (2)周波跳跃: (3)stoneley 波: (4)伪瑞利波: (5)声耦合率: (6)相速度: (7)声阻抗: (8)群速度: (9)频散: (10)衰减: (儿)截止频率: (12)声压: (13)模式波: (14)泊松比: (15)第一临界角: (16)第二临界角: 2.说明弹性系数K 和切变弹性系数μ的意义。他们与杨氏模量E 及泊松比σ有怎样 的关系? 3.介质质点弹性机械振动的过程是 的外力作用下, 与 的互相交替作用的过程,而声波传播,则是这种过程作用于 使之 的过程。 4.声波是介质质点的 振动在介质中的传播过程。声纵波是 变波,横波是 变波,它们均与此物理量(介质的) 有关。 5.某灰岩的V p =5500m/s ,密度ρb =2。73g /cm 3,横波速度V s 按V p =1.73V 。给出。试 求杨氏模量E ,泊松比σ,体弹性模量K ,切变弹性模量μ及拉梅常数λ。 6.声纵波的质点振动方向与能量传播方向 ,它可在 态介质中传播;声横波的质点振动方向与能量传播方向 ,它能在 态介质中传达播,但不能在 态介质中传播。 7.声纵波的速度为p V =;声横波的速度为s V =故V P /V S = 。根据岩石的泊松比为0.155—0.4,于是V p /V s ;= 。这表明在岩石中,V p V S ,所以在声波测井记录上, 波总先于 波出现。 8.在 相介质中,由于μ=0,即 切应力,故 。 9.瑞利(Rayleigh)波发生在钻井的 界面上,其速度v R 很接近V S ,约为 ,此波随离开界面距离的加大而迅速 ;斯通利(Stoneley )波产生在 中,并在泥浆中传播,它以低 和低 形式传传播,其速度 于泥浆的声速。 10.到达接收器的各声波中,全反射波因路径处在 中,波速 ,直达波行程 ,但波速 ,滑行波行程 但波速 。故以 波最早到达接收器。

时差法测量流量

时差法超声波流量计的原理和设计 王润田 1 引言 超声波用于气体和流体的流速测量有许多优点。和传统的机械式流量仪表、电磁式流量仪表相比它的计量精度高、对管径的适应性强、非接触流体、使用方便、易于数字化管理等等。近年来,由于电子技术的发展,电子元气件的成本大幅度下降,使得超声波流量仪表的制造成本大大降低,超声波流量计也开始普及起来。经常有读者回询问有关超声波流量测量方面的问题。作为普及,我们将陆续撰写一些专题文章,来介绍一些相关知识,以便推广和普及超声波流量技术的普及和提高。本文主要介绍目前最为常用的测量方法:时差法超声波流量计的原理和设计。 2时差法超声波流量计的原理 时差法超声波流量计(Transit Time Ultrasonic Flowmeter)其工作原理如图1所示。他是利用一对超声波换能器相向交替(或同时)收发超声波,通过观测超声波在介质中的顺溜和逆流传播时间差来间接测量流体的流速,在通过流速来计算流量的一种间接测量方法。 图1 时差法超声波流量测量原理示意图 图1中有两个超声波换能器:顺流换能器和逆流换能器,两只换能器分别安装在流体管线的两侧并相距一定距离,管线的内直径为D,超声波行走的路径长度为L,超声波顺流速度为tu,逆流速度为td,超声波的传播方向与流体的流动方向加角为θ。由于流体流动的原因,是超声波顺流传播L长度的距离所用的时间比逆流传播所用的时间短,其时间差可用下式表示: 其中:c是超声波在非流动介质中的声速,V是流体介质的流动速度,tu和td 之间的差为:

式中X 是两个换能器在管线方向上的间距。 为了简化,我们假设,流体的流速和超声波在介质中的速度相比是个小量。即: 上式可简化为: 也就是流体的流速为: 由此可见,流体的流速与超声波顺流和逆流传播的时间差成正比。 流量Q 可以表示为: 2 4 D Q V dt π= ? 3 时差法超声波流量计的设计 图2是我们设计的超声波流量计的原理框图。图中主要有两个超声波发射单元、一个时间测量单元和一个控制器。他们共同来完成超声波的发射、接受和时间差的测量等工作。其他的外围单元主要是为了测量仪表的参数设定、测量数据的输出、显示和传送等功能,可参考相关资料,这里不作介绍。

超声波时差法测量

题目:超声波传输时差法的测量 姓名: . 学号: . 班级: . 同组成员: . 指导教师: . 日期: .

关键词:超声波流量计,时差法,换能器,脉冲 第一部分:摘要 1.中文摘要: 超声波用于气体和流体的流速有许多优点。和传统的机械式流量仪表,电磁式流量仪表相比它的计量精度高,对管径的适应性强,非接触流体,使用方便,易于数字化管理等。 近年来,由于电子计术的发展,电子元器件的成本大幅度下降,思潮申博流量仪表的制造成本大大降低,超声波流量计也开始普及起来。 根据其原理,研究了几种超声波流量计特别是时差法超声波流量计的测量原理,对超声波在流体中的传播特性及超声波换能器进行了一定的探讨和研究:根据流体力学及物理学的有关知识,对超声波流量计进行了相关了解。针对传统时差法超声波流量计测量精度易受温度影响的问题,采用了改进型算法,在很大程度上避免了温度变化对测量精度的影响。在多种测量原理及方法下,这里我们则采用的是多脉冲测量法的原理和应用。 当然,我们还要结合课题的实际情况,对时差法超声波流量计的硬件电路进行详细的分析和设计,讨论器件的选择、参数计算等技术问题,设计出了换能器发射和接收超声波的等效电路,当其换能器发射超声波时,相当于换能器给相应的计数环节给以上升沿脉冲使其开始计数,同理,当换能器接收超声波时也产生一个上升沿脉冲,来作用于相对应的计数器使其停止计数。 针对超声波流量计的工作环境,由于条件的限制,我们只能在普通环境下进行我们的课题设计。对造成超声波流量测量误差的各种因素我们也只能进行常规

的分析以及改进。 2.英文摘要: The FV ultrasonic flowmeter is designed to measure the fluid velocity of liquid within a closed conduit. The transducers are a non-contacting, clamp-on type, which will provide benefits of non-foulingoperation and easy installation. The FV transit-time flowmeter utilizes two transducers that function as both ultrasonic transmitters and receivers. The transducers are clamped on the outside of a closed pipe at a specific distance fromeach other. The transducers can be mounted in V-method where the sound transverses the pipe twice,or W-method where the sound transverses the pipe four times, or in Z-method where the transducersare mounted on opposite sides of the pipe and the sound crosses the pipe once. This selection of themounting method depends on pipe and liquid characteristics. The flow meter operates by

采用直接时差法的无线超声波风速风向仪设计

采用直接时差法的无线超声波风速风向仪设计 摘要:采用直接时差法,以TMS320F2812为控制单元控制超声波的发射与接收,实现了超声波风速风向仪的设计。该超声波风速风向仪利用模拟开关设计驱动电路,减少了电磁干扰对电路的影响;利用限幅、放大、正弦脉冲转换的方法设计接收电路,减少了A/D 转换波动对信号捕获以及时间点判断的影响。 关键词:超声波风速风向仪;模拟开关;正弦转脉冲;TMS320F2812 引言 常见的风杯式、风标式风速风向仪因自身机械结构固有的缺陷,测量低风速时灵敏度不高,并且会随使用时间的增加出现一定程度的老化,在恶劣的工作环境中测量精度和使用寿命均受到较大影响。 超声波风速风向仪诞生于20世纪80年代,意大利GC Aprilesi等人完成了其原理样机并验证了功能可能性。随着多年的研究与发展,超声波风速风向仪的精度和可靠性都在不断提高。目前针对超声波风速风向仪的研究,在超声波换能器的驱动电路和信号接收电路实现上,都采取了脉冲变压器升压产生驱动信号和A/D采样接收信号的方法。脉冲变压器虽然在设计和实现上较为简单,但是当原副线圈匝数比较大、脉冲信号频率较高时,脉冲变压器工作时的噪音、热损耗和电磁干扰会相应增大,电磁干扰对超声波接收电路中信号处理的影响尤为严重,从而可能影响到最终测量结果的准确性。另外,在接收信号由A/D芯片转换成数字量的过程中,由于整体电路的电磁干扰,A/D转换值往往有较大波动,导致接收时间点判断上的较大超前或滞后,这种超前或滞后也会对测量结果的精确性造成较大影响。 本文针对脉冲变压器和A/D采样电路的不足,设计出包含换能器驱动电路、接收信号及处理电路两部分的超声波收发模块。采用模拟开关电路产生驱动信号的方法,在降低噪音和热损耗的同时大大降低了电磁干扰对整个电路的影响,驱动信号更为标准并且无需在接收端搭建滤波电路。采用正弦信号转脉冲电路使得接收时间点的确定更精确,波动更小。 1 工作原理及系统结构 1.1 工作原理 超声波在空气中传播时,在顺风与逆风方向均存在速度差。当超声波传播距离固定时,该速度差就反映为传播用时的时间差,且该时间差与待测风速之间具有线性关系。根据测量、计算时差的方法不同,一般分为直接时差法、频差法和相位差法。直接时差法也叫脉冲声时法,对超声波的收发时间直接进行测量,从而通过时间差计算得出当前的风速风向数据。 编者注:超声波测风速风向原理图及相应公式略。 1.2 系统结构 如图1所示,超声波风速风向仪的系统结构主要由MCU控制单元、信号隔离模块和换能器收发模块3个部分构成。MCU控制单元主要完成模拟开关控制信号的输出、计时以及核心数据处理;信号隔离模块主要降低各模块之间的干扰;换能器收发模块主要完成超声波信号的产生及接收、处理工作。超声波风速风向仪的工作流程如下:MCU每隔20 ms发出8个200 kHz脉冲信号,经信号隔离模块隔离后,输入换能器收发模块,驱动换能器发出超声波信号;换能器收发模块接收到超声波信号并转换为电信号,作为换能器收发模块回波信号输入并转换为方波信号,经信号隔离模块隔离后,输入MCU进行处理。

超声衍射时差(TOFD)技术原理简介(含图表)

超声衍射时差(TOFD)技术原理简介(含图表) 1.超声衍射时差(TOFD)技术介绍 “TOFD”即Timeofflightdiffraction,译成中文是“超声波衍射时差法检测”,TOFD检测技术原理是利用超声波遇到诸如裂纹等的缺陷时,将在缺陷尖端发生迭加到正常反射波上的衍射波,探头探测到衍射波,从而判定缺陷的大小和深度。极大地提高了缺陷检出率。TOFD检验技术具有缺陷检出能力强、缺陷定位精度高、节省设备的制造时间等特点,在检测资料上保证安全,并且可以用数字型式永久保存,恰好弥补了常规超声波检测技术的不足。 此技术首先是应用于核工业设备检验,如今在电力、石化、管道、压力容器、钢结构等方面多有应用。 上个世纪七十年代早期,英国原子能管理局(UnitedKingdomAtomicEnergyAuthority,即UKAEA)的国家无损检测研究中心的Harwell实验室提出了了超声波衍射在UT中应用的原理。UKAEA为了开发比常规超声波检测更精确的缺陷定量技术,最早由史可·毛瑞斯(SILKMG)博士开发出了超声衍射时差技术 - 1 -

(TimeofFlightDiffraction,简称TOFD)。后来欧美国家的有关机构进行了大量的试验,到80年代早期证实,对于核反应堆的压力容器和主要部件,TOFD技术作为超声检测是可行的,其可靠性和精度要高于常规超声检测(即脉冲回波)技术;相比常规的脉冲回波技术,当时的TOFD 技术有几个最明显的不同,一是很高的定量精度,绝对误差<±1mm,而裂纹监测的误差<±0.3mm;二是对缺陷的方向和角度不敏感,不向脉冲回波技术那样对某些方向的缺陷有“盲区”;三是对缺陷的定量不是基于信号的波幅,而是基于缺陷尖端衍射信号的声程和时间。 后来开发了便携的设备系统(即国际无损检测中心的ZIPSCAN),TOFD技术被国际工业界广泛公认。90年代,该项技术开始应用与石油化工管线的检测。此后,BSI、ASTM、ASME以及EN等相继承认了TOFD检测技术,颁布并不断修订了有关标准。而发展到今天,世界上有很多无损检测设备制造商开发了很多数字化的无损检测系统可以满足上述标准进行TOFD检测。当然,顶尖的制造商的设备系统可能还具备或者同时兼容常规超声、超声相控阵(PA)、常规涡流(ECT)和涡流阵列(ECTARRY)检 - 2 -

大物实验报告声速测定(DOC)

声速测定 引言:本实验使用了超声声速测定仪、低频信号发生器(DF1027B)、示波器 (ST16B)设计了共振干涉法、相位比较法、时差法来进行超声速的测定,并对实验数据进行处理、分析,最终得出声速,并与理论值进行比较。 关键词:声速测定。 Abstract:This experiment uses the ultrasonic velocity measurement instrument (DF1027B), low frequency signal generator, oscilloscope (ST16B) design the resonance interferometry, phase comparison method, the time difference method for supersonic were measured, and the experimental data processing and analysis, finally obtains the speed of sound, and compared with the theoretical value. 一、实验目的 1、了解超声波换能器的工作原理和功能; 2、学习不同方法测定声速的原理和技术; 3、熟悉测定仪和示波器的调节和使用; 4、测定声速在空气中的传播速度。 二、仪器设备 ZKY_SS超声声速测定仪、低频信号发生器、示波器。 三、实验原理 由波动理论得知,声波的传播速度v与声波频率和波长之间的关系为。所以只要测出声波的频率和波长,就可以求出声速。其中声波频率可由产生声波的电信号发生器的振荡频率读出,波长则可用共振法和相位比较法进行测量。时差法可通过测量某一定间隔距离声音传播的时间来测量声波的传播速度。 压电陶瓷换能器 本实验采用压电陶瓷换能器来实现声压和电压之间的转换。它主要由压电陶瓷环片、轻金属铅(做成喇叭形状,增加辐射面积)和重金属(如铁)组成。压电陶瓷片由多晶体结构的压电材料锆钛酸铅制成。在压电陶瓷片的两个底面加上正弦交变电压,它就会按正弦规律发生纵向伸缩,从而发出超声波。同样压电陶瓷可以在声压的作用下把声波信号转化为电信号。压电陶瓷换能器在声—电转化过程中信号频率保持不变。 如图1所示,S1作为声波发射器,它把电信号转化为声波信号向空间发射。S2是信号接收器,它把接收到的声波信号转化为电信号供观察。其中S1是固定的,而S2可以左右移动。

[超声波衍射时差法(TOFD)检测中参数设定的研究]超声波衍射时差法

[超声波衍射时差法(TOFD)检测中参数设定的研究]超声波 衍射时差法 摘?要在TOFD检测过程中,相关参数的设置非常为重要,关系到采集图谱质量的好坏。下面,就结合现场情况,把TOFD检测实践中的一些见解归纳分析一下,主要以ISONIC系列仪器进行研究。 关键词 TOFD检测;ISONIC;参数设定;研究 TN914 A 1673-9671-(xx)071-0198-01 1 TOFD检测中的参数设置的重要性 TOFD检测扫描前主要注意的参数有:探头真实频率,脉冲宽度,重复频率,阻抗,感抗,滤波频率,信号平均值,时间窗口,增益等参数。 脉冲宽度是非常重要的,它有助于优化接受信号的形状。改变脉冲宽度可以导致不同周期部分减弱或加强。如果想使两个超声脉冲组成单一频率的信号,则应将脉冲宽度设置为所用探头频率周期的一半(例:5 MHz时使用100 ns);为了使信号持续最低周期数,应将脉冲宽度设置为所用探头频率的一个周期(例:5 MHz时使用200 ns)。

其中探头频率必须是探头实际频率,而不是探头的标称频率。在实际工作中必须通过试验来获得最优脉冲宽度。 如果使用手动采集数据,则需要注意脉冲重复频率PRF与探头移动速度必须相匹配,由于手动扫查时计算机不能判断和控制探头移动,只能由操作者正确选择PRF来保证能正常采集A扫数据。若采用编码器或者电机驱动,则PRF相对不重要,因计算机可以计算出探头位置,在规定的A扫采样率间隔采集数据。若PRF设置不当时将采集到空白A扫。 阻抗Tuning项匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 感抗damping项的单位是欧。知道了交流电的频率f(Hz)和线圈的电感L(H),就可以把感抗计算出来。在实际调节射频波波幅时,需要不断地改变感抗值来选择最优波幅,使图谱效果达到最佳。 在选择高低通滤波器频率时,推荐滤波器带通宽度的最小范围是0.5到2倍的探头中心频率。选择信号平均值至最低要求,以获得一个合理的信噪比,设置时间窗口覆盖A扫的有用部分,以便数字化。

时差法超声波流量计

时差法超声波流量计

1 引言 超声波流量计是利用超声波在流体中的传播特性来测量流量的计量仪表。凭借其非接触测流、仪表造价基本上与被测管道口径大小无关、精度高、测量范围大、安装方便、测试操作简单等自身的优势被认为是较好的大管径流量测量仪表,在电力、石油、化工特别是供水系统中被广泛应用。随着超声波流量计的技术的不断成熟和用户对它的逐渐认可,超声波流量计市场正以前所未有的发展速度向前发展。 2 超声波流量计分类 根据对信号检测的原理,超声波流量计可分为多普勒法、波束偏移法、噪声发、相关法等。 2.1 多普勒法 多普勒法是应用声学中多普勒原理,检测反射声波与发射声波之间的频率偏移量即可以测定流体的流动速度,进而测出流体流量。其工作原理如图1所示。 图1 多普勒法工作原理图 Fig.1 Theory of Doppler approach 管壁两侧分别装有发射和接收两个超声波换能器,发射器向含有固体颗粒的流体中发射频率为0f 的连续超声波。根据多普勒效应,在中间相交区的频率为1f ,接收器收到的经固体颗粒反射后的超声波频率为 2f ,当粒子流速均为u 时,其关系为: )sin 21()sin 1()sin 1(02012C u f C u f C u f f β ββ-≈-=- = (1) β sin 2)(020f C f f u -= (2) 多普勒法只能用来测量含有固体颗粒的流体,比如血液、污水、蒸汽等。 2.2 波束偏移法 波束偏移法是根据测量由于流体流动而引起的超声波束偏移角来确定流体流速的。其测量原理如图2所示。

图2 波束偏移法原理图 Fig.2 Theory of beam-excursion approach 流速越大,偏移角越大,而两接收器收到的信号强度差值也越大,因此测出两接收器的信号强度差值可确定流体的流速。波束偏移法用于测量准确度要求不高的高速流体流量测量。 3 时差法原理 3.1 时差法 时差法超声波流量计就是利用声波在流体中顺流、逆流传播相同距离时存在时间差,而传播时间的差异与被测流体的流动速度有关系,因此测出时间的差异就可以得出流体的流速。基本原理如图3所示。 图3 时差法工作原理图 Fig.3 Theory of transit-time method 超声波换能器A 、B 是一对可轮流发射或接收超声波脉冲的换能器。设超声波信号在被测流体中的速度为C ,顺流从A 到B 时间为1t ,逆流从B 到A 时间为2t ,外界传输延迟总时间为0t 。则由几何关系可知 01sin cos /t v C d t ++= θ θ (3) 02sin cos /t v C d t +-= θ θ (4) 由于2 C >> θ2 2 sin v ,则

用时差法测量超声声速

用超声波流量计测量超声声速 姓名:田田班级:网络(2)班学号:090602231 摘要:在大学物理实验里,我们学习了用共振干涉法和相位比较法测量超声声速,但在工程中运用的是更为精确的时差法测量超声声速。在此,我们可以使用超声波流量计进行测量。超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。根据对信号检测的原理超声流量计可分为传播速度差法(直接时差法、时差法、相位差法和频差法)、波束偏移法、多普勒法、互相关法、空间滤法及噪声法等。超声流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,近年来它是发展迅速的一类流量计之一。 关键字:时差法,超声声速,超声波流量计 Use ultrasound flowmeter measurement ultrasonic velocity Name:TianTian class: network (2) class student id: 090602231 Abstract:in university physics experiment, we studied the use is also called the resonant interfering method and phase comparison ultrasonic velocity measurement, but in engineering is the use of more precise time difference method for measuring the ultrasonic velocity. Here, we can use the ultrasonic flowmeter measurements. Ultrasonic flowmeter is through testing the fluid flow of ultrasonic beam (or ultrasonic pulse) role to measure flow meter. According to the principle of signal detection ultrasound flowmeter can be divided into velocity differential method (direct time difference method, the method of time difference, the method of phase difference and frequency offset method), beam migration method, doppler method, cross-correlation method, space filter method and noise method, etc. Ultrasonic flowmeter and electromagnetic flowmeter is same, because instrument circulation channel not set any block up pieces, belong to the unimpeded flowmeter is suitable for solving the flow measurement

利用声波时差资料研究异常压力

利用声波时差资料研究异常压力 目前,在国内外石油钻探、尤其是钻探深部地层时,用测井资料估算地层压力得到了广泛使用。众多研究表明,声波测井较密度测井、电阻率测井等受井眼、地层条件等环境影响较小,而且各油田声波测井资料齐全易收集。选用时差资料计算地层压力具有代表性和普遍性,可比性也强。尤其是泥岩相对于砂岩受岩性变化影响小,抗压能力弱,能真实地反映所处部位的地层压力大小。 (1)建立正常压实趋势线方程 在单对数坐标系中,正常泥岩压实段的声波时差随深度的增加呈线性减小,表现为一条直线;当出现异常压力时,声波时差会偏离正常趋势线,表现为异常值。 通过读取~~地区……口井的泥岩声波时差,我们选取典型井的正常压实段的声波资料,通过线性回归建立了研究区泥岩声波时差与埋深的关系方程: H=-2460.6ln (△t )+16524 (1), 相关系数:R 2=0.8611 式中:H ――地层埋深,m ; △t ――泥岩声波时差,us/m 。 求解公式(1)的反函数得: ln (△t )=6.715435-0.00041H (2), 即为该地区正常压实趋势线方程。 (2)孔隙流体压力的计算 在正常压实带,孔隙流体压力就是静水压力,其表达式为:w p H γ=* (3) 式中:p ——地层流体压力,Kg/cm 2;γw ——地层水密度,Kg/cm 2.m ; H ——地层埋深,m 。 在欠压实带中,根据等效深度法原理,可用Magara (1978)介绍的公式计算地层流体压力:()w bw p H H He γγ=*+- (4) 式中:γbw ――上覆岩层的平均密度,Kg/cm 2.m ; He ——孔隙度与H 处相当的正常压实直线上对应点的深度,m 。 正常压实带的深度-时差关系式如公式(2)所示,重新整理得:

时差法超声波流量计_2006_硕士论文-

重庆大学硕士学位论文中文摘要 摘要 超声波流量计由于具有非接触式测量、测量范围宽、安装简便、以及特别适合大管径及危险性流体流量测量等优点,被供水、石油、化工、电力等部门广泛应用。然而,由于超声波流量计只是在近几十年才出现的一种新型仪表,还有很多不完善的地方,比如成本较高、精度不够等,有必要对其加以改进和提高。 本论文通过充分调研及查阅大量的文献资料,选择时差法超声波流量计为研究对象,对如何提高系统的精度及系统稳定性和可靠性问题进行了深入的理论研究,并设计了具体的硬件电路,主要工作及创新有: 1.研究了几种超声波流量计特别是时差法超声波流量计的测量原理,对超声波在流体中的传播特性及超声波换能器进行了较深入的研究;根据流体力学及物理学的有关知识,对超声波流量计进行了修正,并给出了不同情况下流量修正系数的计算公式; 2.针对传统时差法超声波流量计测量精度易受温度影响的问题,采用了改进型算法,在很大程度上避免了温度变化对测量精度的影响;介绍了几种常用提高超声波测时精度方法的同时,讨论并采用了超声波时差测量的新方法——多脉冲测量法的原理和应用; 3.结合课题的实际情况,对时差法超声波流量计的硬件电路进行了详细的分析和设计,讨论了器件的选择、参数计算等技术问题,设计出了匹配性能良好的发射、接收电路;在信号调理上,除了常规的滤波电路外,还采用了自动增益放大电路来提高信号的可靠性;而且,采用主从单片机协同工作的方式,提高了系统的稳定性;在软件方面,给出了系统的软件流程图并较详细地叙述了算法的实现; 4.针对流量计的工作环境,对流量计系统的抗干扰性进行了研究,并采取了相应的软、硬件措施; 5.对造成超声波流量测量误差的各种因素进行了详细的分析、研究,并应用误差理论,对时差法超声波流量计的各种可能的误差进行了误差分配和合成;对硬件电路和软件进行了试验性的验证,给出了实验结果。 关键词:超声波流量计,时差法,传播时间

超声波流量计的测量原理

超声波流量计的测量原理 超声波流量计 超声波流量计是一种非接触式流量测量仪表,近20多年发展迅速,已成为流量测量仪表中一种不可缺少的仪表。尤其在大管径管道流量测量,含有固体颗粒的两相流的流量测量,对腐蚀性介质和易燃易爆介质的流量侧量,河流和水渠等敞开渠道的流量及非充满水管的流量测量等方面,与其他测量方法相比,具有明显的优点。 超声波流量计的测量原理 超声波流量计是利用超声波在流体中的传播特性实现流量测量的。电磁流量计超声波在流体中传播时,将载上流体流速的信息。因此,通过接收到的超声波,就可以检测出被测流体的流速,再换算成流量,从而实现测量流量的目的。 利用超声波测量流且的方法很多。根据对信号检测的方式,大致可分为传播速度法、多普勒法、相关法、波束偏移法等。在工业生产测量中应用传播速度法最为普遍。 1.传播速度法 根据在流动流体中超声波顺流与逆流传播速度的视差与被测流体流速有关的原理,检测出流体流速的方法,称为传播速度法。很据具体测最参数的不同,又可分为时差法、相差法和频差法。 传播速度法的基本原理如图2.59所示。远传式水表从两个作为发射器的超声换能器T, , T,发出两束超声波脉冲。各自达到下、上游两个作为接收器的超声换能器R,和RZ。设流体静止时超声波声速为C,发射器与接收器的间距为L。则当流体速度为时,顺流的传播时间为式中,L, C均为常量,所以只要能测得时差At,就可得到流体流速。,进而求得流最p。这就是时差法。 时差法存在两方面间题:一是计算公式中包括有声速C,可拆卸螺翼式水表它受流体成分、沮度影响较大,从而给测量带来误差;另一是顺、逆传播时差At的数量级很小(约为10-’一10"9s),测量Lt,过去需用复杂的电子线路才能实现。 相差法是通过测量上述两超声波信号的相位差△lp来代替测量时间差6r的方法。如图2.61,设顺流方向声波信号的相位为9).二“:;逆流方向声波信号的相位为T2 =则结合式(2.56)可得逆、顺流信号的相位差为式中。—声波信号的角频率。 此方法可通过提高。来取得较大的相位差乙甲,滴水计数水表从而可提高测量精度。但此方法仍然没有解决计算公式中包含声速C的影响。 频差法是通过测量顺流和逆流时超声波脉冲的重复频率差来测量流量的方法。该方法是将发射器发射的超声波脉冲信号,经接受器接受并放大后,再次切换到发射器重新发射,形成“回鸣”,并如此重复进行。由于超声波脉冲信号是在发射器一流体一接收器一放大电路一发射器系统内循环的,故此法又称为声还法。脉冲在生还系统中一个来回所需时间的倒数称为声还频率(即重复频率),它的周

无损检测技术,衍射时差法超声TOFD检测基本原理

目录 1.TOFD检测技术定义及原理 2.TOFD检测技术基本知识 3.TOFD检测技术的盲区 4.TOFD检测技术的特点 5.几种典型缺陷TOFD图谱 1TOFD检测定义及基本原理 1.1TOFD检测的定义 衍射时差法超声检测(Time of Flight Diffraction ,英文缩写 TOFD)是依靠超声波与被检对象中的缺陷尖端或端部相互作用后发出的衍射信号来检测缺陷并对缺陷进行定位、定量的一种无损检测技术。 概况起来说 TOFD技术就是一种基于衍射信号实施检测的技术。 1.2 TOFD检测原理 1.2.1 衍射现象 衍射现象:是指波在传播过程中,遇到障碍物,能够绕过障碍物,产生偏离直线传播的现象。 缺陷端点衍射现象可以用惠更斯-菲涅尔原理解释: 惠更斯提出,介质上波阵面上的各点,都可以看成是发射子波的波源,其后任意时刻这些子波的包迹,就是该时刻新的波阵面。 菲涅尔充实了惠更斯原理,他提出波前上每个面元都可视为子波的波源,在空间某点的振动是所有这些子波在该点产生的相干振动的叠加。

图1.1缺陷端部衍射信号的解释 由图示可见:当一束超声波入射到裂纹缺陷时: (1)在裂纹中部会形成有一定方向的反射波,其方向满足反射定律。反射波接近平面波,其波阵面是由众多子波源反射波叠加构成; (2)在裂纹尖端则没有叠加现象发生。这种裂纹尖端以独立的子波源发射的超声波即为衍射波。 衍射波的重要特点: 1.没有明显的方向性; 2.衍射波强度很弱。 衍射波的这两个特点都是由于裂纹尖端独立发射超声波没有波的叠加所造成的 图1.2裂纹端点衍射波特点 裂纹的上下端点都可以产生衍射波。 衍射波信号比反射波信号弱得多,且向空间的各个方向传播,即没有明显的指向性。

多普勒流量计与时差法流量计区别

多普勒流量计与PORAFLOW X超声波流量计区别: 1.多普勒流量计的测量原理,从配管外部发射超声波,超声波被流 体中的杂质反射后,作为接收信号被接受。利用多普勒效应产生的接收信号波的頻差和流速之间的比例关系,进行流速的测量。 a)基于该原理,(1)流体中含有杂质(包含气泡)是测量的前提 条件,适用于下水,不适用于上水;(2)由于无法明确接收的 反射波来自流体中的哪个部分,考虑到配管中的流速分布,如 杂质混入程度发生变化,将会对精度产生影响。 2.PORAFLOW X超声波流量计是利用横穿配管的超声波来测量流 速,所得到的是管内的平均流速,与多普勒式流量计相比较而言,是一种高精度的流量计。 3.多普勒流量计和时差法超声波流量计的区别: 超声波流量计采用时差式测量原理:一个探头发射信号穿过管壁、介质、另一侧管壁后,被另一个探头接收到,同时,第二个探头同样发射信号被第一个探头接收到,由于受到介质流速的影响,二者存在时间差Δt,根据推算可以得出流速V和时间差Δt之间的换算关系V=(C2/2L)×Δt,进而可以得到流量值Q。 超声波在传播路径上如遇到微小固体颗粒或气泡会被散射,因此用时差法测量含有这类东西的流体时就不能很好地工作,它只能用来测量比较洁净的流体。而多普勒法正是利用超声波被散射这一特点工作的,所以多普勒法正适合测量含固体颗粒或气泡的流体,但由于散射粒子或气泡是随机存在的,流体传声性能也有差别。如果是测量传

声性能差的流体,则在近管壁的低流速区散射较强;而测量传声性能好的流体在高流速区散射占优势,这就使得多普勒法的测量精度较低。虽然采用发射换能器与接收换能器分开的结构,这样可以只接收流速断面中间区域的散射,但与时差法比较测量精度还是低一些。 时差法流量计必须有一双传感器,每个包含压电晶体。一个传感器传输的声音,而作为接收器的其他行为。顾名思义,时差法流量计测量的时间,它需要从一个传感器发出的超声波信号,跨越管和第二个传感器接收。上游和下游的时间测量比较。没有流量,传输时间将在两个方向上一律平等。由于超声波信号必须跨越到管道,流体不得含有气泡或固体的浓度。否则,高频率的声音会衰减,过弱无法穿越。多普勒流量计使用单头传感器设计允许快速,简单,安装在管道外。单头传感器,包括发送和接收在同一个换能器的压电晶体。它是采用多普勒效应来测量流量的。多普勒流量计利用声波将返回到在改变频率变送器,如果在液体的反射运动中的主体,这种频移是液体的速度成正比。据精确测量仪器计算流速。因此,液体中含有气泡或固体必须采用多普勒测量工作。 多普勒超声波流量计适合测量较脏的液体如废水和泥浆或充气液体。而像干净的水,油和化学品液体可选用时差法超声波流量计来测量。

超声波衍射时差法(TOFD)技术分析

超声波衍射时差法(TOFD)技术分析 发表时间:2018-12-05T16:15:38.130Z 来源:《科技新时代》2018年10期作者:陈拥军 [导读] 针对超声波衍射时差法,在介绍其原理、优缺点的基础上,对其与A型脉冲检测和射线探测两种方法进行了对比,明确其优势和特点所在,为其推广应用提供参考依据。 (中国能建葛洲坝集团机电建设有限公司,湖北宜昌 443000) 摘要:针对超声波衍射时差法,在介绍其原理、优缺点的基础上,对其与A型脉冲检测和射线探测两种方法进行了对比,明确其优势和特点所在,为其推广应用提供参考依据。 关键词:超声波衍射时差法;A型脉冲检测;射线探测 超声波衍射时差法(Time of Flight Diffraction,TOFD)最初主要用于缺陷测高,经过多年的完善和发展,正不断取代传统检测技术,在缩短检测周期的同时保证检测结果准确性。 1超声波衍射时差法基本原理 在不具连续性缺陷尖端进行波形转换,如果完成转换后有衍射波,则该衍射波将覆盖很大范围,继而对缺陷进行检测。通过对飞越时间的准确记录,就能对缺陷高度进行测量,进而实现缺陷的准确定量,对于缺陷的尺寸,一般被定义成信号对应的飞越时间差,但要注意的是信号波幅和缺陷的定量之间没有关系。 该技术由两部分组成,分别为超声波发射(存在一定间隔距离)和超声波接收探头,因缺陷尖端所在方向波往往较弱,所以常用角度相对较大的探头在一定长度范围内进行一次扫查,这一过程中应做到精确,声波脉冲被探头接收以后,将得到侧向波,该侧向波于工件表面以下进行传播。若未检出缺陷,则底面回波将被探头接收[1]。 以上信号均可作为参考,若未考虑变形波,则缺陷信号处在这两个信号之间。当两个信号均已到达以后,发射与接收探头之间的路径会有明显的长短,一般是指缺陷下尖端对应的信号。对缺陷而言,其高度是指尖端之间的飞越时间,需要注意的是,侧向波和底面回波,两者相位完全相反,同时上、下尖端相位同样完全相反。 2超声波衍射时差法优缺点 2.1优点 (1)在一次扫查中可覆盖所有区域,但不包括处在上、下表面的盲区,能有效提高检测作业速度。 (2)具有良好的可靠性,对中部缺陷有着极高的检出率。 (3)可发现多种不同的缺陷,而且对其走向往往不敏感。 (4)能识别出不断向表面方向延伸的各类缺陷。 (5)通过对D-扫描成像的合理应用,能使对缺陷作出的判断更为直观。 (6)能对缺陷在垂直方向上进行准确定位与定量,最大精度误差在1mm以内。 (7)若与脉冲反射法等充分结合,能进一步保证检测效果,具有100%的覆盖率。 2.2缺点 (1)在近表面等位置有盲区,对这一区域进行检测时,可靠性相对较低。 (2)缺陷的定性难度相对较大。 (3)当对图像进行判断时,要具备丰富的相关经验。 (4)对于横向缺陷,有很大的检出难度。 (5)当对粗晶材料进行检测时,会有很大的检出难度。 (6)当工件有很复杂的形状时,测量难度相对较大。 (7)对噪声比较敏感,夸大了一些等良性缺陷,如 气孔,冷夹层,内部未熔合。 3超声波衍射时差法和其它方法的对比 3.1和A型脉冲检测之间的对比 (1)可靠性 因超声波衍射时差法借助衍射波完成检测,衍射信号不会收到声束这一因素的影响,所有方向上的缺陷均可被检出,进而有着良好的检出率。国外作出的相关试验可得:当采用手工UT时,检出率为50%-70%;当采用TOFD时,检出率为70%-90%;当采用机械扫查和TOFD相结合的方法时,检出率为80%-95%。从中可以看出,这种方法与传统方法相比,具有更高的可靠性[2]。 (2)定量精度 借助TOFD法对缺陷进行定量,其精度远比传统手工方法高。通常情况下,对于面积型与线性缺陷,该方法的定量误差不会超过 1mm。而对于裂纹缺陷及未熔合缺陷,该方法的测量误差仅仅为零点几毫米。 (3)检测操作 目前应用频率最高的非平行扫查,通常仅需一人就能完成,检测探头仅需在焊缝的两侧进行移动,无需进行锯齿扫查,具有很高的检测效率,而且操作成本还很低。 (4)信息处理 在整套检测系统中,装有自动扫查单元,可准确定位探头和缺陷之间的相对位置,经处理的信号能得到图像,而且其信息量直接显示远大于传统A扫描。对于A型显示,屏幕上中可以显示出一条信号,但采用TOFD得出的图像,是多个信号的整合结果。相较于A型信号及其波形显示,信息量更大的TOFD图象对缺陷准确识别与分析更有利。 (5)检测系统 目前常用的以TOFD为核心的检测系统,均为性能强劲的数字化仪器,能克服传统探伤仪器在信号记录方面的劣势,除了能对信号进行全过程记录,还能长时间的保存数据,并且还能以较高的速度处理大量信号。

衍射波时差法超声检测技术(TOFD).

衍射波时差法超声检测技术(TOFD 王庆军 大连西太平洋石油化工有限公司 116600 简介:本文简要介绍了工业发达国家正在兴起和应用的TOFD技术的起源,原理,优缺点,标准规定和在实际产品订货中节约的费用和时间。 主题词:TOFD起源原理优缺点相关费用 1. 衍射波时差法检测技术(TOFD的起源 TOFD(Time-of-flight-diffraction technique检测技术是在1977年,由Silk根据超声波衍射现象提出来,意大利AEA sonovatiion公司在TOFD应用方面,已经有15年历史,此技术首先是应用于核工业设备在役检验,现在在核电,建筑,化工,石化,长输管道等工业的厚壁容器和管道方面多有应用,TOFD技术的成本是脉冲回声技术的 1/10。现在,TOFD检测技术在西方国家是一个热门话题,现在已经开始推广应用,经过几年以后,将有取代RT趋势的可能。 2. TOFD原理及系统组成 2.1 TOFD原理是当超声波遇到诸如裂纹等的缺陷时,将在缺陷尖端发生叠加到正常反射波上的衍射波,探头探测到衍射波,可以判定缺陷的大小和深度。 TOFD原理 当超声波在存在缺陷的线性不连续处,如裂纹等处出现传播障碍时,在裂纹端点处除了正常反射波以外,还要发生衍射现象。衍射能量在很大的角度范围内放射出并且假定此能量起源于裂纹末端(图1。这与依赖于间断反射能量总和的常规超声波形成一个显著的对比。 图1

1 =发射波 2 =反射波 3 =穿透波 4 =顶部裂纹端衍射波 5 =底部裂纹端衍射波 除了发现由缺陷衍射的能量变化以外,TOFD方法也探测到一个直接穿过两个探针的表面(横向波和达到试块底部(测试对面没有受到缺陷干涉的底部反射波(图1中的注1和4。 图. 2 1- 横向波 2 - 顶部裂纹端衍射波 3 - 底部裂纹端衍射波 4- 对面器壁反射波 这种现象的研究产生了用于下列应用衍射波时差法无损检测方法: ■探伤检验因为来自于缺陷范围的信号可记录。 ■裂纹定尺寸因为衍射波分离的空间(或时间与裂纹高度直接相关。 用一对发射接受配对的单探头组(见图2的TOFD技术,通常应用的纵向探头的入射角是450~ 700,通过接受探头接受衍射信号,同时根据超声系统来评估B-扫描图像。 图. 3 裂纹定位原理图 图. 4

相关文档
相关文档 最新文档