文档库 最新最全的文档下载
当前位置:文档库 › 2020高考导数大题汇编(理科)详细解析

2020高考导数大题汇编(理科)详细解析

2020高考导数大题汇编(理科)详细解析
2020高考导数大题汇编(理科)详细解析

班级_____________________ 姓名____________________ 考场号____________ 考号___________

----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 一、解答题

1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,'112()e ln e e e .x x x x a b b

f x a x x x x

--=+-+

由题意可得'

(1)2,(1) e.f f ==故1,2a b ==.

(Ⅱ)由(Ⅰ)知12e ()e ln ,x x

f x x x -=+从而()1f x >等价于2

ln e .e

x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1

(0,)e

x ∈时,'()0g x <;

当1(,)e x ∈+∞时,'()0g x >,故()g x 在1(0,)e 单调递减,在1

(,)e

+∞单调递增,

从而()g x 在(0,)+∞的最小值为11

().e e

g =-.

设函数2

()e e

x h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >;

当(1,)x ∈+∞时,'()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在

(0,)+∞的最大值为1

(1)e

h =-.

综上,当0x >时,()()g x h x >,即()1f x >.

2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解.

解析(1)2/

22

2(2)24(1)

()1(2)(1)(2)

a x x ax a f x ax x ax x +-+-=-=++++ (*) 当1a ≥时,/()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/()0f x =

得1x =,

(2x =-舍去).

当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增.

当01a <<时,()f x

在区间(0,

上单调递减,在区间)+∞上单调递增.

由(*)式知,当1a ≥时,/()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点,

必有01a <<.又()f x

的极值点只可能是1x =

2x =-,且由定义可知,

1

x a

>-

且2x ≠-

,所以1a ->-

且2-≠-,解得1

2

a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 12()()f x f x +=12

121222ln(1)ln(1)22

x x ax ax x x +-++-++

21212121212124()

ln[1()]2()4

x x x x a x x a x x x x x x ++=+++-

+++224(1)2

ln(21)ln(21)22121a a a a a -=--=-+---

令21a x -=,则01a <<且12a ≠-知:当102

a <<时,10x -<<;当1

12a <<时,

01x <<. 记22

()ln 2g x x x

=+

-, (Ⅰ)当10x -<<时,2()2ln()2g x x x =-+-,所以/22

2222

()0x g x x x x -=-=<

因此,()g x 在区间(1,0)-上单调递减,从而()(1)40g x g <-=-<,故当1

02

a <<

时, 12()()0f x f x +<.

班级_____________________ 姓名____________________ 考场号____________ 考号___________

----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ (Ⅱ)当01x <<时,2()2ln 2g x x x =+-,所以/22

2222

()0x g x x x x

-=-=< 因此,()g x 在区间(0,1)上单调递减,从而()(1)0g x g >=,故当时

1

12

a <<,12()()0f x f x +>.

综上所述,满足条件的a 的取值范围为1

(,1)2

3. (1)证明:因为对任意x ∈R ,都有()()e e e e ()x x x x f x f x -----=+=+=,所以f (x )是R

上的偶函数.

(2)解:由条件知(e e 1)e 1x x x m --+-≤-在(0,+∞)上恒成立. 令t = e x (x >0),则t >1,所以m ≤211

11111

t t t t t --

=--+-++-对于任意t >1成立.

因为11111t t -+

+≥- = 3,所以1113111

t t -≥--++-, 当且仅当t = 2,即x = ln2时等号成立.

因此实数m 的取值范围是1,3??

-∞- ??

?

(3)解:令函数31()e (3)e x

x g x a x x =+--+,则21

()e 3(1)e

x x g x a x '=-+-.

当x ≥1时,1e 0e

x x ->,x 2

– 1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数,

因此g (x )在[1,+∞)上的最小值是1

(1)e e 2g a -=+-.

由于存在x 0∈[1,+∞),使0

3

0e e (3)0x x a x x -+--+<成立,当且仅当最小值g (1)<0, 故1

e+e 20a --<,即1

e e 2

a -+>.

令函数()(e 1)ln 1h x x x =---,则()1h x '=-e 1

x

-,令h ′(x ) = 0,得e 1x =-.

当(0,e 1)x ∈-时,h ′(x )<0,故h (x )是(0,e 1)-上的单调减函数.

当x ∈(e – 1,+∞)时,h ′(x )>0,故h (x )是(e – 1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是(e 1)h -.

注意到h (1) = h (e) = 0,所以当(1,e 1)x ∈- ?(0,e 1)-时,(e 1)h -)≤h (x )

①当a ∈1e e ,e 2-??

+

???

?(1,e)时,h (a )<0,即1(e 1)ln a a -<-,从而1e 1e a a --<; ②当a = e 时,1e 1e a a --<;

③当(e,)(e 1,)a ∈+∞?-+∞时,h (a )>h (e) = 0,即1(e 1)ln a a ->-,故1e 1e a a -->.

综上所述,当a ∈1e e ,e 2-??

+

???

时,1e 1e a a --<,当a = e 时,1e 1e a a --=,当(e,)a ∈+∞ 时,1e 1e a a -->.

4. 解题指南:(I )利用'()f x 为偶函数和()y f x =在点(0,(0))f 处的切线的斜率为4c -建立关于,a b 的方程求解. (II )利用基本不等式求解.(III)需对c 进行分类,讨论方程

'()0f x =是否有实根,从而确定极值.

解析:(I )对()f x 求导得'22()22x x f x ae be c -=+-,由()f x '为偶函数,知'()'()f x f x -=, 即222()()0x x a b e e --+=,因220x x e e -+>,所以a b =. 又'(0)224f a b c c =+-=-,故1,1a b ==. (II )当3c =时,22()3x x f x e e x -=--,那么

班级_____________________ 姓名____________________ 考场号____________ 考号___________

----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ '2222()223222310,x x x x f x e e e e --=+-≥?-=>

故()f x 在R 上为增函数.

(III)由(Ⅰ)知'22()22x x f x e e c -=+-,而2222222224,x x x x e e e e --+≥?=当0x =时等号成立. 下面分三种情况进行讨论.

当4c <时,对任意22,()220x x x R f x e e c -'∈=+->,此时()f x 无极值; 当4c =时,对任意220,()220x x x f x e e c -'≠=+->,此时()f x 无极值;

当4c >时,令2x

e t =,注意到方程2

20t c t

+-=有两根21,2160c c t ±-=

>, 即'()0f x =有两根11221

1ln ln 22

x t x t ==或.

当12x x x <<时,'()0f x <;又当2x x >时,'()0f x >,从而'()f x 在2x x =处取得极小值; 综上,若'()f x 有极值,则c 取值范围为()4,+∞.

5. 解题指南(1)先求导数,结合解不等式求解函数的单调区间;(2)利用单调性与导数的关系求解字母的取值范围.

解析⑴当4b =时,212()(44)x f x x x -=++,定义域为12

(,)-∞, 2

11221212()(24)(44)(2)x

x

x

f x x x x ---'=+?

+++??

?-=

.

令()0f x '=,解得12x =-,20x =.

当2x <-或120x <<时,()0f x '<;当20x -<<时,()0f x '>.所以()f x 在(,2)-∞-,12

(0,)上单调递减;

在(2,0)-上单调递增.所以当2x =-时,()f x 取得极小值(2)0f -=;当0x =时,()f x 取得极大值(0)4f =.

⑵因为()f x 在13(0,)上单调递增,所以()0f x '≥,且不恒等于0对1

3

(0,)x ∈恒成立. 2

211221212()(2)()(2)x x x

f x x b x bx b ---'=+?+++???-=,所以25320x bx x --+≥, 得min 253()x b -≤.因为1

25251333

9x -?->

=,所以19b ≤,故b 的取值范围为19

(,]-∞.

6. 解析:(Ⅰ)对()f x 求导得222(6)(3)3(6)'(),()x x x x

x a e x ax e x a x a

f x e e

+-+-+-+== 因为()f x 在0x =处取得极值,所以'(0)0f =即0a =.

当0a =时,()f x =22336,'(),x x x x x f x e e -+=故33

(1),'(1),f f e e ==从而()f x 在点

(1,(1)f )处的切线方程为33

(1),y x e e

-=-化简得30.x ey -=

(Ⅱ)由(Ⅰ)知23(6)'().x

x a x a

f x e

-+-+= 令2()3(6),g x x a x a =-+-+

由()0g x =解得2212636636

,.a a a a x x --+-++=

= 当1x x <时,()0g x <,即'()0f x <,故()f x 为减函数;

当12x x x <<时,()0g x >,即'()0f x >,故()f x 为增函数; 当2x x >时,()0g x <,即'()0f x <,故()f x 为减函数;

由()f x 在[)3,+∞上为减函数,知226363,a a x -++=

≤解得9

,2a ≥- 故a 的取值范围为9,.2??

-+∞????

考点分类第四章 考点一、导数的概念、运算及其几何意义;考点二、导数的应用;第九章 考点一、不等关系与一元二次不等式

7. 解:(1)∵22'()2(1)(1)0x x x f x x x x =++=+≥e e e (仅当1x =-时取等号),

∴()f x 的单调递增区间为(,)-∞+∞.

班级_____________________ 姓名____________________ 考场号____________ 考号___________

----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ (2)∵(0)10f a =-<,2(ln )(ln )0f a a a =>, ∴()f x 在单调递增区间(,)-∞+∞上仅有一个零点.

(3)由题意知'()0P f x =,又仅'(1)0f -=,得1P x =-,2

P y a =-e

由题意知'()OP f m k =,得22

(1)m m a +=-e e ,

要证1m ≤,即要证32

(1)m a +≤-e ,

只需证32(1)(1)m m m +≤+e ,即要证1m m +≤e ,① 设()1m g m m =+-e ,则'()1m g m =-e , 又'()00g m m ?==,

∴()g m 在(,0)-∞上递增,在(0,)∞+上递减。 ∴()(0)0g m g ≤=,即不等式①成立,得证.

8. 解:对()f x 求导,得2()(4)e x f x x x '=+,

由()0f x '<,解得40x -<<,所以()f x 的单调递减区间为(4,0)-。

9. (1)解:由()f x =n nx x -,可得()11()1n n f x n nx n x --'=-=-,其中n *∈N ,且2n ≥. 下面分两种情况讨论: ①当n 为奇数时.

令()0f x '=,解得1x =,或1x =-.

当x 变化时,()f x ',()f x 的变化情况如下表:

所以,()f x 在(),1-∞-,()1,+∞上单调递减,在()1,1-内单调递增。 ②当n 为偶数时.

当()0f x '>,即1x <时,函数()f x 单调递增; 当()0f x '<,即1x >时,函数()f x 单调递减.

所以,()f x 在(),1-∞上单调递增,在()1,+∞上单调递减. (2)证明:设点P 的坐标为()0,0x ,则01

1

n x n

-=

,20()f x n n '=-.曲线y =()f x 在点P 处的切线方程为()00()y f x x x '=-,即00()()()g x f x x x '=-.令()()()F x f x g x =-,即

00()()()()F x f x f x x x '=--,则0()()()F x f x f x '''=-.

由于1()n f x nx n -'=-+在()0,+∞上单调递减,故()F x '在()0,+∞上单调递减.又因为0()0F x '=,所以当()00,x x ∈时,()0F x '>,当()0,x x ∈+∞时,()0F x '<,所以()F x 在()00,x 内单调递增,在()0,x +∞上单调递减,所以对于任意的正实数x ,都有

0()()0F x F x ≤=,即对于任意的正实数x ,都有()f x ()g x ≤.

(3)证明:不妨设12x x ≤.由(2)知()()()20g x n n x x =--.设方程()g x a =的根为2x ',可得202

a

x x n n

'=

+-,当2n ≥时,()g x 在(),-∞+∞上单调递减. 又由(2)知()()()

222g x f x a g x '≥==,可得22x x '≤.

类似地,设曲线()y f x =在原点处的切线方程为()y h x =,可得()h x nx =,当()0,x ∈+∞,

()()0n f x h x x -=-<,即对于任意的()0,x ∈+∞,()()f x h x <.

设方程()h x a =的根为1x ',可得1a

x n

'=.因为()h x nx =在(),-∞+∞上单调递增,且

()

()()111h x a f x h x '==<,因此11x x '<.

由此可得212101a

x x x x x n

''-<-=+-.

班级_____________________ 姓名____________________ 考场号____________ 考号___________

----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 因为2n ≥,所以()

1

1112111C 11n n n n n ---=+≥+=+-=,故01

1

2n x n

-≥=. 则当12x x ≤时,2121||x x x x -=-<

21a

n

+- 同理可证当1x >2x 时,结论也成立

所以,2121a

x x n

-<+-.

10. 解:(Ⅰ)2121()(21)11ax ax a

f x a x x x ++-'=+-=++,函数()f x 极值点的个数等价于()0f x '=,即2210ax ax a ++-=在(1,)x ∈-+∞上的变号根的个数.

令2()21g x ax ax a =++-,

①0a =时,()10g x =≠,此时()0f x '>,函数()f x 单调递增,无极值点; ②0a ≠时,令228(1)980a a a a a ?=--=-≤,解得8

09

a <≤时,()f x 单调递增,无极值点;

③0a <时,0?>,抛物线()g x 的开口向下,对称轴为1

4x =-,(0)10,(1)10g a g =->-=>,

2210ax ax a ++-=在(1,)x ∈-+∞上有一个变号根,即()f x 有一个极值点;

④89

a >时,0?>,抛物线()g x 的开口向上,对称轴为1

4x =-,(1)10g -=>,

2210ax ax a ++-=在1(1,)4

x ∈--与1

(,)4x ∈-+∞上各有一个变号根,即()f x 有两个极值

点.

综上:0a <时,()f x 有一个极值点;809a ≤≤时,()f x 无极值点;8

9

a >时,()f x 有两

个极值点.

(Ⅱ)①由(Ⅰ)知,8

09a ≤≤时,()0f x '≥恒成立,()f x 单调递增,所以0x ≥时,

()(0)0f x f >=符合题意;

②0a <时,令[)1()ln(1),0,,()1011

x h x x x x h x x x -'=+-∈+∞=

-=<++,所以()h x 单调递减,()(0)0h x h ≤=,所以ln(1)x x +≤,因为()f x 在0x ≥时先增后减,

222()ln(1)()()(1)f x x a x x x a x x ax a x =++-<+-=+-.

当x →+∞时,()f x →-∞,不满足,0,()0x f x ?>≥,舍去;

③819a <≤时,由(Ⅰ)知,对称轴1

4

x =-,0?>,(0)10g a =-≥,所以()0f x '≥恒成立,()f x 单调递增,即0x ≥时,()(0)0f x f >=符合题意;

④1a >时,由(Ⅰ)知,对称轴1

4x =-,0?>,(0)10g a =-<,所以存在00x >,使

0(0,)x x ∈()0g x <,即()0f x '<,()f x 单调递减,故0(0,)x x ∈0x ≥时,()(0)0f x f <=不

符合0,()0x f x ?>≥,舍去.

综上:所求a 的取值范围是[]0,1.

11. 解法一:(1)令()()ln(1),[0,)F x f x x x x x =-=+-∈+∞, 则有1()111

x

F x x x -'=

-=

++. 当(0,)x ∈+∞时,()0F x '<, 所以()F x 在[0,)+∞上单调递减,

故当0x >时,()(0)0F x F <=,即当0x >时,()f x x <. (2)令()()()ln(1),[0,)G x f x g x x kx x =-=+-∈+∞, 则有1(1)

()11

kx k G x k x x -+-'=

-=

++,

班级_____________________ 姓名____________________ 考场号____________ 考号___________

----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 当0k ≤时,()0G x '>,故()G x 在[0,)+∞单调递增, ()(0)0G x G >=, 故对任意正实数0x 均满足题意. 当01k <<时,令()0G x '=,得11

10k x k k

-==->, 取01

1x k

=

-,对任意0(0,)x x ∈,有()0G x '>, 从而()G x 在0[0,)x 单调递增,所以()(0)0G x G >=,即()()f x g x > 综上,当1k <时,总存在00x >,使得对任意0(0,)x x ∈,恒有()()f x g x >. (3)当1k >时,由(1)知,对于(0,),()()x g x x f x ?∈+∞>>,故()()g x f x >.

|()()|()()ln(1)f x g x g x f x kx x -=-=-+.

令2()ln(1),[0,)M x kx x x x =-+-∈+∞,

则有212(2)1

()211

x k x k M x k x x x -+-+-'=--=++.

故当x ∈时,()0M x '>,

()M x

在上单调递增,

故()(0)0M x M >=,即2|()()|f x g x x ->,所以满足题意的t 不存在 当1k <时,由(2)知,存在00x >,使得当0(0,)x x ∈时,()()f x g x >, 此时|()()|()()ln(1)f x g x f x g x x kx -=-=+-. 令2

()ln(1),[0,)N x x kx x x =+--∈+∞,

则有212(2)1()211

x k x k N x k x x x --++-'=--=++,

当x ∈时,()0N x '>,

()N x

在上单调递增,

故()(0)0N x N >=,即2()()f x g x x ->.

记0x

1x ,

则当1(0,)x x ∈时,恒有2|()()|f x g x x ->. 故满足题意的t 不存在

当1k =时,由(1)知,当0x >时,|()()|()()ln(1)f x g x g x f x x x -=-=-+. 令2()ln(1),[0,)H x x x x x =-+-∈+∞,

则有212()1211

x x H x x x x --'=--=++. 当0x >时,()0H x '<,

所以()H x 在[0,)+∞上单调递减,故()(0)0H x H <=. 故当0x >时,恒有2|()()|f x g x x -<. 此时,任意正实数t 均满足题意. 综上,1k =.

解法二:(1)(2)同解法一.

(3)当1k >时,由(1)知,对于(0,),()()x g x x f x ?∈+∞>>,

故|()()|()()ln(1)(1)f x g x g x f x kx x kx x k x -=-=-+>-=-.

令2(1)k x x ->,解得01x k <<-.

班级_____________________ 姓名____________________ 考场号____________ 考号___________

----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 从而得到,当1k >时,对于(0,1)x k ∈-,恒有2|()()|f x g x x ->. 故满足题意的t 不存在。 当1k <时,取11

2

k k +=

,从而11k k <<. 由(2)知,存在00x >,使得01(0,),()()x x f x k x kx g x ∈>>=, 此时11|()()|()()()2

k

f x

g x f x g x k k x x --=->-=, 令

212k x x ->,解得102k

x -<<

,此时2()()f x g x x ->. 记0x 与12

k

-的较小者为1x ,当1(0,)x x ∈时,恒有2|()()|f x g x x ->.

故满足题意的t 不存在.

当1k =时,由(1)知,0,|()()|()()ln(1)x f x g x f x g x x x >-=-=-+, 令2()ln(1),[0,)M x x x x x =-+-∈+∞,

则有212()1211

x x M x x x x --'=--=++. 当0x >时,()0M x '<,所以()M x 在[0,)+∞上单调递减, 故()(0)0M x M <=

故当0x >时,恒有2|()()|f x g x x -<, 此时,任意正实数t 均满足题意 综上,1k =.

12. 证明:(1)'()sin cos ax ax f x ae x e x =+ (sin cos )ax e a x x =+

sin()ax x ρ=+

其中tan ρ=

1a ,0<ρ<2

π. 令'()f x =0,由x 0≥得x+ρ=mx, 即x=m π-ρ,m ∈*N .

对k ∈N ,若2k π0; 若(2k+1)π

()1

sin()()(1) sin .a n a n n n x e n f e πρπρπρρ--+=-=-易知()n f x ≠0,而

()()1121()(1)()(1 s n in )i s a n ax

n n n a n n f e f x e x e πρπρρρ

+-??

?-+?++-==-- 是常数,故数列{}()n f x 是首项为1()f x =() sin a n e πρρ-,公比为ax e -的等比数列 (2)由(1)知,sin ρ

,于是对一切*n N ∈,n x <|()n f x |恒成立,即

() a n n πρπρ--<

恒成立,等价于

(

)

()

a n e a a n πρ

πρ-<- (?) 恒成立(因为a>0)

设g (t )=t e t (t )0),则2

'

(1)t g t e t t

-()=.令'g t ()=0得t=1 当0

g

t ()<0,所以g (t )在区间(0,1)上单调递减; 当t>1时,'g

t ()>0,所以g (t )在区间(0,1)上单调递增. 从而当t=1时,函数g (t )取得最小值g (1)=e

班级_____________________ 姓名____________________ 考场号____________ 考号___________

----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 因此,要是(?

)式恒成立,只需()1g e a <=

,即只需a >

. 而当

tan ρ=

1

a

>02πρ<<.于是

23

π

πρ-<

时,232n ππρπρ-≥-≥>.因此对一切 *

n N ∈

,1n ax =≠,所以g (n ax

)(1)g e >==.故(?)式亦恒成立. 综上所述,若a

≥*n N ∈,()||n n x x f <恒成立.

13. 解:(Ⅰ)2()3f x x a '=+,若x 轴为曲线()y f x =的切线,则切点0(,0)x 满足

00()0,()0f x f x '==,也就是2030x a +=且300104x ax ++

=,解得012

x =,3

4a =-,因此,当3

4

a =-时,x 轴为曲线()y f x =的切线;

(Ⅱ)当1x >时,()ln 0g x x =-<,函数()()()(min{}),h x f x g x g x ≤=没有零点;

当1x =时,若54a ≥-,则5

(1)04

f a =+≥,min{,(1)(1)(1)}(1)0h f

g g ===,故1x =是()

h x 的零点;

当01x <<时,()ln 0g x x =->,以下讨论()y f x =在区间(0,1)上的零点的个数. 对于2()3f x x a '=+,因为2033x <<,所以令()0f x '=可得23a x =-,那么

(i )当3a ≤-或0a ≥时,()f x '没有零点(()0f x '<或()0f x '>),()y f x =在区间(0,1)上

是单调函数,且15

(0),(1)44

f f a ==+,所以当3a ≤-时,()y f x =在区间(0,1)上有一个零

点;当0a ≥时,()y f x =在区间(0,1)上没有零点; (ii )当30a -<<时,()0f x '<

(0x <<且()0f x '>

1x <<),

所以x =

为最小值点,且1

4

f =

.

显然,若0f >,即3

04a -<<时,()y f x =在区间(0,1)上没有零点;

若0f =,即3

4

a =-时,()y f x =在区间(0,1)上有1个零点;

若0f <,即334a -<<-时,因为15(0),(1)44f f a ==+,所以若53

44a -<<-,

()y f x =在区间(0,1)上有2个零点;

若5

34

a -<≤-,()y f x =在区间(0,1)上有1个零点. 综上,当34a >-或54a <-时,()h x 有1个零点;当34a =-或5

4a =-时,()h x 有2个零

点;当53

44

a -<<-时,()h x 有3个零点.

14. 解:

(1)()()222ln 22=-++--+f x x a x x ax a a

()()()2'2ln 2220,0∴==---

+->>a

g x f x x x a a x x

()()()222

222'20,0-+-∴=++=>>x x a a

g x a x x x x

令()'0≥g x ,即()200-+≥>x x a x ,讨论此不等式的解,可得: 当140?=-≤a 时,即1

4

≥a 时,不等式恒成立。即()'0≥g x 恒成立,所以()g x 恒单调递增。

班级_____________________ 姓名____________________ 考场号____________ 考号___________

----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 当1

04<<

a

时,1211110,,,12222+????=∈=∈ ? ?????

x x 所以()'0≥g x

的解为11022

-+≤≤

>x x ()g x

在11022

-+≤≤>x x

综上:当1

4

≥a 时,()g x 在()0,+∞上单调递增。

当1

04

<<

a 时,()g x

在)+∞

上单调递增,在上单调递减。

由(1)得()()'=f x g x 在()1,+∞内单调递增。且

()'1222240=--+-=-f 。由零点存在性定理得存在唯一()01,∈+∞x 使得

()0000

2'2ln 2220=---

+-=a

f x x x a x ①。 所以()f x 在0(1,)x 上单调递减,0(,)+∞x 上单调递增。

所以满足()0=f x 在区间()1,+∞内有唯一解只需满足()()0min 0==f x f x 即可。

()()2

2

000002ln 220=-++--+=f x x a x x ax a a ,将①带入化简得:

()()()()223

20000200020

0025220

220

,22

+---=-+-==

=-a x x a x x a x a x x x a a x x

当00(1)2=

>x a x 时,此时①变形为22ln 230--=a a ,在1,12??

???

上有解。令()()222

22ln 23,,'2-=--=-=

a h a a a h a a a

所以()h a 在()0,1上单调递减。11302??

=-< ???

h 不满足。

当2002=-a x x 时,此时①变形为20022ln 60--=x x 在()1,2上有解。

不妨设()22

00000000

42

2()22ln 6,'4-=--=-=x h x x x h x x x x

所以0()h x 在()1,2上单调递增。()(1)4,222ln 20=-=->h h 。所以20022ln 60--=x x 在

()1,2上有解。

所以结论得证。

15. 解析(Ⅰ)1()ln

1x f x x +=-的定义域是(1,1)-,2

2

()1f x x

'=-,(0)2f '=,(0)0f =,曲线()y f x =在点()()00f ,处的切线方程为20x y -=;

(Ⅱ)当(0,1)x ∈时,3()2()3x f x x >+,即不等式3

()2()03x f x x -+>对01x <<成立,设

31()ln 2()13x x F x x x +=-+-,即3()ln(1)ln(1)2()3x F x x x x =+---+,则4

22()1x F x x '=-,当

(0,1)x ∈时,()0F x '>,故3

1()ln 2()13x x F x x x +=-+-在(0,1)上为增函数,则()(0)0F x F >=,因此对(0,1)x ?∈,都有3

()2()3

x f x x >+成立;

(Ⅲ)(0,1)x ∈,使3()()3x f x k x >+成立,等价于3

1()ln

()013

x x F x k x x +=-+>-.

班级_____________________ 姓名____________________ 考场号____________ 考号___________

----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 42

22

2(1)2()(1)11k x F x k x x x

-+'=-+=--,(0,1)x ∈,则2410,10x x ->-<. 当[0,2]k ∈时,()0F x '>,函数()F x 在区间(0,1)上为增函数,()(0)0F x F >=,符合题意;

当2k >时,令()0F x '=解得4

02k x k -=

,易知2

01k k

-<<,即001x <<.那么(),()F x F x '在区间(0,1)上的取值情况如下:

所以,()F x 的单调递减区间是0(0,)x ,单调递增区间是0(,1)x ;()F x 在0x 处取得极小值.

()(0)0F x F <=,显然不符合题意.

综上可知:k 的最大值为2.

考点分类第四章导数及其应用 考点二、导数的应用

16. 解析(Ⅰ)'()(e 1)2mx f x m x =-+.

若0m ≥,则当(,0)x ∈-∞时,e 10mx -≤,'()0f x <;当(0,)x ∈+∞时,e 10mx -≥,'()0f x >. 若0m <,则当(,0)x ∈-∞时,e 10mx ->,'()0f x <;当(0,)x ∈+∞时,e 10mx -<,'()0f x >. 所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.

(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[1,0]-单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值.所以对于任意12,[1,1]x x ∈-,12()()e 1f x f x -≤-的充要条件是:

(1)(0)e 1,(1)(0)e 1,f f f f -≤-??

--≤-?即e e 1,e e 1,

m

m m m -?-≤-??+≤-??①,设函数()e e 1t g t t =--+,则'()e 1t g t =-.当0t <时,'()0g t <;当0t >时,'()0g t >.故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又

(1)0g =,1(1)e 2e 0g --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0g m ≤,()0g m -≤,即①式成立.当1m >时,由()g t 的单调性,()0g m >,即e e 1m m ->-;当

1m <-时,()0g m ->,即e e 1m m -+>-.综上,m 的取值范围是[1,1]-.

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y =的定义域为( C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞,, B .(1)(01)-∞-, , C .(1)(1)-∞-+∞, , D .(10)(01)-,, 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A B C D

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

2017至2018年北京高三模拟分类汇编之导数大题

2017至2018年北京高三模拟分类汇编之导数大题,20创新题 精心校对版 △注意事项: 1.本系列试题包含2017年-2018年北京高考一模和二模真题的分类汇编。 2.本系列文档有相关的试题分类汇编,具体见封面。 3.本系列文档为北京双高教育精心校对版本 4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科 一 、解答题(本大题共22小题,共0分) 1.(2017北京东城区高三一模数学(文))设函数ax x x x f +-=232131)(,R a ∈. (Ⅰ)若2=x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性; (Ⅱ)已知函数3221)()(2+-=ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围; (Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由. 2.(2017北京丰台区高三一模数学(文)) 已知函数1()e x x f x +=,A 1()x m ,,B 2()x m ,是曲线()y f x =上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围; (Ⅱ)证明:120x x +>. 3.(2017北京丰台区高三二模数学(文)) 已知函数ln ()x f x ax =(0)a >. (Ⅰ)当1a =时,求曲线()y f x =在点(1(1)),f 处的切线方程; 姓名:__________班级:__________考号:__________ ●-------------------------密--------------封------------ --线------ --------内------ ------- -请------- -------不-------------- 要--------------答--------------题-------------------------●

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y = C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞ ,, B .(1)(01)-∞- , , C .(1)(1)-∞-+∞ ,, D .(10)(01)- , , 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A . B . C . D .

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时 a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

高考真题导数第一问分类汇总

切线问题 1 已知函数31()4 f x x ax =++,()ln g x x =-.当a 为何值时,x 轴为曲线()y f x =的切线; 2 设函数1 (0ln x x be f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. 3已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.求a 、b 的值; 4 设函数()()23x x ax f x a R e +=∈若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程; 5已知函数f(x)=e x -ax(a 为常数)的图像与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1. 求a 的值及函数f(x)的极值; 6设函数,曲线在点处的切线方程为, 7已知函数.求曲线在点处的切线方程; 8设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.求a ,b ,c ,d 的值; ()a x f x xe bx -=+()y f x =(2,(2))f (1)4y e x =-+()e cos x f x x x =-()y f x =(0,(0))f

单调性问题 1已知函数)(x f 满足212 1)0()1(')(x x f e f x f x +-=-.求)(x f 的解析式及单调区间; 2 讨论函数2()2 x x f x e x -=+ 的单调性,并证明当x >0时,(2)20x x e x -++>; 3已知函数()2x x f x e e x -=--. 讨论()f x 的单调性; 4 设1a >,函数a e x x f x -+=)1()(2.求)(x f 的单调区间 ; 5已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的 切线的斜率为4-c . (1)确定a ,b 的值; (2)若c =3,判断f (x )的单调性; 6设,已知定义在R 上的函数在区间内有一个零点,为的导函数.求的单调区间; 7已知函数()ln()x f x e x m =-+. 设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; a ∈Z 432 ()2336f x x x x x a =+--+(1,2)0x ()g x ()f x ()g x

(完整word版)北京高考导数大题分类.doc

导数大题分类 一、含参数单调区间的求解步骤: ① 确定定义域(易错点) ②求导函数 f ' (x) ③对 f ' ( x) 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理 . ④ f ' ( x) 中 x 的最高次系数是否为 0,为 0 时求出单调区间 . 例 1: f ( x) a x 3 a 1 x 2 x ,则 f ' ( x) (ax 1)( x 1) 要首先讨论 a 0 情况 3 2 ⑤ f ' ( ) 最高次系数不为 0,讨论参数取某范围的值时, 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递增; x 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递减 . 例 2: f (x) a x 2 ln x ,则 f ' ( x) = ax 2 1 , ( x 0) ,显然 a 0时 f ' ( x) 0 ,此时 f (x) 的 2 x 单调区间为 (0, ) . ⑥ f ' ( ) 最高次系数不为 0,且参数取某范围的值时,不会出现 f ' (x) 0 或者 f ' ( x) 0 的情况 x 求出 f ' ( x) =0 的根,(一般为两个) x 1 , x 2 ,判断两个根是否都在定义域内 . 如果只有一根在定义域 内,那么单调区间只有两段 . 若两根都在定义域内且一根为常数,一根含参数 . 则通过比较两根大小分三种情况讨论单调区间, 即 x 1 x 2 , x 1 x 2 , x 1 x 2 . 例 3: 若 f ( x) a x 2 (a 1)x ln x, (a 0) ,则 f ' ( x) ( ax 1)( x 1) , (x 0) 解方程 f ' ( x) 2 1 x 0 得 x 1 1, x 2 a a 0时,只有 x 1 1 在定义域内 . a 0 时 , 比较两根要分三种情况: a 1,0 a 1, a 1 用所得的根将定义域分成几个不同的子区间,讨论 f ' ( x) 在每个子区间内的正负,求得 f (x) 的单调区间。

高考导数大题30道(2020年整理).doc

导数大题 1 .已知函数()b ax x x f ++=2 3的图象在点P (1,0)处的切线与直线03=+y x 平行? (1)求常数a 、b 的值; (2)求函数()x f 在区间[]t ,0上的最小值和最大值(0>t )? 2 .已知函数R a ax x x f ∈+-=,)( 3 (1)若)(x f 在),1[+∞上为单调减函数,求实数a 取值范围; (2)若,12=a 求)(x f 在[-3,0]上的最大值和最小值? 3 .设函数x e x x f 22 1)(=. (1)求函数)(x f 的单调区间; (2)若当]2,2[-∈x 时,不等式m x f <)(恒成立,求实数m 的取值范围. 4 .已知函数.),2,1()(3)(3 l P P x f y x x x f 作直线过点上一点及-=-= (1)求使直线)(x f y l =和相切且以P 为切点的直线方程; (2)求使直线)(x f y l =和相切且切点异于P 的直线方程)(x g y =?

()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极大值,直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围? 7 .已知函数2 ()ln f x a x bx =-图象上一点(2,(2))P f 处的切线方程为22ln 23++-=x y . (Ⅰ)求b a ,的值; (Ⅱ)若方程()f x m +=m 的取值范围(其中e 为自然对数的底数); 8 .已知函数21 2 ()()ln f x a x x =-+.(R a ∈) (1)当a =1时,求()f x 在区间[1,e ]上的最大值和最小值; (2)若在区间(1,+∞)上,函数()f x 的图象恒在直线2y ax =下方,求a 的取值范围。 10.已知函数2 ()sin 2(),()()2f x x b x b R F x f x =+-∈=+,且对于任意实数x ,恒有(5)(5)F x F x -=-? ⑴求函数)(x f 的解析式; ⑵已知函数()()2(1)ln g x f x x a x =+++在区间(0,1)上单调,求实数a 的取值范围; ⑶讨论函数21()ln(1)()2 h x x f x k =+- -零点的个数?

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

近五年高考试题分类汇编-导数部分(附答案解析)

2018年全国高考试题分类汇编-导数部分(含解析) 1.(2018·全国卷I 高考理科·T5)同(2018·全国卷I 高考文科·T6)设函数f (x )=x3+(a -1)x2+ax.若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x 2.(2018·全国卷II 高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为 3.(2018·全国卷II 高考文科·T13)曲线y=2lnx 在点(1,0)处的切线方程为 4.(2018·全国Ⅲ高考理科·T14)曲线y=(ax +1)ex 在点(0,1)处的切线的斜率为-2,则a= . 5.(2018·天津高考文科·T10)已知函数f(x)=exlnx,f ′(x)为f(x)的导函数,则f ′(1)的值为 . 6.(2018·全国卷I 高考理科·T16)已知函数f (x )=2sinx+sin2x,则f (x )的最小值是 . 7.(2017·全国乙卷文科·T14)曲线y=x 2 + 1 x 在点(1,2)处的切线方程为 . 8.(2017·全国甲卷理科·T11)若x=-2是函数f (x )=(2x +ax-1)1x e -的极值点,则f (x )的极小值为 ( ) A.-1 B.-23e - C.53e - D.1 9.(2017 10.(2017递增,则称f (x )A.f (x )=2-x 11.(2017数a 12.(2017则称f (x )具有M ①f (x )=2-x ;②f (x

13.(2017·全国乙卷理科·T16)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O.D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3 )的最大值为 . 14.(2017·天津高考文科·T10)已知a ∈R ,设函数f (x )=ax-lnx 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为 . 15.(2016·全国卷Ⅰ高考文科·T12)若函数f (x )=x-1 3 sin2x+asinx 在(-∞,+∞)上单调递增,则a 的取值范围是( ) A.[-1,1] B.11,3 ? ? -?? ?? C.11,33??- ???? D.11,3? ? --???? 16.(2016·四川高考理科·T9)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的 切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 17.(2016·四川高考文科·T6)已知a 为函数f (x )=x 3 -12x 的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 18.(2016·四川高考文科·T10)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的切线,l 1 与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 ( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 19.(2016·山东高考文科·T10)同(2016·山东高考理科·T10) 若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是 ( ) A.y=sinx B.y=lnx C.y=e x D.y=x 3 20.(2016·全国卷Ⅱ理科·T16)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= .

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

高考文科数学专题复习导数训练题(汇编)

高考文科数学专题复习导数训练题(文) 一、考点回顾和基础知识 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 2.导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 3.求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

2017年北京高三模拟题分类汇编之导数大题

2017年北京高三模拟题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2017北京市各城区一模二模真题。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共12小题,共0分)1.(2017北京东城区高三一模数学(文))设函数ax x x x f 232131)(,R a .(Ⅰ)若2x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性;(Ⅱ)已知函数3221)()(2ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围;(Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由.2.(2017北京丰台区高三一模数学(文))已知函数1()e x x f x ,A 1()x m ,,B 2()x m ,是曲线()y f x 上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围;(Ⅱ)证明:120x x . 3.(2017北京丰台区高三二模数学(文))已知函数ln ()x f x ax (0)a . (Ⅰ)当1a 时,求曲线()y f x 在点(1(1)),f 处的切线方程;姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

高考真题汇编(函数与导数)

函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为 A. B. C. D. 【答案】D 【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,,,据此可得:.本题选择D选项.

点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C. 点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D.

高考导数大题大全理科答案

一、解答题 1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,'11 2()e ln e e e .x x x x a b b f x a x x x x --=+-+ 由题意可得' (1)2,(1) e.f f ==故1,2a b ==. (Ⅱ)由(Ⅰ)知1 2e ()e ln ,x x f x x x -=+ 从而()1f x >等价于2 ln e .e x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1 (0,)e x ∈时,' ()0g x <; 当1 (,)e x ∈+∞时,' ()0g x >,故()g x 在1(0,)e 单调递减,在1(,)e +∞单调递增, 从而()g x 在(0,)+∞的最小值为1 1().e e g =-. 设函数2 ()e e x h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >; 当(1,)x ∈+∞时,' ()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)e h =- . 综上,当0x >时,()()g x h x >,即()1f x >. 2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解. 解析(1)2/ 22 2(2)24(1) ()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++ (*) 当1a ≥时,/ ()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/ ()0f x = 得1 x = (2x =-舍去). 当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/ ()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,()f x 在区间(0, 上单调递减,在区间)+∞上单调递增. 由(*)式知,当1a ≥时,/ ()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点, 必有01a <<.又()f x 的极值点只可能是1 x = 和2x =-,且由定义可知,1 x a >- 且2x ≠- ,所以1a ->- 且2-≠-,解得1 2 a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 令21a x -=,则01a <<且12a ≠-知:当102 a <<时,10x -<<;当112a <<时,01x <<. 记2 2 ()ln 2g x x x =+-, (Ⅰ)当10x -< <时,2()2ln()2g x x x =-+-,所以/22 2222 ()0x g x x x x -=-=< 因此,()g x 在区间(1,0)-上单调递减,从而()(1)40g x g <-=-<,故当1 02 a << 时, 12()()0f x f x +<. (Ⅱ)当01x <<时,2()2ln 2g x x x =+ -,所以/222222 ()0x g x x x x -=-=< 因此,()g x 在区间(0,1)上单调递减,从而()(1)0g x g >=,故当时 1 12 a <<,12()()0f x f x +>. 综上所述,满足条件的a 的取值范围为1 (,1)2. 3. (1)证明:因为对任意x ∈R ,都有() ()e e e e ()x x x x f x f x -----=+=+=,所以f (x )是R 上的偶函数. (2)解:由条件知(e e 1)e 1x x x m --+-≤-在(0,+∞)上恒成立. 令t = e x (x >0),则t >1,所以m ≤211 11111 t t t t t -- =--+-++-对于任意t >1成立. 因为11111t t -+ +≥- = 3,所以1113111 t t - ≥--++-, 当且仅当t = 2,即x = ln2时等号成立.

高考文科数学导数真题汇编(带答案)

高考数学文科导数真题汇编答案 一、客观题组 4 5. 7.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是

8设函数f (x )= 2 x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=1 2为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 9、函数y= 12 x 2 -㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 11(2018年高考1卷) 12(2019年高考1卷) 一、 客观题答案1B ; 2.D; 3.y=x+1; 4.A . 5.y=2x-2 6D ,7C; 8D; 9B; 10.C 11.D; 12.y=3x 二、大题组 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )>ln x x -1 【解析】

(1)22 1 ( ln ) '()(1)x x b x f x x x α+-= - + 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 11ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1 x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h --=---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x ,在(0,)+∞存在唯一的零,故()g x '在(0,)+∞存在唯一的零点. 设此零点为a ,则(1,2)a ∈. 当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>. 所以()g x 在(0,)+∞的最小值为()g a . 又由()0g a '=,可得2a e a =+,所以()1(2,3)g a a =+∈. 由于①式等价于()k g a <,故整数k 的最大值为2 【2013新课标1】20. 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

相关文档 最新文档