文档库 最新最全的文档下载
当前位置:文档库 › 硼氢化钠还原全文(DOC)

硼氢化钠还原全文(DOC)

硼氢化钠还原全文(DOC)
硼氢化钠还原全文(DOC)

在有机合成中,一些增强硼氢化钠活性及选择性的方法

------------------------------------------------------------金属有机化学日报

摘要

NaBH4在通常条件下不能还原羧酸、酯、酰胺和硝基,但是加入一些添加剂后还原性会增强。例如,在NaBH4的THF溶液中加入碘,会产生用于硼氢化反应的H3B-THF,它可以还原多种基团。尽管醛酮可以直接被NaBH4还原,但是加入添加剂后,反应选择性会进一步增强。在本文中,叙述了多种增强NaBH4还原活性及选择性的方法。

关键字:硼氢化钠;提高活性;添加剂;还原反应

1.简介

在现代有机化学中,金属氢化物是一种非常重要的试剂,其中由于NaBH4反应条件和,

价格便宜易得,因此在有机还原反应中使用的最为频繁。在质子性溶剂中,它常被用来将醛酮还原成醇或者将亚胺或亚胺盐还原成氨基。羧酸、酯、酰胺和硝基通常难以被NaBH4还原,但是在加入某些添加剂后则可被还原。本文叙述了多种通过加入添加剂增强NaBH44还原活性及选择性的方法。

2.烯烃或炔烃的硼氢化反应

碳碳不饱和键的硼氢化反应,生成了具有高度区域和立体选择性的关键有机硼烷中间体。历史上,Brown and Subba Rao在研究AlCl3

做添加剂,用NaBH4还原酯的过程中发现这一反应。用BF3代替AlCl3,能使生产的乙硼烷或硼烷-路易斯碱络合物得到更有效的应用。

尽管一些硼氢化物已经商业化(例如H3B-THF, H3B-SMe2,

H3B-NR3),人们一直在寻找生产更有效简便的硼氢化物用于硼氢化反应。在1963年,报道了用1:1的硼氢化钠和醋酸硼氢化烯烃,后来又报道出用NaBH4–CH3COOH进行硼氢化反应的新方法。

有文献报道实验室里用硼氢化反应选择醒的还原了羧酸里的碳

碳双键。也报道了一种将烯烃转换成二羟基酮的新方法。

一种采用简单的一锅法将末端烯烃转换成羧酸的硼氢化反应已经相当成熟。

与此同时,不同组合的金属盐与硼氢化物用于烯烃的硼氢化反应,诸如SnCl4–NaBH4, TiCl4–NaBH4,TiCl4–PhCH2N+(Et)3BH4-和

CoCl2–NaBH4, CoCl2–NaBH4的组合体系在甲醇中用作氢化试剂,是在投入烯烃前,将其在THF中常温搅拌两小时,在乙醇做试剂也被报道过。

手性的联吡啶类配体可以采用CoCl2和其相应的配体体系获得,对于还原α,β不饱和酸或者α,β不饱和酰胺该体系联合NaBH4使用是一种很好的对应选择性催化剂。

在温和的体系中,用NiCl2–NaBH4体系可以还原查尔酮类化合物里的双键。在该反应中,用铜或者CoCl2代替NiCl2的效果不好。

NaBH4与I2反应生成硼烷。

在THF中用NaBH4与I2可以很容易的产生“H3B-THF”体系,可以用于合成相对应的反马氏醇,并且收率良好。

后来据报道,采用电化学氧化NaBH4及催化量的碘化钠产生乙硼

烷用于硼氢化烯烃。

有报道采用MeSiCl–PhCH2N+(Et)3BH4-体系用作硼氢化烯烃来

合成相对应的反马氏醇。

最近,据报道,用四丁铵硼氢化物在CH2Cl2, CHCl3 或CCl4等

溶剂中释放乙硼烷,大量的末端、中间、周环烯烃的还原用到了这类硼氢化试剂。

炔烃可通过两次硼氢化反应生成对应的醇,通常双取代的炔烃通过产生乙烯基硼烷而主要生成对应的酮,而二苯乙炔在此情况下主要生成二苯基乙醇。

PdCl2–NaBH4–PEG–CH2Cl2体系可有效的将碳碳三键硼氢化反应成对应的顺式烯烃,该试剂具有更快的反应速度和更高的选择性。

3.还原羧酸

在THF中,NaBH4与羧酸能产生酰氧化基硼氢化物来使双键发生硼氢化反应,在此条件下,产生的酰氧基硼氢化物一般不会改变,然而在加热时,一半的酰氧基团会生产相对应的醇。

下面一个类似反应,用NaBH4与羧酸和领苯二酚在25℃下反应:

常温时,在羧酸与三氟乙酸1:1的情况下,脂肪族羧酸可被NaBH4还原成相对应的醇,并且收率很好。然而芳香族羧酸的收率很差(如苯甲酸有20%)。同样的,NaBH4-三氟乙酸体系也能很好的还原脂肪族羧酸(65-95%的收率),当然在此条件下芳香族羧酸的收率也很差(30%)。

在THF回流时,采用ZnCl2–NaBH4体系很容易将脂肪族或芳香族羧酸还原成对应的醇,反应只需要化学计量的氢参与转化。同时二羧酸在此条件下可还原成对应的二醇。

采用ZnCl2–NaBH4体系在温和的条件下还原羧酸,收率很好。

ZnCl2–I2体系在温和的条件下可将羧酸还原成相对应的醇,并且收率和选择性都很好。

此外,在烯酸中羧酸的选择性还原可通过加入I2产生对应的酰氧基硼氢化物来实现。

三聚氰氯- NaBH4也能在温和的条件下将羧酸有效的还原成相应的醇。

据报道,羧酸选择性的还原成醇可用BOP试剂- NaBH4体系来实现,该方法方便、快速,并且有很好的化学选择性。例如,在此条件下如硝基、氰基、叠氮基和酯基不受影响。

4.还原氨基酸及其衍生物

手性氨基醇是一类重要的化合物,它们在不对称转换、药物化学、化合物的手性拆分及杀虫剂类药物合成等领域作用巨大。很显然用LiAlH4、二异丁基铝氢、H3B-B等试剂可将氨基酸还原成对应的氨基醇,然而这些试剂具有成本高,易燃,隔离程序复杂等缺点。迈尔斯和同事们研究出用NaBH4-I2体系还原氨基酸,结果表明这种体系能很好地将氨基酸还原成氨基醇。

在此条件下,N-酰基氨基酸可被还原成N-酰基氨基醇。

然而,N-酰基甲酸酯在此条件下不能被还原,同时,报道了PCP 酯存在情况下可将Boc保护的氨基酸和肽还原成相对应的醇。

用NaBH4-I2体系安全简单而实惠,因此特别有用,尤其是在大规模地合成手性氨基醇类的时候。

在THF中,氨基酸也能被便宜的NaBH4-H2SO4体系所还原。有意思的是采用NaBH4-I2或NaBH4-H2SO4时不会发生外消旋的现象。

5.还原羧酸酯

NaBH4-ZnCl2体系在三乙胺存在的情况下具有很强大还原性,羧酸酯可以平稳的被还原成对应的醇,而在没三乙胺时,还原却难以进行。

虽然碱金属硼氢化物在有机合成中备受关注,但是对碱土类金属的研究使用仍很有限。例如,α,β-不饱和酮在氯化钙的存在下使用硼氢

化钠更容易地转化为烯丙基醇,在所有的碱土金属中,在还原2-环己烯-1-酮化合物时,氯化钙与硼氢化钠一起能得到较好的收率及选择性。另外,该方法提供了一种简单,廉价的替代过程来选择性地还原α,β-不饱和酮。

金属盐参与的NaBH 4还原α-烷基-β酮酯的酯可能导致不同的立体化学构型,这取决于金属原子的性质。例如,强螯合的TiCl 4导致顺式异构体,而非螯合氯化铈[66],得到反式异构体[67]。酮酯是使用氯化锌-NaBH 4还原得到相应的羟基酯(式(59))[68]。

用硼氢化钠和催化量的氯化锰可将3-酮-2-甲基酯和3-酮-2-甲基酰胺立体选择性还原得到相应的赤型醇。通过对所有金属盐的尝试,氯化锰具有高选择性(方程(60)和(61))[69]。

在氯化钯、硼氢化钠试剂组合还原芳酮类、芳基氯化物和苄醇得到

相应的烃(式(62))。另外,某些受阻甾酮还原为相应的醇也得到良好的收率。

另外,该试剂在还原芳烷基酮为烷基苯时效果显著。该还原过程可在温和条件下室温、中性pH值短时间内有较高选择性。另外,芳族环上的氯原子被该试剂还原除去。当使用其他添加剂还原使区域选择性和化学选择性形成鲜明对比的情况下[71]镧系离子参与促进硼氢化钠还原烯酮至烯丙醇具有较大的价值。经过对镧系元素氯化物筛选,氯化铈是NaBH 4对1,2-烯酮的选择性还原的最佳试剂(63))。此外,这种还原不影响羧酸,酯,酰胺,卤化物,氰基和硝基。

硼氢化钠在金属有机配合体LnCpCl2(THF)3(钐和Er)作用下高化学选择及区域性选择还原1,2-不饱和羰基化合物成醇的反应已经被报道(式(64))[72]。

最后,氯化铈-硼氢化钠体系[66]对二苯基膦烯酮立体还原

也得到良好的产率(式(65))[73]。

一个由硼氢化钠的新型试剂系统的硼氢化钠和Amberlyst-15(H +)试剂组成的还原剂在THF中是一个较强的还原体系,它能对不活泼的酮进行还原,并且还原速度快,产量高和后处理的很简单。缩酮,

甲硅烷基醚,乙酸酯,烯丙基乙酸酯,烯丙基克- 内酯,羧酸酯,卤化物和孤立双键之间还原不受干扰。

附着在中性氧化铝上的硼氢化钠在溶液中还原各种各样的羰基化合物到相应的羟基衍生物[75]。固体还原也可将硼氢化钠酮混合在干燥箱中存储5天来实现,该方法主要缺陷是反应时间较长。因此,一个简单的微波辅助还原醛和酮用氧化铝-硼氢化钠已被开发(式(67))[77]。

最明显的化学选择性例子是反式肉桂醛的烯烃结构部分在该还原条件下保持不变(式(68))。

一种新型有机功能的用硼氢化钠组浸渍在梅里菲尔德的树脂固态还原剂已被报道[78]。许多醛和酮用这个还原体系进行还原。

10.2 醛和酮在相转移催化下的还原一种简单,有效和经济的方法

在存在相转移催化下,用硼氢化钠化学选择性地还原醛成醇已见报道(式(69))[79]。脂肪族,芳香族和不饱和醛被高收率地快速被还原,同时二烷基,芳烷基,二芳基和环状酮类在这些条件下没有受到影响。当PhCH2NEt3Cl和Aliquat-336被用作增溶剂和催化剂时,甲苯和二氯甲烷也常常被用作溶剂。

10.3。使用硼氢化钠作为不对称还原酮的手性助剂

在使用硼氢化钠-Me3SiCl试剂体系B-hydroxysulfoximine催化不对称还原的酮,得到相应高收率和良好的对映选择性的仲醇,式(70)[80]。

有在少数使用的NaBH 4通过手性配体改性在非水溶液中不对称还原文献报导例如,非对称减少的苯乙酮,苯丙酮和2- acetylnaphthalene 使用硼氢化钠和光学活性的(S)- 乳酸酸衍生物中产生的相应的光学活性(R)-alcohols在高达38.3%ee的(式(71))[82]。

此外,一个成功的使用NaBH4-(L)- 酒石酸不对称还原的官能团羰基酮被报道(式(72))[83]。尽管有两个羰基和烷氧基羰基官能团,该体系仍能有效地还原酮酯。

不幸的是,该催化体系对类似的酮式结构还原反应表现出较低的催化反应活性。硼氢化物作为还原剂在钴(II)络合物协助下还原光学活性的香族酮化合物催已见报导报(式(73))[84]。

镧系元素络合物,tris{4-(l-menthyloxy)-1-(p-tolyl) butane-1,3-dionato} -lanthanoid(III), [Ln(lmoba-Me)3]催化硼氢化钠还原酮(式(74))[85]。该反应的主要作用在于手性的镧系化合物。然而,大部分原料易于回收以便循环使用。

使用蒙脱石粘土的(- )- N-十二烷基-N-甲基利用硼氢化钠还原酮进行了不对称还原的研究(式(75))[86]。发现还原速度在极性或非极性溶剂中均较快。但是,不对称还原非常差。

手性修饰铜- 蒙脱石已经使用的- 2-氨基-1-丙醇和(S)- 脯氨酸制备。酮预先吸附在该粘土在乙醇中被硼氢化钠还原得到较低的不对称合成效果优点是该体系可重复使用。

从手性表面活性剂形成的手性翻转在NaBH 4对前手性酮进行不对称还原时用处很大,它的立体立体选择性主要受表面活性剂和基板的结构的影响。另外,该反应的结果取决于所述组合物微观环境。此外,据报道某些糖的存在增加了对映体过量的产品。

10.4。醛和酮的还原胺化

醛或酮与氨、胺或仲胺反应再进行还原过程中以得到相应的伯,仲或叔胺,对于合成不同种类的胺,该方法最为有用及重要的过程。对于该反应的成功,还原剂的选择是非常重要的,因为还原剂在适当条件下要还原醛或酮形成的亚胺(或亚胺盐)的中间体(式(78))。

硼氢化钠对此类反应的还原较为适合用。(式(79))[89] 还原醛胺化酮用三乙酰氧基钠报道[90]。

该反应的使用范围有脂族无环和环状酮,脂肪族和芳香醛,一级和二级胺,包括多种弱碱性和非碱性胺。此外,高立体选择性还原氨化取代的环己酮给使用轴向胺钠triacyloxyborohydrides各种派生的

羧酸(式(80))[91]。

最近,对一种新的一锅还原性烷基化胺被报道(式(81))[92]。

此外,甲醛与伯胺和仲芳香胺在使用硼氢化钠,硫酸-THF中的反应导致还原性胺化(式(82))[93]。

另外,手性-O-保护的一个羟基酮与伯胺在高氯酸镁的存在由硼氢化钠的反应的生成赤型结构产物的(1R,2S)-O-protected-N-substituted ethanolamines(式(83))[94]。

很明显,二价的镁盐化合物中间体导致赤非对映体构象的比例更高。一个简单的,温和的和有效合成二甲胺的方法被报告。

异丙氧钛(IV)是一个温和的试剂具有多种潜在的酸敏感兼容

官能团如缩醛,内酰胺,丙酮和叔丁基二甲基硅烷基醚。该物质也用于合成不对称取代脲类的醛的还原酰胺化和单取代脲(式(85))[99]。

10.5环氧酮的还原

α,β-环氧醇作为一种多功能合成中间体可以有效地加工成聚羟基手性中心的衍生物[100]。一个使用硼氢化钠-氯化锌试剂体系高度立体选择性还原的α,β-环氧酮系统已经报道[100]。此外,一个非常简单的替代程序硼氢化钠在氯化钙-氯化镧的的存在下的甲醇溶剂中立体选择性还原α,β-环氧酮成赤-A,B-环氧醇也被报导(式(86))[101]。

在这些情况下,使用金属盐有利于形成的赤产品。此外,金属氯化物有提供更高的赤选择性更大半径。例如,氯化镧,得到最高赤选择性[102]。此外,还原过程在乙醚或苯进行得极为缓慢因为硼氢化钠和金属氯化物在这些溶剂中不溶解。还原α,β-环氧酮使用硼氢化钠-

氯化铈在Luche反应中,甲醇条件下得到具有高收率的赤型立体选择性具有非常高的立体选择性。

11.其他

11.1 还原原醇与苄醇

在硼氢化钠与无水三氯化铝组合还原成亚甲基的烃(式(88))[64]。

二和triarylmethanols usin

NaBH4和TFA是不能还原二和三芳基苯甲醇的就如同非苄型或单苄型一样。这些方法导致快速形成一个非常弱的还原剂如三氟乙酸

硼氢化物[2]这是在实现氢化缓慢捕获的碳正离子中间体。我们发现滴加三氟乙酸到的混合物中在THF中在衬底和将NaBH 4提供了一个质子化中富含更多的活性还原物质(式(89))[104]。这种方法被认为是用于高效monobenzylic醇的还原,得到相应的烃,收率很好。

11.2。还原叠氮

芳酰基叠氮化物主要是还原为相应的苄醇类

硼氢化钠还原苯乙酮

硼氢化钠还原苯乙酮 前言 用硼氢化钠还原醛或酮是最直接和通常能得到高产率的醇的方法。通常的操作步骤(本实验所使用的)是将硼氢化物溶解在95%乙醇中,然后再将羰基化合物添加到该溶液中。为了确保反应完全,通常加入过量的硼氢化钠。 硼氢化钠与苯乙酮的反应是放热反应。所以,逐滴加入苯乙酮并且用冰水浴控制反应温度很重要。因为氢气是逐渐产生的,所以用酸处理时要在通风橱或者通风良好的房间中进行。 因为反应溶剂乙醇是水溶性的,这种情况下仅仅通过水和乙醚完全提取分离有机和无机产物是无法实现的。(过多产物将溶解在含水乙醇层中)为了避免发生这种现象,后处理的第一步就是蒸掉过多的乙醇,在一个大规模的反应中,应该蒸馏并收集乙醇。在一个小规模的反应中,如本实验,乙醇可以在通风橱中直接蒸掉。大部分乙醇被移除时,产品1-苯乙醇也随后被蒸出。 然后向从无机盐中提取分离出来的残留有机化合物中添加水和乙醚。提取的乙醚用硫酸钠或硫酸镁干燥。蒸馏去除乙醚获得的粗产物。 因为1-苯乙醇的沸点较高,所以1-苯乙醇不能常压蒸馏。尽管能真空蒸馏,但是不能讲它与原产物(如果有的话)分离,因为这两种化合物沸点只相差1摄氏度。(课用红外光谱确定产物中是否含有酮) 操作步骤: 将0.5g硼氢化钠(见注意事项)加入100ml三颈圆底烧瓶,并加入10毫升95%乙醇,搅拌至固体溶解(见实验报告)。称量4.0克苯乙酮,将其加入滴液漏斗,并准备一个冰水浴。 将滴液漏斗中的苯乙酮(如果固化,加3ml乙醇)缓慢滴入硼氢化钠溶液中,同时开启电磁搅拌器,持续搅拌混合体系。控制反应温度和滴加速度,同时用冰水浴冷却反应体系。随着苯乙酮的滴入,有白色沉淀产生。滴加过程控制在45min。滴加完成后,将反应体系在室温下继续搅拌15min。 在通风橱中,向反应体系中滴加5mlHCL(3M)溶液,同时用冰水浴冷却。反应减弱后,在通风橱中用电磁炉或蒸气浴加热反应体系,直到该反应体系混合

硼氢化钠还原全word版

在有机合成中,一些增强硼氢化钠活性及选择性的方法 ----------------------------------------------------------- -金属有机化学日报 摘要 NaBH4在通常条件下不能还原羧酸、酯、酰胺和硝基,但是加入一些添加剂后还原性会增强。例如,在NaBH4的THF溶液中加入碘,会产生用于硼氢化反应的H3B-THF,它可以还原多种基团。尽管醛酮可以直接被NaBH4还原,但是加入添加剂后,反应选择性会进一步增强。在本文中,叙述了多种增强NaBH4还原活性及选择性的方法。 关键字:硼氢化钠;提高活性;添加剂;还原反应 1.简介 在现代有机化学中,金属氢化物是一种非常重要的试剂,其中由于NaBH4反应条件和, 价格便宜易得,因此在有机还原反应中使用的最为频繁。在质子性溶剂中,它常被用来将醛酮还原成醇或者将亚胺或亚胺盐还原成氨基。羧酸、酯、酰胺和硝基通常难以被NaBH4还原,但是在加入某些添加剂后则可被还原。本文叙述了多种通过加入添加剂增强NaBH44还原活性及选择性的方法。 2.烯烃或炔烃的硼氢化反应

碳碳不饱和键的硼氢化反应,生成了具有高度区域和立体选择性的关键有机硼烷中间体。历史上,Brown and Subba Rao在研究AlCl3做添加剂,用NaBH4还原酯的过程中发现这一反应。用BF3代替AlCl3,能使生产的乙硼烷或硼烷-路易斯碱络合物得到更有效的应用。 尽管一些硼氢化物已经商业化(例如H3B-THF, H3B-SMe2, H3B-NR3),人们一直在寻找生产更有效简便的硼氢化物用于硼氢化反应。在1963年,报道了用1:1的硼氢化钠和醋酸硼氢化烯烃,后来又报道出用NaBH4–CH3COOH进行硼氢化反应的新方法。 有文献报道实验室里用硼氢化反应选择醒的还原了羧酸里的碳碳双键。也报道了一种将烯烃转换成二羟基酮的新方法。

硼氢化钠

硼氢化钠 Reference) NIST化学物质信息Sodium tetrahydroborate(16940-66-2) EPA化学物质信息Borate(1-), tetrahydro-, sodium(16940-66-2) 硼氢化钠用途与合成方法 概述硼氢化钠是一种无机化合物,为白色至灰白色细结晶粉末或块状,在室温下与甲醇迅速反应生成氢气。吸湿性强,容易吸水潮解,沸点500℃(真空);熔点400℃;可溶于水和低级醇、液氨,不溶于乙醚、苯、烃类;相对密度(水=1):1.07,在无机合成和有机合成中硼氢化钠常用做还原剂。硼氢化钠具有较强的选择还原性,能够将羰基选择还原成羟基,但是与碳碳双键、叁键都不发生反应。少量硼氢化钠可以将腈还原成醛,过量则还原成胺。 发现历程硼氢化钠是由H. C. Brown 和他的老板Schlesinger 于1942年在芝加哥大学发现的。当时的目的是为了研究硼烷和一氧化碳络合物的性质,但却发现了硼烷对有机羰基化合物的还原能力。由于当时硼烷属于稀有物质,因此并没有引起有机化学家的重视。硼烷化学的发展得益于第二次世界大战,当时美国国防部需要寻找一种分子量尽量小的挥发性铀化合物用于裂变材料铀235的富集。硼氢化铀U(BH4)4符合这个要求。该化合物的合成需要用到氢化锂,然而氢化锂的供应很少,于是便宜的氢化钠便被用来作原料,而硼氢化钠就在这个过程中被发现。后来,因为六氟化铀的处理工艺问题得到解决,国防部便放弃了通过硼氢化铀来富集铀235的计划,而Brown 的研究课题就变成了如何方便地制备硼氢化钠。Army Signal Corps公司对这个新化合物的野外就地制备大量氢气的用途产生了兴趣。在他们的资助下,开展了相关的工业化研究,产生了后来工业生产硼氢化钠的工艺:4NaH + B(OCH3)3 →NaBH4 + 3NaOCH3 产物是两种固体。用醚类溶剂重结晶得到纯品硼氢化钠。 用途硼氢化钠的氢在这里显-1价故有很强还原性可以还原有一定氧化性的无机物,它主要用于有机合成中的-COOH还原成-CH20H,起到有机合成的很大作用所以被成为“万能还原剂”。是一种良好的还原剂,它的特点是性能稳定,还原时有选择性。可用作醛类,酮类和酰氯类的还原剂,塑料的发泡剂,制造双氢链霉素的氢化剂,制造硼氢化钾的中间体,合成硼烷的原料,以及用于造纸工业和含汞污水的处理剂。 硼氢化钠给有机化学家们提供了一种非常便利温和的还原醛酮类物质的手段。在此之前,通常要用金属/醇的办法来还原羰基化合物,而硼氢化钠可以在非常温和的条件下实现醛酮羰基的还原,生成一级醇、二级醇。还原步骤是先把底物溶于溶剂,一般是甲醇或者乙醇,然后用冰浴冷却,将硼氢化钠粉末加入混合物搅拌至反应完全即可。反

硼氢化钠,氰基硼氢化钠,三乙酰氧基硼氢化钠还原使用总结

如何正确使用三乙酰氧基硼氢化钠 是要还原胺化吧,这东西我记得是无毒的。还原胺化反应是指将羰基化合物转变为 胺的重要有机合成反应。先形成亚胺,然后被硼氢化钠还原;无论是硼氢化钠,还 是三乙酰氧基硼氢化钠、氰基硼氢化钠,还是醋酸硼氢化钠,差别没有这么大,只 要你形成了亚胺,下一步就是简单的还原。 将羰基跟胺反应生成亚胺(西弗碱),然后用硼氢化钠或者氰基硼氢化钠还原成 胺。反应应在弱酸条件下进行,因为弱酸条件一方面使羰基质子化增强了亲电性促进了反应,另一方面也避免了胺过度质子化造成亲核性下降的发生。用氰代硼氢化钠 比硼氢化钠要好,因为氰基的吸电诱导效应削弱了硼氢键的活性,使得氰代硼氢化 钠只能选择性地还原西弗碱而不会还原醛、酮的羰基,从而避免了副反应的发生。 用NaBH(0Ac)3(乍还原剂,用CICH2CH2C做溶剂可以缩短反应时间并显着提高产率。 我在做一类“胺基还原烷基化反应”,其中用到上述还原剂,我想求助以下几个问题: 1)这三种还原剂分别都在什么溶剂中进行反应? 2)它们中哪些是可以还原醛或者酮的因为据说三乙酰氧基硼氢化钠在甲醇中反应很快,而且可以将醛还原掉。那么其他的会不会? 3)如果不考虑毒性、成本等因素,单从化学性质上说,氰基硼氢化钠与三乙酰氧基硼氢化钠,它们的用法有什么区别 4)我的反应体系pH 值接近中性偏碱,据说氰基硼氢化钠在酸性条件下还原能 力不错,而在中性时候不行,那么三乙酰氧基硼氢化钠呢它的适用pH范围是多 少 J. 0rg. Chem. 1996, 61, 3849-3862 Sodium triacetoxyborohydride is presented as a generaI reducing agent for the reductive aminationof aIdehydes and ketones. Procedures for using this miId and seIective reagent have been deveIoped for a wide variety of substrates. The scope of the reaction incIudes aIiphatic acycIic and cycIic ketones, aIiphatic and aromatic aIdehydes, and primary and secondary amines incIuding a variety of weakIy basic and nonbasic amines. Limitations incIude reactions with aromatic and unsaturated ketones and some stericaIIy hindered ketones and amines. 1,2-DichIoroethane (DCE) is the preferred reaction soIvent, but reactions can aIso be carried out in tetrahydrofuran (THF) and occasionaIIy in acetonitriIe. Acetic acid may be used as cataIyst with ketone reactions, but it is generaIIy not needed with aIdehydes. The procedure is carried out effectiveIy in the presence of acid sensitive functionaI groups such as acetaIs and ketaIs; it can aIso be carried out in the presence of reducibIe functionaI groups such as C-C muItipIe bonds and cyano and nitro groups. Reactions are generaIIy faster in DCE than in THF, and in both soIvents, reactions are faster in the presence of Ac0H. In comparison with other reductive amination procedures such as NaBH3CN/Me0H, borane-pyridine, and cataIytic hydrogenation, NaBH(0Ac)3 gave consistentIy higher yieIds and fewer side products. In the reductive amination of some aIdehydes with primary amines where diaIkyIation is a probIem we adopted a stepwise procedure invoIving imine formation in Me0H foIIowed by reduction with NaBH4. 这两种还原剂都比较常用,个人认为做还原氨化时主要考虑两个因素(溶剂,还原

硼氢化钠还原钯

硼氢化钠还原钯 《硼氢化钠还原氯钯酸制备纳米钯》何武强 实验部分: 1.1 仪器与试剂 三缩四乙二醇(A.R),Acros Co.;氯化钯(A.R),北京化学试剂公司;硼氢化钠(A.R),天津市新纯化学试剂研究所;盐酸(A.R),天津文达稀贵试剂化工厂;乙二醇(A.R),北京益利精细化学品有限公司;PVP(MW40000),Fluka Co.’红外灯;磁力搅拌器 79-1 型;紫外,可见光谱仪(Perkin Elmer Lambda 35 UV/VIS Spectromet-er);透射电子显微镜(T ecnai G220)’ 1.2 实验步骤 氯钯酸由氯化钯与盐酸反应后在红外灯下小心烤干得到’常温下,向一定浓度硼氢化钠的三缩四乙二醇溶液中滴加高浓度三缩四乙二醇的氯钯酸溶液,并在磁力搅拌器上快速搅拌’反应完毕后迅速加入一定量的PVP,溶液总体积为 10 mL,cH2PdCl4为 1.5 mmol/L’分别制备了 H2PdCl4+NaBH4=1+3, H2PdCl4+NaBH4=1+6,H2PdCl4+NaBH4=1+9 等不同条件下的样品,以备作TEM 和UV-vis 测试。 1.3 结论 本文在常温下用硼氢化钠还原钯氯酸的方法同样得到了小颗粒而分布均匀的钯金属的纳米颗粒,讨论了在这种方法下得到钯金属纳米颗粒的最佳条件为 H2PdCl4+NaBH4=1+6 ,为无保护剂钯金属的纳米颗粒的合成又开辟了一条新的路径。 《溶剂稳定的钯金属纳米颗粒的制备》何武强实验部分 1.1 试剂及仪器

氯化钯(A.R)、氢氧化钠(A.R)、盐酸(A.R)、乙二醇(A.R)、三缩四乙二醇(A.R)、PVP(MW40000)。红外灯、磁力搅拌器(79-1型)、透射电子显微镜(Tecnai G220)。 1.2 实验步骤 氯钯酸由氯化钯与盐酸反应后在红外灯下小心烤干得到。在室温条件下,向一定浓度氢氧化钠的三缩四乙二醇溶液中滴加高浓度三缩四乙二醇的氯钯酸溶液,同时在磁力搅拌器上搅拌,最后溶液的总体积为10mL,CH2PdCl4=3 mmol?L-1。溶液迅速地由棕红色变为透亮的黑色,立即加入一定量的PVP溶液即可。在60?恒温条件下,向一定浓度氢氧化钠的乙二醇溶液中滴加高浓度乙二醇的氯钯酸溶液,同时在磁力搅拌器上搅拌,最后溶液的总体积为10 mL,CH2PdCl4=3 mmol?L-1。溶液迅速地由棕红色变为透亮的黑色,立即加入一定量的PVP溶液即可。 1.3 结论 通过实验我们可以看到,三缩四乙二醇和乙二醇作溶剂均能够得到粒径小,分布均匀的钯金属的纳米颗粒,Pd与NaOH的比例为1?2,1?3,1?4,Pd与PVP的比例为1?0.5,1?1,1?2,1?5。Pd与碱 (NaOH)的比例的调配以及保护剂的用量方面的工作还在进一步的探索中。这些工作为今后贵金属纳米材料的工业化生产及催化反应的应 用提供了良好的实验基础。 《石墨烯负载高活性Pd催化剂对乙醇的电催化氧化》温祝亮等 实验部分 1.1 试剂和仪器 石墨粉(光谱纯)浓硫酸(分析纯) 高锰酸钾(分析纯) 30%过氧化氢(分析纯) 硼氢化钠(分析纯) Nafion溶液氯化钯5%(分析纯) 乙醇(分析纯) 水为去离子水所

硼氢化钠还原的淬灭方法

后处理方法: 1、稀盐酸淬灭 NaBH4 +HCl+3H2O = B(OH)3 + NaCl + 4H2 操作:冰水浴下缓慢滴加,控制滴加速度,以防产生气泡太快而发生冲料现象,滴加到反应体系不再冒泡即可。(有人提出,为防止反应太快,可以先加点丙酮缓冲一下)。 2、10%或饱和NH4Cl溶液 NaBH4 +NH4Cl+H2O → B(OH)3 + NaCl + H2 + 水合氨(仅供参考,不一定准确) 操作:类似于稀盐酸,若溶剂用的是THF,会有大量气泡产生,需控制滴加速度。处理完后,有无色透明的晶体(应该是硼酸和氯化钠,硼酸不溶于THF、EA,也难溶于水),可以先过滤掉,然后再处理。 优点:反应条件温和,一般用此方法。 3、醋酸 NaBH4 +CH3COOH+3H2O = B(OH)3 + CH3COONa + 4H2 操作类似于稀盐酸。 其它方法:(适合于产物水溶性较大的,后处理尽量避免用水,有机溶剂萃取后,用饱和食盐水洗涤) 1、MeOH : H2O = 1 : 1(适用于还原方法3) 2、MeOH : CH3COOH = 1 : 1 讨论: 1、用NaBH4 + MeOH还原的机理不是很清楚,希望了解的朋友谈谈你的看 法。后处理,参考文献中说,只加水,这样是否能破坏掉过量的 NaBH4 ,还有如何判断已经完全淬灭(也就是加水的量的控制)。 2、有人说,后处理时,要加碱(如氢氧化钠),以破换B-O键,请问这是否 有必要。 对于产物水溶性很大的反应后处理: 若用NaBH4 + MeOH方法,反应完后,用稀盐酸调PH至中性,过滤掉盐后,减压蒸掉甲醇后,用无水乙醇抽提方法得到产物。

硼氢化钠,氰基硼氢化钠,三乙酰氧基硼氢化钠还原 使用总结

如何正确使用三乙酰氧基硼氢化钠? 是要还原胺化吧,这东西我记得是无毒的。还原胺化反应是指将羰基化合物转变为胺的重要有机合成反应。先形成亚胺,然后被硼氢化钠还原;无论是硼氢化钠,还是三乙酰氧基硼氢化钠、氰基硼氢化钠,还是醋酸硼氢化钠,差别没有这么大,只要你形成了亚胺,下一步就是简单的还原。 将羰基跟胺反应生成亚胺(西弗碱),然后用硼氢化钠或者氰基硼氢化钠还原成胺。反应应在弱酸条件下进行,因为弱酸条件一方面使羰基质子化增强了亲电性促进了反应,另一方面也避免了胺过度质子化造成亲核性下降的发生。用氰代硼氢化钠比硼氢化钠要好,因为氰基的吸电诱导效应削弱了硼氢键的活性,使得氰代硼氢化钠只能选择性地还原西弗碱而不会还原醛、酮的羰基,从而避免了副反应的发生。用NaBH(OAc)3作还原剂,用ClCH2CH2Cl做溶剂可以缩短反应时间并显著提高产率。 我在做一类“胺基还原烷基化反应”,其中用到上述还原剂,我想求助以下几个问题: 1)这三种还原剂分别都在什么溶剂中进行反应? 2)它们中哪些是可以还原醛或者酮的?因为据说三乙酰氧基硼氢化钠在甲醇中反应很快,而且可以将醛还原掉。那么其他的会不会? 3)如果不考虑毒性、成本等因素,单从化学性质上说,氰基硼氢化钠与三乙酰氧基硼氢化钠,它们的用法有什么区别? 4)我的反应体系pH值接近中性偏碱,据说氰基硼氢化钠在酸性条件下还原能力不错,而在中性时候不行,那么三乙酰氧基硼氢化钠呢?它的适用pH范围是多少? J. Org. Chem. 1996, 61, 3849-3862 Sodium triacetoxyborohydride is presented as a general reducing agent for the reductive aminationof aldehydes and ketones. Procedures for using this mild and selective reagent have been developed for a wide variety of substrates. The scope of the reaction includes aliphatic acyclic and cyclic ketones, aliphatic and aromatic aldehydes, and primary and secondary amines including a variety of weakly basic and nonbasic amines. Limitations include reactions with aromatic and unsaturated ketones and some sterically hindered ketones and amines. 1,2-Dichloroethane (DCE) is the preferred reaction solvent, but reactions can also be carried out in tetrahydrofuran (THF) and occasionally in acetonitrile. Acetic acid may be used as catalyst with ketone reactions, but it is generally not needed with aldehydes. The procedure is carried out effectively in the presence of acid sensitive functional groups such as acetals and ketals; it can also be carried out in the presence of reducible functional groups such as C-C multiple bonds and cyano and nitro groups. Reactions are generally faster in DCE than in THF, and in both solvents, reactions are faster in the presence of AcOH. In comparison with other reductive amination procedures such as NaBH3CN/MeOH, borane-pyridine, and catalytic hydrogenation, NaBH(OAc)3 gave consistently higher yields and fewer side products. In the reductive amination of some aldehydes with primary amines

硼氢化钠还原酰胺

硼氢化钠的还原性 1、硼氢化钠的基本性质 白色结晶性粉末。有吸湿性,在潮湿空气中分解。 1)硼氢化钠和水的关系 ①硼氢化钠在水中会慢慢分解放出氢气,少量水不影响反应,加水没问题,有利于溶解。一般用水和乙醇做混合溶剂做还原效果就比较好,也可以用水做溶剂。如果加路易斯酸催化,就不能有水了。 硼氢化钠可以稳定的溶于水,加入碱会使得更加稳定。当水溶液中含有少量氢氧化钠时相当稳定,可保存数天,水溶液煮沸急速分解。 硼氢化钠的分子式是:NaBH4,这里的氢是中学阶段不常见的-1价,而水里的氢是常见的+1价,两者反应之后生成氢气。NaBH4+2H2O=NaBO2+4H2↑ ②硼氢化钠还原通常用甲醇,乙醇做溶剂,但在甲醇中会分解一部分硼氢化钠,所以硼氢化钠的量可能较大一些,但会用THF/H2O,Et2O/H2O为反应溶剂,但是水的量必须是微量的,因为水能够分解硼氢化钠,放出氢气,由于硼氢化钠的氢负离子拔掉了水中的一个质子,从而生成氢氧根,这样有助反应,因为NaBH3(OH)的还原能力教硼氢化钠强。另外,硼氢化钠还原并不是产生的H2具有还原性的缘故,而是因为生成了硼烷。BH4-与H+生成BH3和氢气还原作用是BH3,不然要是直接通氢气,不用硼氢化钠,没法还原 2)硼氢化钠和醇的关系 溶解度(g/100g):水中25℃时55,60℃时88.5,液氨25℃时104,乙二胺75℃时22,吗啉25℃时1.4,吡啶25℃时3.1,甲醇20℃时16.4(起反应),乙醇20℃时4.0(缓慢反应),四氢糠醇20℃时0.1,二甘醇二甲醚25℃时5.5,二甲基甲酰胺20℃时18.0。 硼氢化钠在室温时与甲醇反应,如果选用甲醇作为反应溶剂可以选择低温反应,或者改用乙醇。也可以考虑往甲醇溶液中加入少量氢氧化钠。 硼氢化钠与甲醇的反应,也就是硼氢化钠在醇类溶剂的稳定: 甲醇<乙醇<异丙醇<叔丁醇. 3)硼氢化钠的应用

硼氢化钠还原钯

《硼氢化钠还原氯钯酸制备纳米钯》何武强 实验部分: 1.1 仪器与试剂 三缩四乙二醇(A.R),Acros Co.;氯化钯(A.R),北京化学试剂公司;硼氢化钠(A.R),天津市新纯化学试剂研究所;盐酸(A.R),天津文达稀贵试剂化工厂;乙二醇(A.R),北京益利精细化学品有限公司;PVP(MW40000),Fluka Co.’红外灯;磁力搅拌器79-1 型;紫外-可见光谱仪(Perkin Elmer Lambda 35 UV/VIS Spectromet-er);透射电子显微镜(Tecnai G220)’ 1.2 实验步骤 氯钯酸由氯化钯与盐酸反应后在红外灯下小心烤干得到’常温下,向一定浓度硼氢化钠的三缩四乙二醇溶液中滴加高浓度三缩四乙二醇的氯钯酸溶液,并在磁力搅拌器上快速搅拌’反应完毕后迅速加入一定量的PVP,溶液总体积为10 mL,cH2PdCl4为1.5 mmol/L’分别制备了H2PdCl4+NaBH4=1+3,H2PdCl4+NaBH4=1+6,H2PdCl4+NaBH4=1+9 等不同条件下的样品,以备作TEM 和UV-vis 测试。 1.3 结论 本文在常温下用硼氢化钠还原钯氯酸的方法同样得到了小颗粒而分布均匀的钯金属的纳米颗粒,讨论了在这种方法下得到钯金属纳米颗粒的最佳条件为H2PdCl4+NaBH4=1+6 ,为无保护剂钯金属的纳米颗粒的合成又开辟了一条新的路径。

《溶剂稳定的钯金属纳米颗粒的制备》何武强 实验部分 1.1试剂及仪器 氯化钯(A.R)、氢氧化钠(A.R)、盐酸(A.R)、乙二醇(A.R)、三缩四乙二醇(A.R)、PVP(MW40000)。红外灯、磁力搅拌器(79-1型)、透射电子显微镜(Tecnai G220)。 1.2实验步骤 氯钯酸由氯化钯与盐酸反应后在红外灯下小心烤干得到。在室温条件下,向一定浓度氢氧化钠的三缩四乙二醇溶液中滴加高浓度三缩四乙二醇的氯钯酸溶液,同时在磁力搅拌器上搅拌,最后溶液的总体积为10mL,CH2PdCl4=3 mmol·L-1。溶液迅速地由棕红色变为透亮的黑色,立即加入一定量的PVP溶液即可。在60℃恒温条件下,向一定浓度氢氧化钠的乙二醇溶液中滴加高浓度乙二醇的氯钯酸溶液,同时在磁力搅拌器上搅拌,最后溶液的总体积为10 mL,CH2PdCl4=3 mmol·L-1。溶液迅速地由棕红色变为透亮的黑色,立即加入一定量的PVP溶液即可。 1.3 结论 通过实验我们可以看到,三缩四乙二醇和乙二醇作溶剂均能够得到粒径小,分布均匀的钯金属的纳米颗粒,Pd与NaOH的比例为1∶2,1∶3,1∶4,Pd与PVP的比例为1∶0.5,1∶1,1∶2,1∶5。Pd与碱(NaOH)的比例的调配以及保护剂的用量方面的工作还在进一步的探索中。这些工作为今后贵金属纳米材料的工业化生产及催化反应的应

硼氢化钠反应后处理摘要

硼氢化钠还原酯到醇的方法 溶剂机理 1、NaBH4 + LiCl,无水乙醇或THF 生成LiBH4 2、NaBH4 + ZnCl2 + 叔胺,THF 生成Zn(BH4)2 3、NaBH4 + MeOH, MeOH或THF 4、NaBH4 + CeCl3,无水乙醇 5、NaBH4 + I2或Lewis酸(AlCl3或BF3),THF 生成乙硼烷 后处理方法: 1、稀盐酸淬灭 NaBH4 +HCl+3H2O = B(OH)3 + NaCl + 4H2 操作:冰水浴下缓慢滴加,控制滴加速度,以防产生气泡太快而发生冲料现象,滴加到反应体系不再冒泡即可。(有人提出,为防止反应太快,可以先加点丙酮缓冲一下)。 2、10%或饱和NH4Cl溶液 NaBH4 +NH4Cl+H2O → B(OH)3 + NaCl + H2 + 水合氨(仅供参考,不一定准确) 操作:类似于稀盐酸,若溶剂用的是THF,会有大量气泡产生,需控制滴加速度。处理完后,有无色透明的晶体(应该是硼酸和氯化钠,硼酸不溶于THF、EA,也难溶于水),可以先过滤掉,然后再处理。 优点:反应条件温和,一般用此方法。

3、醋酸 NaBH4 +CH3COOH+3H2O = B(OH)3 + CH3COONa + 4H2 操作类似于稀盐酸。 其它方法:(适合于产物水溶性较大的,后处理尽量避免用水,有机溶剂萃取后,用饱和食盐水洗涤) 1、MeOH : H2O = 1 : 1(适用于还原方法3) 2、MeOH : CH3COOH = 1 : 1 讨论: 1、用NaBH4 + MeOH还原的机理不是很清楚,希望了解的朋友谈谈你的看 法。后处理,参考文献中说,只加水,这样是否能破坏掉过量的 NaBH4 ,还有如何判断已经完全淬灭(也就是加水的量的控制)。 2、有人说,后处理时,要加碱(如氢氧化钠),以破换B-O键,请问这是否 有必要。 这个反应我做过,有个经典的参考文献。而且很实用。 反应体系是在甲醇里反应然后回流得到。 后处理的具体步骤如下: 1.尽量旋出甲醇,剩余五毫升是可以的。 2.加入丙酮20mL,回流半小时。丙酮沸点低,估计五十度足够了。 3.旋干丙酮,加入饱和的碳酸钾溶液10mL,然后为了能够溶解充分,可以适量加入一些水。大约10mL。回流45分钟。温度控制好,不要超过100℃。只要固体全部溶解了。反应15分钟就足够了。反应太长时间产率会下降,而且产生油状的副产物(可能是聚合成高分子物质。)。

硼氢化钠还原苯乙酮

硼氢化钠还原苯乙酮 .、八、- 刖言 用硼氢化钠还原醛或酮是最直接和通常能得到高产率的醇的方法。通常的操作步骤(本实验所使用的)是将硼氢化物溶解在95汇醇中,然后再将羰基化合物添加到该溶液中。为了确保反应完全,通常加入过量的硼氢化钠。 硼氢化钠与苯乙酮的反应是放热反应。所以,逐滴加入苯乙酮并且用冰水浴控制反应温度很重要。因为氢气是逐渐产生的,所以用酸处理时要在通风橱或者通风良好的房间中进行。 因为反应溶剂乙醇是水溶性的,这种情况下仅仅通过水和乙醚完全提取分离有机和无机产物是无法实现的。(过多产物将溶解在含水乙醇层中)为了避免发生这种现象,后处理的第一步就是蒸掉过多的乙醇,在一个大规模的反应中,应该蒸馏并收集乙醇。在一个小规模的反应中,如本实验,乙醇可以在通风橱中直接蒸掉。大部分乙醇被移除时,产品1-苯乙醇也随后被蒸出。 然后向从无机盐中提取分离出来的残留有机化合物中添加水和乙醚。提取的乙醚用硫酸钠或硫酸镁干燥。蒸馏去除乙醚获得的粗产物。 因为1-苯乙醇的沸点较高,所以1-苯乙醇不能常压蒸馏。尽管能真空蒸馏,但是不能讲它与原产物(如果有的话)分离,因为这两种化合物沸点只相差1摄氏度。(课用红外光谱确定产物中是否含有酮) 操作步骤: 将0.5g硼氢化钠(见注意事项)加入100ml三颈圆底烧瓶,并加入10毫升95汇醇,搅拌至固体溶解(见实验报告)。称量4.0克苯乙酮,将其加入滴液漏斗,并准备一个冰水浴。 将滴液漏斗中的苯乙酮(如果固化,加3ml乙醇)缓慢滴入硼氢化钠溶液中,同时开启电磁搅拌器,持续搅拌混合体系。控制反应温度和滴加速度,同时用冰水浴冷却反应体系。随着苯乙酮的滴入,有白色沉淀产生。滴加过程控制在45mi n。滴加完成后,将反应体系在室温下继续搅拌15mi n。 在通风橱中,向反应体系中滴加5mlHCL(3M溶液,同时用冰水浴冷却。反应 精选范本,供参考!

相关文档