文档库 最新最全的文档下载
当前位置:文档库 › 高分子材料与工程专业导论课程论文【最新版】

高分子材料与工程专业导论课程论文【最新版】

高分子材料与工程专业导论课程论文

1.高分子的定义

高分子又称作聚合物,由小分子相互反应而形成,高分子与低分子的区别在于前者分子量很高。通俗地说,高分子是一种许许多多原子由共价键连接而组成的相对分子质量很大的化合物。更精确的描述是,高分子是指其分子主链上的原子都直接以共价键连接,且链上的成键原子都共享成键电子的化合物,这样组成的高分子链的键的类型,除了共价键外,还可以包括某些配位键和缺电子键,而金属键和离子键是被排除在外的。

我对高分子的分类总结如下:

其中合成高分子,又可分为橡胶、纤维和塑料三大类,常称为三大合成材料,合成橡胶的主要品种有丁苯橡胶、顺丁橡胶和异戊橡胶等。合成纤维的主要品种有涤纶、腈纶、锦纶、维纶和丙纶。塑料还可分为热塑性塑料和热固性塑料,前者为线性聚合物,受热可熔融流动,可多次重复加工成型,主要品种有聚乙烯、聚丙烯和聚苯乙烯;后者是网状聚合物,通常由线性聚合物或低聚物经交联得到,以后不能加热融化重复成型,主要品种有酚醛树脂、不饱和聚酯、环氧树脂等。此外,聚合物还可作为涂料和粘合剂来使用,而且使用越来越广泛,也有人将他们单独列为两类,所以聚合物按应用分

类,也应包括上述五大合成材料。最近,着眼于聚合物所具有的特定的物理、化学、生物功能的功能高分子,也已成为新的重要一类。天然高分子,也有有机高分子和无机高分子之分。天然高分子,如人们所熟悉的石棉、石墨、金刚石、云母等,天然有机高分子,都是在生物体内制造出来的,储存能量的肝糖、淀粉,生物体外分泌物如蚕丝、蛛丝、植物的橡胶,还有储存遗传信息的核酸。

2.高分子材料科学的发展简史(以塑料的发展为例)

从第一个塑料产品赛璐珞诞生算起,塑料工业迄今已有120年的历史。其发展历史可分为三个阶段。

1.天然高分子加工阶段

这个时期以天然高分子,主要是纤维素的改性和加工为特征。1869年美国人J.W.海厄特发现在硝酸纤维素中加入樟脑和少量酒精可制成一种可塑性物质,热压下可成型为塑料制品,命名为赛璐珞。1872年在美国纽瓦克建厂生产。当时除用作象牙代用品外,还加工成马车和汽车的风挡和电影胶片等,从此开创了塑料工业,相应地也发展了模压成型技术。

1903年德国人A.艾兴格林发明了不易燃烧的醋酸纤维素和注射成型方法。1905年德国拜耳股份公司进行工业生产。在此期间,一些化学家在实验室里合成了多种聚合物,如线型酚醛树脂、聚甲基丙烯酸甲酯、聚氯乙烯等,为后来塑料工业的发展奠定了基础。1904年世界塑料产量仅有10kt,还没有形成独立的工业部门。

2.合成树脂阶段

这个时期是以合成树脂为基础原料生产塑料为特征。1909年美国人L.H.贝克兰在用苯酚和甲醛来合成树脂方面,获得了突破性的进展,取得l第一个热固性树脂──酚醛树脂的专利权。在酚醛树脂中加入填料后,热压制成模压制品、层压板、涂料和胶粘剂等,这是第一个完全合成的塑料。1910年在柏林吕格斯工厂建立通用酚醛树脂公司进行生产。在40年代以前,酚醛塑料是最主要的塑料品种,约占塑料产量的2/3。主要用于电器、仪表、机械和汽车工业。

1920年以后塑料工业获得了迅速发展,其主要原因首先是德国化学家Н.施陶丁格提出高分子链是由结构相同的重复单元以共价键连接而成的理论和不熔不溶性热固性树脂的交联网状结构理论,1929年美国化学家W.H.卡罗瑟斯提出

了缩聚理论,均为高分子化学和塑料工业的发展奠定了基础。同时,由于当时化学工业总体发展十分迅速,为塑料工业提供了多种聚合单体和其他原料。

塑料的世界总产量从1904年的10kt,猛增至1944年的600kt,1956年达到3.4Mt。随着聚乙烯、聚氯乙烯和聚苯乙烯等通用塑料的发展,原料也从煤转向了以石油为主,这不仅保证了高分子化工原料的充分供应,也促进了石油化工的发展,使原料得以多层次利用,创造了更高的经济价值。

3.大发展阶段

在这一时期通用塑料的产量迅速增大,聚烯烃塑料在70年代又有聚1-丁烯和聚4-甲基-1-戊烯投入生产,形成了世界上产量最大的聚烯烃塑料系列,同时出现了多品种高性能的工程塑料。1958~1973年的16年中,塑料工业处于飞速发展时期,1970年产量为30Mt。

3. 高分子材料科学实验

1.对高分子材料结构与性质的总结

2.高聚物四大聚合方法

聚合机理不同所采用的聚合方法也不同。根据机理不同,聚合分为连锁聚合和逐步聚合,连锁聚合(又称为连锁聚合反应或链式聚合),采用的聚合方法有本体聚合、悬浮聚合、溶液聚合和乳液聚合;逐步聚合采用的聚合方法有熔融缩聚、溶液缩聚、界面缩聚和固相缩聚。本体聚合

单体本身在引发剂或光、热、辐照等作用下的聚合,它的特点是组分简单,通常只含单体和少量引发剂,所以操作简便,产物纯净,缺点是聚合热不易排除。工业上应用自由基本体聚合生产的聚合物品种主要有聚甲基丙烯酸甲酯(有机玻璃、见聚甲基丙烯酸酯)、高压聚乙烯和聚苯乙烯。

溶液聚合

单体、引发剂(或催化剂)溶于适当溶剂中进行的聚合,其优点是体系粘度低,传热快,聚合温度容易控制。缺点是聚合物的聚合度比较低,混入的少量溶剂不易除去,产物纯度较差,

此外由于使用溶剂和增添回收溶剂的设备,使生产成本

提高。工业上,溶液聚合主要用于直接

使用聚合物溶液的场合,如乙酸乙烯酯甲醇溶液聚合直接用于制聚乙烯醇,丙烯腈溶液聚合直接用于纺丝,丙烯酸酯溶液聚合直接用于制备涂料或胶粘剂等。

悬浮聚合

溶解有引发剂的单体被搅拌成小液滴,在水介质中进行的聚合。由于是在大量水介质中进行聚合,容易散热,产热为0.1毫米左右的小颗粒,容易分离、洗涤,因此纯度较高。缺点是聚合过程中聚合物容易粘结在釜壁上,需要定时开盖清釜,所以不能连续生产。如果采用水溶性引发剂(如过氧化氢),并在大量有机分散剂存在下聚合,就得到粒烃为0.5~10微米的聚合物,其颗粒大小介于典型的悬浮聚合和乳液聚合之间,称为分散聚合。悬浮聚合主要用于生产聚氯乙烯、聚苯乙烯和聚甲基丙烯酸甲酯。分散聚合主要用于生产胶粘剂、水性漆和涂料。[3]

乳液聚合

单体借助乳化剂的作用分散在溶解有引发剂的水介质

中,形成乳液后再进行的聚合。由于存在乳化剂,单体主要在乳胶粒内聚合,速率快,分子量大。此外,大量水作介质也容易散热。缺点是包藏在聚合物颗粒中的乳化剂不易除去,影响性能,特别是电性能较差。采用乳液聚合生产的品种主要有丁苯橡胶、氯丁橡胶、丁腈橡胶和聚氯乙烯胶乳。

一种聚合物可以通过几种不同的聚合方法进行合成,聚合方法的选择主要取决于所要合成聚合物的性质和形态、相对分子质量和相对分子质量分布等。实验及生产技术已发展到可以用几种不同的聚合方法合成出同样的产品,这时产品质量好、设备投资少、生产成本低、三废污染小的聚合方法将优先发展。为满足不同的制品性能,工业上一种单体采用多种聚合方法十分常见。如同样是苯乙烯自由基聚合(相对分子量质量10万~40万,相对分子量分布2~4),用于挤塑或注塑成型的通用型聚苯乙烯(GPS)多采用本体聚合,可发型聚苯乙烯(EPS)主要采用悬浮聚合,而高抗冲聚苯乙烯(HIPS)则是采用溶液聚合-本体聚合联用。

3实验结构性能测试

2.生活中的高分子材料的结构与性质举例

(1)塑料绳

生活中使用的塑料绳是由线性的聚乙烯或聚丙烯制成,是典型的非交联线性高分子,在绑紧的过程中,线性的高分子链被拉长,随着时间的延长,线性高分子链发生了不可恢复的滑移,于是塑料绳被拉伸的变长了,开始变得不能绑紧,所以用塑料绳绑东西,绑的越紧最后就会变得越松,松弛发生的厉害。应力松弛,是指高分子材料在总应变不变的条件下,由于试样内部的粘性应变随时间不断增长,使回弹应变分量随时间逐渐降低,从而导致回弹应力随时间逐渐降低的现象。用交联的高分子材料可以避免这种现象,交联的高分子材料通过交联剂使线性高分子链变成了网状结构,高分子网络链被拉伸变形后,仍能有力的恢复。

(2)泡泡糖

泡泡糖的主要成分是聚醋酸乙烯酯,它的玻璃化温度在28度左右,一般情况下低于其玻璃化温度,其几乎没有流动性保持很好的形态,而在嘴里咀嚼后,高于其玻璃化温度,泡泡糖发生逆玻璃化转变,有玻璃态向高弹态转变,呈现出

高弹态,所以嚼泡泡糖的时候刚开始嚼两下是吹不出泡泡的,等温度升高后,嚼软了以后才行。

(3)矿泉水瓶

矿泉水瓶是由聚对苯二甲酸乙二酯组成,聚对苯二甲酸乙二酯本身属于易结晶高分子材料,制作矿泉水瓶时,是在高温下吹作法制备的,然后经过退火处理,消除结晶区域才具有光学透明性的。当在矿泉水瓶中加入热水后,聚对苯二甲酸乙二酯在高温下分子链发生重新取向

运动,重新产生结晶区域从而丧失透明性。

4. 高分子材料的结构特点与性能的关系(以热熔胶为例)

(1)热熔胶(Hot Glue)简介

热熔胶是热塑性接着剂,在室温下为固体,但在较高温时即液化。以乙烯-醋酸乙烯无规共聚物(EVA)为基础树脂的热熔胶,是热熔胶最重要的品种之一。熔融后的EVA热熔胶,呈

浅棕色或白色。EVA热熔胶由基本树脂、增粘剂、粘度调节剂和抗氧剂组成,有时在热熔胶

中加入一些填料, 可降低收缩率, 增加填隙性, 降低成本,可用的填料有碳酸钙、滑石粉、二氧化硅等。

EVA 的类型决定了热熔胶的内聚强度、柔韧性、对基材的粘接性以及可加工性。对热熔胶而言, 应注意EVA 的下列性能:分子质量及其分布、醋酸乙烯酯(VA)含量、结晶度、软化点、熔点、熔体指数(MI)以及熔体粘度等, 因为这些性能直接影响热熔胶的各项性能。EVA 的上述性能是相互联系的。同一系列的EVA , 分子质量越大, 通常软化点越高而熔体指数MI 越小;不同系列的EVA , 结晶度和熔点随VA 含量的增加呈直线下降。熔体粘度与MI有直线反比关系。一般用VA 含量在9 %~40 %的EVA , 当VA 含量超过40 %以上,EVA 不再结晶。此外, 当VA 含量超过30 %时, 虽然对极性及多种无孔非极性基材的粘接性有所提高, 但此种EVA 聚合物常常与蜡不相容, 这是热熔胶配方设计时要注意的一点。有时, 在一个配方中往往要用MI 高低不同的EVA 或VA 含量不同的EVA 搭配使用, 才能获得满意的综合性能。

(2)热熔胶的主要性能

粘接性

粘接性是热熔胶最重要的性能之一, 影响因素也最多。VA是热熔胶粘接性能的主要决定者。当EVA 中VA 含量增加时,热熔胶的粘接性大大提高, 高VA含量的EVA 可用来粘接无极性的非多孔材料, 例如聚乙烯和聚丙烯膜。增粘树脂和蜡对粘接性的影响主要取决于它们的熔体粘度和化学结构。粘度越低, 热熔胶越容易渗入多孔基材, 从而形成机械结合。蜡的表面能低, 当蜡量增加时, 热熔胶的润湿性提高, 可增加粘接性。用微晶蜡代替石蜡可改进价键力引起的粘附, 这是因为微晶蜡热熔胶的模量低, 凝定时间长的缘故。

粘度和流动性

热熔胶的粘度和流动性与施胶性能密切相关。选择MI 大的EVA , 熔体粘度小的增粘树脂都可以使热熔胶粘度下降, 还可选择MI 高低不同的EVA 配合使用来调节热熔胶的施工粘度。蜡的影响最大,增加蜡的用量, 可以显著降低热熔胶的粘度, 增加其流动性,。总之, 热熔胶的粘度主要由蜡的种类、用量和EVA 的MI 来调节。蜡的熔点和热熔胶的软化点高低与热熔胶的粘度并无对应关系。

拉伸强度和模量

EVA 的强度随其VA 含量和MI(或分子质量)不同有很大的变化。通常MI较小的EVA 强度高, 制成的热熔胶强度也大。此外, 在相容性允许的情况下蜡能使热熔胶强度和模量增加, 若不相容则会使胶的刚性增大对提高强度无益。正烷烃含量高的高结晶蜡或高熔点蜡, 会使热熔胶的拉伸强度和模量提高。

延伸率和柔韧性

EVA 的分子质量直接影响胶的柔韧性, MI越小, 柔韧性越小。蜡对热熔胶的柔韧性也有很大影响。用微晶蜡代替石蜡, 或用窄分布的合成蜡代替普通合成蜡, 可以增加热熔胶的柔韧性, 这是因为微晶蜡比石蜡有更好的柔韧性, 而窄分布合成蜡更易与EVA 中的乙烯链段相容之故。另外, 松香酯和萜烯树脂增粘剂极性越大, 与高VA 含量的EVA 相容性也越好, 这样也

可提高热熔胶的室温柔韧性。蜡分子中的异构及环化烷烃量高, 制成的热熔胶延伸率大。书籍装订用热熔胶要求延

伸率高达500 %~600 %, 冰箱包装用胶也要求有较好的柔韧性, 因而配方中多采用微晶蜡。

玻璃化温度Tg

热熔胶的Tg 直接关系到胶的低温性能, 在Tg 以下, 胶脆, 受冲击或弯曲时容易断裂。热熔胶中EVA 的Tg 较低, 但增粘树脂和蜡的Tg 一般较高。由高聚物物理学可知:若组份相容, 混合体系的Tg 处于组份高低Tg 之间, 由混合比决定;若体系不相容, 则会出现几个Tg 。热熔胶也是如此, 高分子质量的聚乙烯蜡与EVA 的相容性往往不好, 而窄分布的合成蜡、石蜡和微晶蜡与EVA 相容。软微晶蜡的加入会使热熔胶的Tg 稍稍上升, 而高熔点的合成蜡使热熔胶Tg 上升较大。要想使热熔胶的Tg 较低, 还应尽量采用Tg低的增粘树脂。

开放时间

开放时间指的是施胶后不会因凝定或结晶矢去润湿能力仍能使用的时间间隔。热熔胶的开放时间常以秒计。对聚合物增粘树脂体系而言, 蜡的加入总是缩短开放时间, 影响程度随蜡的性质而变。一般来说, 蜡用量越大, 熔点越高, 结

晶度越大, 则使热熔胶开放时间越短。不同用途的热熔胶要求有不同的开放时间。

凝定时间

凝定时间即胶的定位时间, 与热熔胶的熔点、环境温度有关。冬季气温低, 散热快, 凝定时间短。配方设计中可用蜡来调节凝定时间, 高结晶度、高熔点蜡可缩短凝定时间, 而微晶蜡则延长凝定时间。

未固化强度和初粘性

胶未固化前的粘接强度直接影响到施胶后的加压时间, 从而也影响到粘接工艺。未固化强度与胶的极性、润湿性有关, 选取内聚强度和抗张强度高的组份有利于提高胶的未固化强度。蜡的类型和用量对未固化强度也有很大影响。

耐热性

耐热性与组份的熔点和分子质量分布有关。用高熔点组份制成的热熔胶耐热性高, 而蜡的加入常常降低耐热性。

抗粘连性

热熔胶胶粒的抗粘连性对胶的贮存有直接关系。抗粘连性差的胶高温高湿下贮存易结块。用较硬的蜡可防止胶粒粘连, 如聚乙烯蜡。除了选择合适的蜡外, 蜡的用量也可控制粘连。此外, 在某些场合下还可在胶粒中拌入滑石粉一类的粉状物防粘连。

5. 我对于本专业感兴趣的领域-医用高分子材料

现代医学发展的一个重要标志是新型医用材料和医疗器械在疾病诊断和治疗中的广泛应用。

医用高分子材料指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料。其研究领域涉及材料学、化学、医学和生命科学。虽已有40 多年的研究历史,但蓬勃发展始于20世纪70 年代。随着高分子化学工业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起搏器,以及骨生长诱导剂等。近十年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品获得越来越多的医学临床应用。

1949年,美国首先发表了医用高分子的展望性论文,第一次介绍了利用聚甲基丙烯酸甲酯(PMMA)作为人的头盖骨、关节和股骨,利用聚酰胺纤维作为手术缝合线的临床应用情况。20世纪50年代,有机硅聚合物被用于医学领域,使人工器官的应用范围大大扩大,包括器官替代和整容等许多方面。在20世纪50年代,一大批人工器官试用于临床,如人工尿道(1950年)、人工血管(1951年)、人工食道(1951年)、人工心脏瓣膜(1952年)、人工心肺(1953年)、人工心肺(1953年)、人工关节(1954年)及人工肝(1958年)等。20世纪60年代,医用高分子材料开始进入一个崭新的发展时期。目前较成功的高分子材料制人工器官有人工血管、人工食道、人工尿道、人工心脏瓣膜、人工心脏瓣膜、人工关节、人工骨、整形材料等。

6. 参考文献

《history of plastics industry 》

《高分子材料科学导论》(哈尔滨工业大学出版社)《高分子材料导论》(程晓敏史初例著)

高分子材料与工程专业导论课程论文【最新版】

高分子材料与工程专业导论课程论文 1.高分子的定义 高分子又称作聚合物,由小分子相互反应而形成,高分子与低分子的区别在于前者分子量很高。通俗地说,高分子是一种许许多多原子由共价键连接而组成的相对分子质量很大的化合物。更精确的描述是,高分子是指其分子主链上的原子都直接以共价键连接,且链上的成键原子都共享成键电子的化合物,这样组成的高分子链的键的类型,除了共价键外,还可以包括某些配位键和缺电子键,而金属键和离子键是被排除在外的。

我对高分子的分类总结如下: 其中合成高分子,又可分为橡胶、纤维和塑料三大类,常称为三大合成材料,合成橡胶的主要品种有丁苯橡胶、顺丁橡胶和异戊橡胶等。合成纤维的主要品种有涤纶、腈纶、锦纶、维纶和丙纶。塑料还可分为热塑性塑料和热固性塑料,前者为线性聚合物,受热可熔融流动,可多次重复加工成型,主要品种有聚乙烯、聚丙烯和聚苯乙烯;后者是网状聚合物,通常由线性聚合物或低聚物经交联得到,以后不能加热融化重复成型,主要品种有酚醛树脂、不饱和聚酯、环氧树脂等。此外,聚合物还可作为涂料和粘合剂来使用,而且使用越来越广泛,也有人将他们单独列为两类,所以聚合物按应用分

类,也应包括上述五大合成材料。最近,着眼于聚合物所具有的特定的物理、化学、生物功能的功能高分子,也已成为新的重要一类。天然高分子,也有有机高分子和无机高分子之分。天然高分子,如人们所熟悉的石棉、石墨、金刚石、云母等,天然有机高分子,都是在生物体内制造出来的,储存能量的肝糖、淀粉,生物体外分泌物如蚕丝、蛛丝、植物的橡胶,还有储存遗传信息的核酸。 2.高分子材料科学的发展简史(以塑料的发展为例) 从第一个塑料产品赛璐珞诞生算起,塑料工业迄今已有120年的历史。其发展历史可分为三个阶段。 1.天然高分子加工阶段 这个时期以天然高分子,主要是纤维素的改性和加工为特征。1869年美国人J.W.海厄特发现在硝酸纤维素中加入樟脑和少量酒精可制成一种可塑性物质,热压下可成型为塑料制品,命名为赛璐珞。1872年在美国纽瓦克建厂生产。当时除用作象牙代用品外,还加工成马车和汽车的风挡和电影胶片等,从此开创了塑料工业,相应地也发展了模压成型技术。

高分子材料论文3000字

高分子材料论文3000字 近年来,高分子材料处于不断变化发展中,并且随着它的不断发展,已经渗透到人类生活中的方方面面。因此,高分子材料在日常生活中的生产和生活活动中发挥着重要作用。高分子材料又称之为聚合物材料,主要是由无数个小分子化合物通过化学键,进而形成的大分子化合物,称之为聚合物材料。在日常的生产生活中常见的高分子材料主要有合成橡胶、合成纤维、合成塑料等,并且在新中国成立之后,上述高分子材料在日常生活中得到了广泛应用,例如服装业、日用品,以及各种工业材料中,满足了各行业对高分子材料的需求。此外,在未来高分子材料将会运用于纳米高分子材料复合应用、生物可降解高分子材料、高分子材料功能化,以及航空航天领域。 二、高分子材料的发展 高分子材料是一种聚合物大分子化学品,其组成主要是由半人工和人工合成的高分子材料,与其他化合物的主要区别是高分子材料在化学性质和物理性质上均能发生较大变化,可以有一些特殊功能,例如光学、电学等功能。此外,随着科学技术的不断进步,新能源开发、微电子和生物医药的不断发展,高分子材料得到了更广泛的应用,其作用主要表现在以下结果方面。其一,使用高分子材料设计合成新能物质,并且具有新功能,例如研制出的新型非晶质光盘,具有较好的耐腐蚀性,几乎不会被腐蚀,这一特性主要是来自于非晶质合金表面生成的耐腐性保护膜。其二,高分子材料利用特别的加工方式来增加磁疗的特殊功能,如利用高分子膜和塑料光纤使高分子材料更加容易加工成型,并且降低其加工成本。其三,使用两种或者两种以上性能不同的高分子材料,经过复合化学反应形成新的高分子材料,如屏蔽导电、塑料以及复合层的复合填料。

当前,随着高分子材料在生产生活中的应用日益加深,其与众不同之处逐渐凸显出来,它可以代替日常生产生活中的许多材料,并且可以通过高分子材料来改善其他材料的功能和性能,使他们成为一种全新材料,进而更好的发挥他们的功能。进而,我国也对高分子材料这一领域的研究较为重视,在自我研发的基础上,不断加强了国际研究领域的沟通交流。 三、纳米高分子材料的发展 通俗来说,纳米技术是用来研究纳米材料的特殊性能,以及对纳米材料的结构进行工艺制造的技术。并且,如果把带有特殊功能纳米粒子和高分子材料进行混合,例如纳米粒子,进而可以使高分子材料的性质发生变化。因此在改变高分子材料性质的时运用纳米技术的方式主要有2种:一种是将两种高分子材料进行混合加工成新的材料;另一种是利用纳米粒子作用于高分子材料,进而改变高分子材料原有的性能。例如,在探究苯乙烯一丙烯酸醋纳米复合阻尼技术时,可将讲上述几种材料进行复合,进而提高这两种物质的复合性能,同时提高其抗震能力。与此同时,作者结合多种实验结果,得出聚合高分子材料主要分布于二维纳米片之后,主要功能时提高原有高分子材料的性能,使原有高分子材料的耐磨性更强。将获得化学生成物与尼龙等高分子材料进行混合,得到新型的高分子材料的阻燃性能将会得到大幅度提升。因此,纳米技术与高分子材料结合,研制出新的高分子材料,可以使传统的高分子材料更加先进,符合日常生产生活需求。换言之,在高分子材料当中运用纳米技术,将会是高分子材料在未来运用的主要研究方向。 四、生物降解高分子材料的发展 随着科学技术的发展,微信生物或者与其相关的分泌物通过化学反应,进而可以获经过降解的新型高分子材料。目前,高分子材料在日常生活中得到了广泛的

工程材料导论论文--高分子材料

通过《工程材料导论》课程的学习,我了解到了许多工程材料科学的相关知识。例如:钢铁材料,有色金属材料,高分子材料,陶瓷材料,复合材料等等。这些材料构成了我们这个五彩缤纷的世界,也使我们的生活多姿多彩。下面我将围绕高分子材料进行介绍,它有非常广泛的运用范围,他在我们生活的各个方面发挥着无可替代的作用。 高分子材料英文名:macromolecular material。高分子材料是以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,通常分子量大于10000,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合体。 高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。 19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。 高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。

1 橡胶的定义是玻璃化温度低于室温,在环境温度下能显示高弹性的高分子物质。 橡胶分为天然橡胶和合成橡胶。天然橡胶主要来源于三叶橡胶树,当这种橡胶树的表皮被割开时,就会流出乳白色的汁液,称为胶乳,胶乳经凝聚、洗涤、成型、干燥即得天然橡胶。 合成橡胶是由人工合成方法而制得的,采用不同的原料(单体)可以合成出不同种类的橡胶。1900年~1910年化学家 C.D.哈里斯(Harris)测定了天然橡胶的结构是异戊二烯的高聚物,这就为人工合成橡胶开辟了途径。1910年俄国化学家SV列别捷夫(Lebedev,1874-1934)以金属钠为引发剂使1,3-丁二烯聚合成丁钠橡胶,以后又陆续出现了许多新的合成橡胶品种,如顺丁橡胶、氯丁橡胶、丁苯橡胶等等。合成橡胶的产量已大大超过天然橡胶,其中产量最大的是丁苯橡胶。 橡胶跟我们的生活密不可分。生活中用的雨鞋、暖水袋、松紧带;医疗卫生行业所用的外科医生手套、输血管;交通运输上用的各种轮胎;工业上用的传送带、运输带、耐酸和耐碱手套;农业上用的排灌胶管、氨水袋;气象测量用的探空气球;科学试验用的密封、防震设备;国防上用的飞机、坦克、大炮、防毒面具;甚至成为火箭、人造地球卫星和宇宙飞船等高精尖科学技术产品不可或缺的原料。 2 纤维是指由连续或不连续的细丝组成的物质。在动植物体内,纤维在维系组织方面起到重要作用。纤维用途广泛,可织成细线、线头和麻绳,造纸或织毡时还可以织成纤维层;同时也常用来制造其他

高分子材料毕业论文

高分子材料毕业论文 浅析高分子材料老化性能 摘要:高分子材料性能优异,应用领域广泛,在户外工程中市场占有率很高。但由于 使用过程中高分子材料受光、湿度和温度等环境因素作用,导致力学性能和外观发生变化。为改善高分子材料的抗老化性能,必须充分认识其老化机理和老化进程,进而有目的地进 行防老化改性。 关键词:高分子材料;降解;老化;进展 高分子材料在加工、贮存和使用过程中,由于内外因素的综合影响,逐步发生物理化 学性质变化,物理机械性能变坏,以致最后丧失使用价值,这一过程称为“老化”。老化 现象有如下几种:外观变化,材料发粘、变硬、变形、变色等;物理性质变化,溶解、溶胀 和流变性能改变;机械性能变化和电性能变化等。引起高分子材料老化的内在因素有:材 料本身化学结构、聚集态结构及配方条件等;外在因素有:物理因素,包括热、光、高能 辐射和机械应力等;化学因素,包括氧、臭氧、水、酸、碱等的作用;生物因素,如微生物、昆虫的作用。老化往往是内外因素综合作用的极为复杂的过程。高分子材料的老化缩短了 制品的使用寿命,并影响制品使用的经济性和环保性,限制了制品的应用范围。因此,研 究引发高分子材料老化的原因及其微观机理具有非常重要的意义。近年来,高分子老化研 究主要集中在探讨高分子材料老化的规律、机理,以及环境因素对材料老化的影响等方面,这些工作对于发展新的实验技术和测试方法,改善材料的生产技术、研制特种材料、逐步 达到按指定性能设计新材料等具有重大的指导作用。 1 户外因素对高分子材料老化行为的影响为的影响 高分子材料在户外曝露于太阳光和含氧大气中,分子链发生种种物理和化学变化,导 致链断裂或交联,且伴随着生成含氧基团如酮、羧酸、过氧化物和醇,导致材料韧性和强 度急剧下降。关于光氧化降解过程和防止这种降解过程的发生,已有很多研究报导,这些 研究工作的基础是光化学效应,即物质在吸收光后所发生的反应。紫外波长300n m~400nm,能被含有羰基及双键的聚合物吸收,而使大分子链断裂,化学结构改变,导致材料性能劣化,因此历来是研究热点。Ibnelwaleed A.等通过自然环境曝露和人工加 速试验,研究了不同支链形式LLDPE、HDPE的耐紫外光老化性能。 Ibnelwaleed A.等从流变学角度分析了PE紫外光老化历程,发现LLDPE在紫外光老化过程中同 时发生交联和断链,短支链含量高低和老化时间长短直接影响材料性能。另外,Z-N催化 合成的LLDPE和茂金属催化合成的LLDPE降解机理相似,但是,对于相同重均分子量和支 化度的PE,茂金属催化合成的LLDPE比齐格勒-纳塔催化合成的LLDPE耐降解,而且发现 单体的类型对紫外光老化降解影响不大。

轻化工程专业高分子材料科学与工程期末结课论文

轻化工程专业高分子材料科学与工程期末结 课论文 一、绪论 随着工业的发展和技术的进步,高分子材料作为一种基础材料,在 现代工程技术中扮演着越来越重要的角色。轻化工程作为现代工程技 术的一个重要领域,高分子材料的研发和应用对其发展具有至关重要 的意义。本论文旨在研究高分子材料在轻化工程中的应用,总结高分 子材料科学与工程的理论基础以及应用实践,探讨其在轻化工程中的 发展趋势和前景。 二、高分子材料科学与工程的理论基础 高分子材料科学与工程是研究高分子化学、高分子物理、高分子结 构与性质、高分子加工工艺等方面的学科,是高分子材料研发、制造、应用的重要理论基础。高分子材料的研究和应用涉及到许多领域,如 化工、材料、电子、机械、医药等,因此高分子材料科学与工程的学 科体系也非常复杂。高分子材料的结构与性质、加工工艺等方面的研 究都是其理论基础的重要组成部分。 三、高分子材料在轻化工程中的应用实践 1. 聚合物基复合材料的应用 聚合物基复合材料是一种由聚合物基质和增强材料(如碳纤维、玻 璃纤维等)组成的复合材料。由于其具有重量轻、强度高、刚性好等 特点,被广泛应用于航空航天及汽车制造等领域。在轻化工程中,聚

合物基复合材料的应用越来越广泛,如在飞机制造中,替代金属材料制造飞机机身;在汽车制造中,用于研发轻量化新能源汽车等。 2. 高分子发泡材料的应用 高分子发泡材料是一种通过高分子材料的物理或化学方法制造的轻质材料,具有重量轻、保温性能好等特点。在建筑、交通、家电等领域都有广泛的应用。例如,在建筑领域中,用于保温隔热,提高建筑节能性能;在交通领域中,用于制造轻量化的交通工具,提高其燃油效率等。 四、高分子材料在轻化工程中的发展趋势和前景 高分子材料在轻化工程中的应用前景非常广阔。随着科技的不断进步以及全球环境保护意识的提高,轻量化材料的需求越来越大。高分子材料具有重量轻、强度高、耐磨性好、保温性能优异等优点,在轻化工程中发挥着重要的作用。未来,高分子材料将会在新能源、智能制造、生物医学等领域有更加广阔的应用前景。 五、结论 本论文通过对高分子材料科学与工程的理论基础和应用实践进行了分析和研究,探讨了高分子材料在轻化工程中的应用前景。高分子材料的研究和应用是一个复杂而且具有广泛应用前景的领域,未来将会在人类社会的各个领域扮演着越来越重要的角色。

高分子材料与工程毕业论文

高分子材料与工程毕业论文 高分子材料与工程毕业论文 在当今科技发展的时代,高分子材料与工程作为一门重要的学科,受到了广泛 的关注和研究。随着社会的不断进步和人们对材料性能要求的提高,高分子材 料与工程的研究也越来越受到重视。作为一名高分子材料与工程专业的毕业生,我在我的论文中深入探讨了高分子材料的性能、应用和发展。 首先,我在论文中详细介绍了高分子材料的基本概念和特点。高分子材料是由 大量重复单元组成的聚合物,具有较高的分子量和多样的结构。这种材料具有 良好的可塑性、耐热性、耐化学腐蚀性等特点,广泛应用于塑料、橡胶、纤维 等领域。我在论文中列举了一些典型的高分子材料,如聚乙烯、聚丙烯、聚苯 乙烯等,并对其性能进行了分析和比较。 其次,我在论文中研究了高分子材料的应用领域。高分子材料在日常生活中的 应用非常广泛,涉及到塑料制品、纤维制品、医疗器械、电子产品等多个领域。我从这些领域中选择了几个具有代表性的应用案例进行研究,如高分子材料在 汽车制造中的应用、高分子材料在医疗器械中的应用等。通过对这些案例的分析,我得出了高分子材料在不同领域中的优势和不足之处,并提出了一些改进 和发展的建议。 此外,我在论文中还介绍了高分子材料的研究进展和未来发展方向。随着科技 的不断进步,高分子材料的研究也在不断深入。我通过对相关文献的调研和实 验数据的分析,总结了高分子材料研究的最新进展,如高分子材料的合成方法、改性技术、性能测试等方面。同时,我也对高分子材料的未来发展进行了展望,提出了一些可能的研究方向,如高分子材料在环境保护领域的应用、高分子材

料在能源领域的应用等。 在论文的最后,我总结了自己的研究成果和心得体会。通过这次毕业论文的研究,我对高分子材料的性能和应用有了更深入的了解,也提高了自己的科研能 力和论文写作能力。我相信,高分子材料与工程作为一门重要的学科,将会在 未来的科技发展中发挥越来越重要的作用。 综上所述,我的高分子材料与工程毕业论文深入探讨了高分子材料的性能、应 用和发展。通过对高分子材料的研究和分析,我对这门学科有了更全面的认识,也为相关领域的研究和应用提供了一些有价值的思考和建议。我相信,高分子 材料与工程将会在未来的科技发展中发挥更加重要的作用,为人类的生活和社 会进步做出更大的贡献。

功能高分子材料论文

专业: 材料科学与工程 姓名:** 学校名称:贵州大学 论文题目:生物医用高分子材料学号:******* 老师: ***

生物医用高分子材料 摘要:简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类,接着重点写生物医用高分子的发展前景和趋势,对生物医用功能高分子的认识和其重要性的认识。 关键词:功能高分子材料,生物医用高分子材料。 功能高分子材料 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料.近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50% 所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言.这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料.如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物.可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料. 功能高分子材料按照功能特性通常可分成以下几类: (1)分离材料和化学功能材料;(2)电磁功能高分子材料;(3)光功能高分子材料;(4)生物医用高分子材料。功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。 随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。 一般归纳起来医用高分子材料应符合下列要求: 1、化学稳定性好,在人体接触部分不能发生影响而变化; 2、组织相容性好,在人体内不发生炎症和排异反应; 3、不会致癌变; 4、耐生物老化,在人体内材料长期性能无变化;

高分子材料论文

高分子材料论文

应用化学1212级 2班黄雷雷 1220109203 《高分子材料与人们的生活》 摘要:高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社 会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子 材料的相关常识。 关键词:高分子材料塑料新型高分子材料 高分子材料的定义 高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。 高分子材料按来源分类 高分子材料按来源分,可分为天然高分子材料、半合成高分子材料和合成高分子材料。 天然高分子材料包括纤维素、蛋白质、蚕丝、橡胶、淀粉等。合成高分子材料以及以高聚物为基础的,如各种塑料,合成橡胶,合成纤维、涂料与粘接剂等。

车的配件;加入玻璃纤维可以增加硬度,可用作机器零件等;用丁腈橡胶改性后耐油性能和抗冲击强度大大提高;用聚氯乙烯改性后则能提高机械强度和耐酸性。 酚醛塑料由于原料来源丰富,合成工艺简单,价格便宜,产品又具有优良的性能,目前仍然是世界上产量最大的热固性塑料。 5、电玉(脲醛塑料) 玉的化学名称为脲醛塑料,它是用尿素与甲醛进行缩合,先生成脲醛树脂,然后与填料、润滑剂、颜料等混合,经成型加工而得的热固性塑料。纯净的脲醛树脂是无色透明的,加入二氧化钛或其他颜料,便可变成乳白色或其他颜色的半透明或不透明的塑料。脲醛塑料像美玉一样绚丽多彩,又因其绝缘性能好,可用做电器材料,故得名“电玉”。 电玉除了具有热固性塑料的通性之外,还具有两个特性:一是优良的耐电弧性能,因此可专门用于制造汽车、摩托车等引擎中的发火零件;二是无臭无味,色泽美观,故常用来生产各种生活用品,如纽扣、瓶盖、门拉手、琴键、电话机、钟表的外壳、灯罩等。电玉的性能优良而价格便宜,产量逐年上升,特别是在日常生活用品的制造中使用越来越多。 电玉的缺点是不太耐热,因此用电玉做的餐具、奶瓶等最好不要在开水中煮,以免变形。 6、蜜胺塑料(三聚氰胺甲醛塑料) 蜜胺塑料的化学名称为三聚氰胺甲醛,它是由三聚氰胺与甲醛缩聚而成的热固性塑料。与电玉相比,蜜胺的价格较贵,所以产量不高,但由于其有各种良好的性能,近年来发展仍很快。 蜜胺树脂是无色透明的,可制成各种透明的日常用品,加了着色剂和纸浆等填料后,就会变得不透明,外观像瓷器,因此被人们誉为塑料瓷器。用蜜胺制作的碗、盘、茶杯等不但看上去与瓷器相仿,而且不易碎,同时它不像电玉不耐热,可用开水煮沸消毒。因为蜜胺塑料美观、耐热、无味、无毒,所以常用来制作高级餐具。 7、有机玻璃(聚甲基丙烯酸甲酯) 有机玻璃的化学名称是聚甲基丙烯酸甲酯,它是以甲基丙烯酸甲酯为单体,经加聚反应合成的线型高分子化合物。 机玻璃最突出的性能是透光性非常好(透光率达92%),仅次于普通玻璃(透光率95%)。与普通玻璃相比,它透过紫外线的能力

材料科学与工程论文集锦9篇

材料科学与工程论文集锦9篇 【摘要】电子材料与器件课程作为电子材料专业的基础和入门课程, 对于学生夯实基础、激发学习兴趣、展开深层次学习具有至关重要的作用。而该课程的教学方式方法,对于学生掌握电子材料与器件知识有着重要影响,在本文中,笔者将新形势下电子科技学科教学的特点和教学经验相结合,通过对电子材料与器件课程的教学内容、课程安排、教学形式等方面 的研究,探索更加完善的教育教学方法,努力提高电子材料与器件课程的 教学质量。 关键词电子科学与技术;电子材料与器件;教学方法 电子材料与器件课程是电子科学技术相关专业的基础性课程,对于学 生巩固基础知识和提高专业技能是极为重要的。而提高电子材料与器件课 程教学的质量,使课程与社会需求相结合,是高校教师探索的重中之重。 笔者承担着我校电子材料与器件课程的教学任务,在总结教学经验的基础上,笔者在教学内容、课程安排和教学形式等方面进行了尝试,并取得了 一定的教学成果。 1.电子材料与器件简介 处于电子科学技术产业链前端的电子材料和元器件是众多核心基础产 业的重要组成部分,是计算机网络、通讯、数字音频等系统和相关产品发 展的基础。电子材料与器件是指在电子技术和微电子技术中使用的材料和 器件,包括半导体材料与器件、介电材料与器件、压电与铁电材料、导电 金属及其合金材料、磁性材料光电子材料和磁性材料、电磁波屏蔽材料以 及其他相关材料与器件。电子材料与器件是现代电子产业和科学技术发展 的重要物质基础,同时又是科技领域中技术导向型学科。它涉及到物理化

学、电子技术、固体物理学和工艺基础等多学科知识。根据材料的化学性质,可以分为金属电子材料,电子陶瓷,高分子电子、玻璃电介质、气体 绝缘介质材料,电感器、绝缘材料、磁性材料、电子五金件、电工陶瓷材料、屏蔽材料、压电晶体材料、电子精细化工材料、电子轻建纺材料、电 子锡焊料材料、PCB制作材料、其它电子材料。 2.电子材料与器件课程教学模式 2.1电子材料与器件课程教学形式 电子材料与器件课程既包含电子材料的物理特性和电子器件的工作原理,还包含丰富的电子材料与器件的理论知识,并且与实践应用紧密结合。为了更好的培养学生的时间能力,增强实践意识,达到学以致用的目标。 因此,电子材料与器件的课程教学应采取实验教学和理论教学相结合的教 学形式,教师安排合理的实验活动,将理论教学与实验教学有机结合,达 到学生巩固理论知识、增强实践技能的教学目标。 2.2电子材料与器件教学课时安排 教学采用教材《电子材料与器件原理》。在电子材料与器件教学的课 时安排上,该课程作为电子科学与技术专业的核心课程,电子材料与器件 课程的总课时应不少于80学时,理论课学时设计应在64学时左右,实验 课学时应在16学时左右,任课教师可以根据教学过程中的实际情况增加 或减少其中一章节的课时安排。 2.3电子材料与器件课程教材选择 在电子材料与器件课程的教材选择方面,由于电子材料与器件是电子 科学技术的一部分内容,目前我国关于电子科学技术的参考书籍很多,其 中也不乏经典教材,但考虑到本科生对于该课程接触时间段、基础知识薄

工程材料导论结课论文

《工程材料导论》结课论文 13024112卫仕林 一、对材料的认识 1、材料是人类用于制造物品、器件、构件、机器或其他产品的那些物质。材料是物质,但不是所有物质都可以称为材料。 2、材料的分类 ⑴按照材料的组成分为金属材料、非金属材料、复合材料。金属材料有分为:黑色金属和有色金属,其中黑色金属有铁及铁基合金;所有黑色金属以外的所有金属称为有色金属。非金属材料有:无机非金属材料和有机高分子材料。无机非金属材料是由硅酸盐、铝酸盐、硼酸盐、磷酸盐、锗酸盐等原料和(或)氧化物、氮化物、碳化物、硼化物、硫化物、硅化物、卤化物等原料经一定的工艺制备而成的材料,是除金属材料、高分子材料以外所有材料的总称;高聚物是由一种或几种简单低分子化合物经聚合而组成的分子量很大的化合物。复合材料是由两种或两种以上化学性质或组织结构不同的材料组合而成 ⑵按物理性质可分为:导电材料、绝缘材料、半导体材料、磁性材料、透光材料、高强度材料、高温材料、超硬材料等。 ⑶按物理效应分为:压电材料、热电材料、铁电材料、非线性光学材料、磁光材料、电光材料、声光材料、激光材料等。 ⑷按用途分为:电子材料、电工材料、光学材料、感光材料、耐酸材料、研磨材料、耐火材料、建筑材料、结构材料、包装材料等。 ⑸根据材料服役的技术领域可分为信息材料、航空航天材料、能源材料、生物医用材料等。 ⑹根据结晶状态分为:单晶材料、多晶材料、非晶态材料、准晶材料。 ⑺材料按材料的尺寸可分为零维材料、一维材料、二维材料、三维材料。 材料与经济和社会发展的关系 材料是人类生存和生活必不可缺少的部分,是人类文明的物质基础和先导,是直接推动社会发展的动力。材料的发展及其应用是人类社会文明和进步的重要里程碑。没有材料科学的发展,就不会有人类社会的进步和经济的繁荣。 新材料既是当代高新技术的重要组成部分,又是发展高新技术的重要支柱和突破口。正是因为有了高强度的合金,新的能源材料及各种非金属材料,才会有航空和汽车工业;正是因为有了光纤,才会有今天的光纤通讯;正是因为有了半导体工业化生产,才有今天高速发展计算机技术和信息技术。当今世界各国在高技术领域的竞争,在很大程度上是新材料水平的较量。 由于材料科学的发展水平与高新技术的发展是相互依存的,因此新材料发展与应用水平直接决定着经济发展的水平。以新材料为基础的一批新兴产业正在迅速兴起,并成为许多国家新的经济增长点。 材料的可持续发展 随着社会的发展,可持续发展已成为人类日益关注的问题,世界上,每秒钟有390000m3的CO2在排放,,71t的O2被消耗,1.3辆汽车和4.2太电视被生产出,2.4人出生,而同时鱿鱼气候变暖有1629m3的冰河在消失。这些数据告诉我们为了人类能够健康的生活在这个星球上,必须认识到生态资源恶化的严重性。人类的生存离不开材料科学的发展与进步,人口的急剧增长、环境恶化、资源匮乏称为威胁人类发展的重要因素,我国已发现的资源有

材料学科导论小论文

站在材料的路口,展望人生 ——学科导论小论文引论 为了新生了解材料学科并加深对其的认识,学院特意开设了四次学科导论课程,其中最为感兴趣的是第一堂课所讲的材料的定义、发展历程、未来发展方向。因为作为一个大一新生,入学选择这个专业是因为兴趣所在,但是对于这个专业的理解并不是很深,连以后主要的发展方向都是一知半解。通过这堂课我不仅仅在时空上了解了材料的发展、材料学科的发展,更是从宏观角度上看到了材料的发展方向,最为重要的是得到了院长提到的“物理脑,化学手,工程心”这一材料学科的最佳学习方法,能让我在今后的学习中更好的掌握知识,并应用于实践。 对材料的理解 材料,即人类用于制造机器、构件和产品的物质,是人类赖以生存和发展的物质基础。(课堂笔记)。综合四次课程,我对材料学科的理解是探索物质本源,宏观上分析物质结构,探索合成工艺,提高使用性能;微观上剖析材料性质,分析最小基本组成单元之间的联系。 选择方向——超导材料 一、学院概况: 目前学院共有三个专业:材料科学与工程,高分子材料与工程,新能源材料与器件,其中材料科学与工程又分为金属与非金属方向。 二、个人选择: 为了今后选择个人发展方向的时候少些迷茫,在四次课程结束以后,我通过网上了解相关材料,结合学院老师的研究方向,我选定的发展方向为超导材料。 三、超导材料简介: 超导材料,是指具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。当下主要研究方向有:非常规超导体磁通动力学和超导机理;强磁场下的低维凝聚态特性研究;强磁场下的半导体材料的光、电等特性强磁场下极微细尺度中的物理问题;强磁场化学。(以上简介摘自百度百科) 四、选择理由: 第一:超导材料应用领域: 未来必定是电子材料的世界,超导材料的研究必定在材料研究领域占据重要地位;

材料科学与工程专业概述课程考核论文

材料科学与工程专业概述课程考核论文 经过了18课时的材料科学与工程专业概述课程的学习后,让我对材料专业有了更加清楚的认识,使我进一步的明确了自己以后发展的方向。 一、材料与科学工程概述和体会 北京科技大学是中国材料科学与工程类人才培养与科技创新的重 要基地之一,有着悠久的历史和优良的传统。北京科技大学材料学学科是1987年首批批准的国家重点学科,至今在国家重点学科中位列全国前列。我们学校的材料学院分为材料科学与工程、材料物理、材料化学、材料成形与控制工程、无机非金属材料工程、功能高分子材料、表面科学与工程、纳米科学与技术等若干个专业。由于之前我校名为钢铁学院,所以材料的研究方向主要以金属材料为主。 材料科学与工程专业的主要研究方向:先进材料与工艺的设计与优化;新型金属结构和功能材料的基础研究;先进粉末冶金材料与技术;材料腐蚀、磨蚀与防护;先进高性能金属与非金属功能材料;先进复合材料;纳米材料与技术;功能薄膜材料;生物医用材等。由于此专业涉及方向较广,所以对基础理论知识以及基本技能和方法有很大的要求。 材料物理专业方向研究解决材料中的物理问题。研究领域包括材料的物理性能,材料的微观结构与相变,材料的失效,材料的表面与界面等,所研究的材料涉及新一代结构材料、信息

存贮材料、纳米材料、薄膜材料、能源材料、光电材料等。我们学校在这些方面的研究工作大部分处于国际前沿,每年都取得一批具有国际先进水平的科研成果。材料物理专业是一个比较新的专业,属于国际前沿的科研领域。 材料化学专业涉及各种新材料的化学制备、材料在服役环境下的化学失效与控制、材料再生与综合利用等内容。材料化学是近年来发展势头强劲的纳米材料、电子信息材料以及生物医用材料的重要学科基础。目前专业的主要研究方向有:功能高分子材料化学、功能无机材料化学、材料表面化学与表面技术、材料电化学与技术等。 无机非金属材料是三大类别的材料之一,该专业方向的主要研究方向有:新能源材料方向,特种陶瓷粉末冶金方向,无机非金属结构材料方向,功能陶瓷与器件方向等。 功能高分子材料是高分子材料科学与工程研究高分子物 理化学、聚合物反应工程及聚合物加工的新兴前沿学科之一,涉及光电功能高分子材料、高分子复合材料、纳米高分子材料、生物医学高分子材料的制备等。目前专业的主要研究方向有:有机高分子光屏蔽材料、手性有机高分子材料,液晶高分子材料、大面积液晶显示材料,液晶信息储存与显示材料、导电高分子材料、高分子防腐涂料薄膜、生物医用高分子材料、纳米聚合物、新型金属-高分子复合催化材料等。 材料成形与控制工程专业方向的主要研究方向有:新材料制备与

材料科学与工程导论论文

材料科学与工程论文 材料科学与工程是研究有关金属、无机非金属、有机高分子等材料的组成/结构、测试/表征、制备/合成、性能/应用四要素及其关系的科学技术与应用。 材料是人类用于制造物品、器件、构件、机器或其他产品的那些物质。材料是物质,但不是所有物质都可以称为材料。如燃料和化学原料、工业化学品、食物和药物,一般都不算是材料。但是这个定义并不那么严格,如炸药、固体火箭推进剂,一般称之为“含能材料”,因为它属于火炮或火箭的组成部分。材料是人类赖以生存和发展的物质基础。 20世纪70年代人们把信息、材料和能源誉为当代文明的三大支柱。80年代以高技术群为代表的新技术革命,又把新材料、信息技术和生物技术并列为新技术革命的重要标志。这主要是因为材料与国民经济建设、国防建设和人民生活密切相关。材料除了具有重要性和普遍性以外,还具有多样性。由于多种多样,分类方法也就没有一个统一标准。从物理化学属性来分,可分为金属材料、无机非金属材料、有机高分子材料和不同类型材料所组成的复合材料。从用途来分,又分为电子材料、航空航天材料、核材料、建筑材料、能源材料、生物材料等。更常见的两种分类方法则是结构材料与功能材料;传统材料与新型材料。结构材料是以力学性能为基础,以制造受力构件所用材料,当然,结构材料对物理或化学性能也有一定要求,如光泽、热导率、抗辐照、抗腐蚀、抗氧化等。功能材料则主要是利用物质的独特物理、化学性质或生物功能等而形成的一类材料。 一种材料往往既是结构材料又是功能材料,如铁、铜、铝等。传统材料是指那些已经成熟且在工业中已批量生产并大量应用的材料,如钢铁、水泥、塑料等。这类材料由于其量大、产值高、涉及面广泛,又是很多支柱产业的基础,所以又称为基础材料。新型材料(先进材料)是指那些正在发展,且具有优异性能和应用前景的一类材料。新型材料与传统材料之间并没有明显的界限,传统材料通过采用新技术,提高技术含量,提高性能,大幅度增加附加值而成为新型材料;新材料在经过长期生产与应用之后也就成为传统材料。传统材料是发展新材料和高技术的基础,而新型材料又往往能推动传统材料的进一步发展。 材料是人类生存、社会发展、科技进步的物质基础,是现代科技革命的先导,是当代文明的三大支柱之一。世界各先进工业国家都把材料作为优先发展的领域。我国政府对新材料的研究开发一直给予高度重视,在“863”等重大科技计划中,新材料都是重点支持的领域。 任何重要的新材料得到广泛应用,进而给人类生活、国家安全乃至整个经济和社会的发展带来重大影响,都是建立在人们对其全面了解和正确认知基础之上的。因此,新材料和新材料技术要切实充分发挥推动社会和科技进步的作用,就不仅仅是材料科技工作者所能完成的;它同样要求所有工程的各个领域及其设计部门能够对已有材料合理选择和正确使用;而且,材料是高新技术发展和社会现代化的先导,准确判断和资助优先发展方向是政府部门官员的职责,这要求他们也要对材料的全貌有着正确了解和总体认识,能够把握高技术先进材料的发展趋势。 材料学即是研究材料的学科,其研究内容包括材料的性能,材料的组成结构,材料的形成变化过程,材料的研究、制造方法及设备,以及它们之间的相互关系。其核心是材料的性能,其他均是为了材料性能的有效控制。 在人类社会的发展过程中,材料的发展水平始终是时代进步和社会文明的标志.人类文明的发展史,就是一部如何更好地利用材料和创造材料的历史。同时,材料的不断创新和发展,也极大地推动了社会经济的发展。在当代,材料和能源、信息、生命科学是构成社会文明和国民经济的四大支柱,新材料、信息技术、生物技术、新能源并列为新技术革命的重要标志,其中新材料更是科学技术发展的物质基础和技术先导。 人类社会的发展历程,是以材料为主要标志的。100万年以前,原始人以石头作为工具,称旧石器时代。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。新石器时代后期,出现了利用粘土烧制的陶器。人类在寻找石器过程中认识了矿石,并在烧陶生产中发展了冶铜术,开创了冶金技术。公元前5000年,人类进入青铜器时代。公元前1200年,人类开始使用铸铁,从而进入了铁器时代。随着技术的进步,又发展了钢的制造技术。18世纪,钢铁工业的发展,成为产业革命的重要

材料科学与工程导论论文

材料科学与工程导论论文 1119003 1111900331 周潼 上个世纪70年代以来,人们把信息、材料和能源作为社会文明的支柱。80年代又把新材料、信息技术和生物技术并列为新技术革命的重要标志。进入21世纪,以纳米材料、超导材料、光电子材料、生物医用材料及新能源材料等为代表的新材料技术创新显得更为异常活跃,新材料诸多领域正面临着一系列新的技术突破和重大的产业发展机遇。相应的,材料科学与工程专业也蓬勃发展起来。 材料科学与工程专业以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面研究的学科。 材料科学与工程专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作,适应社会主义市场经济发展的高层次、高素质全面发展的科学研究与工程技术人才。 材料科学与工程专业学生主要学习材料科学与工程的基础理论,学习与掌握材料的制备、组成、组织结构与性能之间关系的基本规律。受到金属材料、无机非金属材料、高分子材料、复合材料以及各种先进材料的制备、性能分析与检测技能的基本训练。掌握材料设计和制备工艺设计、提高材料的性能和产品的质量、开发分析与检测技能的基本训练。掌握材料设计和制备工艺设计、提高材料的性能和产品的质量、开发研究新材料和新工艺方面的基本能力。 在大学四年里,该专业的学生应掌握金属材料、无机非金属材料、高分子材料、防腐专业以及其它高新技术材料科学的基础理论和材料合成与制备、材料复合、材料设计等专业基础知识;.掌握材料性能检测和产品质量控制的基本知识,具有研究和开发新材料、新工艺的初步能力;掌握材料加工的基本知识,具有正确选择设备进行材料研究、材料设计、材料研制的初步能力;具有本专业必需的机械设计、电工与电子技术、计算机应用的基本知识和技能;.熟悉技术经济管理知识以及文献检索、资料查询的基本方法,具有初步的科学研究和实际工作能力。 该专业在大学里主要涉及到物理化学、量子与统计力学、固体物理、材料学概论、材料科学基础、材料物理、材料化学、材料力学、材料科学研究方法、材料工艺与设备、计算机在材料科学中的应用等专业课程。包括专业实验、金工实习、电工电子实习、认识实习、生产实习、课程设计、毕业设计(论文)。掌握材料结构显微分析、近代仪器分析方法、材料的物理性能与力学性能测试、材料制备与成型加工工艺实验等实验方法。 该专业的毕业生大多进入各钢企、制造企业、汽车厂,以及陶瓷、水泥、家电等企业,就业范围广泛。一般的,材料科学与工程专业金属方向多进入钢企和相关研究院,高分子及非金属方向多进入陶瓷、玻璃、涂料、家电等行业,多属大型国企、军工、民企和科研院校。而材料科学与工程专业中,偏应用的材料加工和其他一些研究方向,相对找工作容易一些。由于材料科学与工程专业的特殊性,读研的比例相当高。而上述企事业单位提供的研发、技术职位也大多需要硕士及以上学历。 在该专业的具体专业方向中,我对金属材料比较感兴趣。金属材料的百分之九十以上是钢铁材料,而钢铁材料的百分之八十以上是低碳钢,没有任何一种工程材料像低碳钢那样价格低廉而又具备优良的综合性能。高的拉伸强度更是低碳钢的突出特点。不含特意加入的合金元素的简单低碳钢主要靠控制碳含量来调整强度。由于要保证足够的塑性、冲击韧性和你洗晶强化、第二相强化、位错强化、相变强化。一般来说固溶体总是要比纯金属有更高的

高分子导论论文

课程论文 课程名称___ 高分子材料导论_____ 论文题目导电高分子材料简介及应用学生学院物理与光电工程学院 学号********** 学生姓名张涛 2011年11 月10 日

导电高分子材料简介及应用 长期以来,高分子材料由于具有良好的机械性能,作为结构材料得到广泛的用。关于电性能,人们一直只利用高分子材料的介电性,将其作为电绝缘材料使用。一类具有导电功能(包括半导电性、金属导电性和超导电性)、电导率在10S/m以上的聚合物材料。高分子导电材料具有密度小、易加工、耐腐蚀、可大面积成膜以及电导率可在十多个数量级的范围内进行调节等特点,不仅可作为多种金属材料和无机导电材料的代用品,而且已成为许多先进工业部门和尖端技术领域不可缺少的一类材料。高分子材料长期以来被作为优良的电绝缘体,直至1977年,日本白川英树等人才发现用五氟化砷或碘掺杂的聚乙炔薄膜具有金属导电的性质,电导率达到10S/m。这是第一个导电的高分子材料。以后,相继开发出了聚吡咯、聚苯硫醚、聚酞菁类化合物、聚苯胺、聚噻吩等能导电的高分子材料。“导电高分子材料具有良好的导电性和电化学可逆性,可用作充电电池的电极材料。利用Ppy制作的可充电电池,经300次充放电循环后,效率无下降,已达到商业应用价值。导电性高聚物在太阳能电池上的应用也引起了广泛的关注,美国科学家Jeskocheim利用聚吡咯和聚氧化乙烯固态电介质膜试制了光电池,可产生1mA/cm2的电流,0.35V的电压。尽管这种光电池目前还不如Si太阳能电池,但由于导电聚合物重量较轻、易成形、工艺简单,并能生成大面积膜,具有绿色环保的特点,因而发展前景十分诱人。导电高分子材料还是制作超级电容器的理想材料。如采用掺杂后的聚吡咯高分子化合物,电导率高达100 S/cm,频率特征非常出色,尤其在高频区的特性与以前电容器相比有很大改善。经过多年世界范围内的广泛研究,导电聚合物在新能源材料方面的应用已获得了很大的发展,但离实际大规模应用还有一定的距离。这主要是因为其加工性不好和稳定性不高造成的。” 按照材料的结构与组成,可将导电高分子材料分为两大类。一类是复合型导电高分子材料,另一类是结构型或本征型导电高分子材料。复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的材料。几乎所有的聚合物都可制成复合型导电高分子材料。其一般的制备方法是填充高效导电粒子或导电纤维 ,如填充各类金属粉末、金属化玻璃纤维、碳纤维、铝纤维、不锈钢纤维及锰、镍、铬、镁等金属纤维 ,填充纤维的最佳直径为7um。 复合型导电高分子材料是在通用树脂中加入导电填料、添加剂,采用一定的成型方法而制得的。添加剂有抗氧剂、固化剂、溶剂、润滑剂等。复合型导电高分子的分类主要按基体树脂和导电填料的组合来定。 (1)基体树脂主要有: 聚烯烃(聚乙烯、聚丙烯等、聚氯乙烯、聚酰胺、聚对苯二甲) (2)导电填料主要有: 金属粉(金、银、铜、镍),金属纤维(铝纤维、黄铜纤维、铁纤维、不锈钢纤维等),碳黑、石墨、碳纤维、镀金属玻璃纤维、镀银中空玻璃微球、碳黑接枝聚合物、金属氧化物、金属盐等。

材料化学专业导论课论文

对材料化学的认识 在学习材料化学导论这门课的过程中,我学到了很多材料化学方面的新知识,使我的知识面得到进一步的拓宽,没有进行这门课程之前,我对于材料化学这个专业其实并不是很了解,而在上完这门课程之后,我不仅对材料化学专业有了更深的了解,对以后我的发展方向也有了更清楚的认知和规划,可以说是收获良多。除此之外通过对本课程的学习,我的思维方式更加科学,对专业前沿也更加了解,这对我学习其他课程也是很有用的,也为我在将来进行材料化学方面的实验研究打下了一定的基础。在上课过程中,老师对材料化学专业历史沿革、材料化学专业内涵与特点、矿物高分子复合材料研究进展、专业发展趋势与社会需求、材化专业人才培养基本要求、主要专业知识与课程体系、专业师资力量及其研究方向、专业就业前景进行深入的讲解,同时还带我们参观了实验室,让我们对材料化学专业以后的研究过程有了更深刻的认识。老师在上课的时候,将理论和实际互相结合,给我们讲述了很多生活中材料化学的实际应用,以及各种新型技术,同时也给我们时间让我们提出问题,并进行解答。通过老师的讲解,我在学习了很多以前没有接触过的理论知识的同时,也让我对于材料化学的实际情况有更多的认识。 在材料化学专业导论课的第一节课中,老师给我们讲述了我们学校材料化学专业的发展历史,我们学校的材料学院始建于1993年,从1997年开始建立材料化学专业,而由于我们的学校具有地质色彩,所以我们的材料化学专业研究方向与矿物有关,我们材料化学专业从建立以来,也研究出了很多有意义有价值的成果。通过对我们学校材料化学专业历史的了解与学习。我更加清楚的了解到我们材料化学专业的专业特色,对于以后的学习也有更明确的目标和方向。 在材料化学专业导论课的第二节课中,我们学习了材料化学专业的内涵与特点,材料化学的主要研究内容为材料制备原理、材料的成键本质和结构、材料理化性质表征、材料性能以及材料的化学应用。我们学校的材料化学专业具有地质学校的学科特色,所研究的问题主要涉及矿物岩石等无机材料的合成、性质、设计等等。在课堂上老师生动形象地给我们讲述了如何改变材料的性质,并举出实际的例子配以图片,让我对我今后所要进行的研究有了更加具体的认识,对我所要学习的实验操作有了更加深入的了解,同时我对材料化学这门学科产生了更加浓厚的兴趣,在以后的学习中也会更加有动力。 在材料化学专业导论课的第三节课中,老师向我们介绍了矿物高分子复活材料的研究进展,虽然这些材料我现在还并不是很了解,但看着老师展示的这些高科技材料,我对我们材料化学专业的发展充满了信心,这些研究如果能够真正运用于实际,出现在我们的日常生活中,那么我们的生活一定会有更大的改善,比如老师介绍的其中一个用于处理污水的材料,通过光照来使污水中的污染物分解。如果能够投入使用,那么对于我们改善环境一定有很大的帮助。我相信,在不远的未来,我也能在材料化学领域中研究出属于我的成果。 在材料化学专业导论课的第四节课中,老师讲述了专业发展趋势与社会需求,在这节课程中,我了解到材料化学的发展趋势还是相当好的,生活的方方面面都离不开材料,上到我们的航天飞机,下到我们的潜艇,都是由高科技材料组成的,而像我们日常生活中的高铁、汽车、手机等等,都或多或少的运用到了各种新型材料,所以材料化学社会需求也是很不错的,在未来这个高科技的时代,相信材料化学的发展会越来越好,我们的生活方方面面所需的材料也会得到改善,以及更进一步的提升。 在材料化学专业导论课的第五节课中,我了解了材化专业人才培养基本要求、主要专业知识与课程体系,在清楚了我们专业所需要学习的各种课程以及基本要求后,我对我要如何发展我自己以及我们需要学习的知识有了更清楚的认识,这样我就不会在以后的学习生活中

相关文档
相关文档 最新文档