文档库 最新最全的文档下载
当前位置:文档库 › 数学归纳法与不等式

数学归纳法与不等式

数学归纳法与不等式
数学归纳法与不等式

课 题: 数学归纳法与不等式

目的要求:1.了解数学归纳法的原理及适用范围和基本步骤 ; 2.会运用数学归纳法证明含有任意正整数n 的不等式(包括贝努利不等式)

重点难点: 认识数学归纳法的证明思路;运用数学归纳法时,在

“假设与递推”的步骤中发现具体问题中的递推关系。

教学设计: 一、引入:

数学归纳法是一个递推的数学论证方法,论证的第一步是证明命题在n =1(或n 0)时成立,这

是递推的基础;第二步是假设在n =k 时命题成立,再证明n =k +1时命题也成立,这是递推的依据。实际上它使命题的正确性突破了有限,达到无限。证明时,关键是k +1步的推证,要有目标意识。

二、范例分析:

例1、证明:23333)321(321n n ++++=++++ 。

例2、设1->x ,*N n ∈,证明贝努利不等式:nx x n +>+1)1(。

例3、设b a ,为正数,*

N n ∈,证明:n

n n b a b a )2

(2+≥+。

例4、设数列{a n }的前n 项和为S n ,若对于所有的自然数n ,都有S n =2

)

(1

n a a

n +,证明{a n }是等差数列。 (94年全国文)

例5、已知数列

811322

··,得,…,

8212122

··n

n n ()()-+,…。S n 为其前n

项和,求S 1、S 2、S 3、

S 4,推测S n 公式,并用数学归纳法证明。 (93年全国理)

解:计算得S 1=89

,S 2=2425

,S 3=4849

,S 4=8081

, 猜测S n =()

()

211

212

2

n n +-+

(n ∈N)

【注】 从试验、观察出发,用不完全归纳法作出归纳猜想,再用数学归纳法进行严格证明,这是探索性问题的证法,数列中经常用到。 (试值 → 猜想 → 证明)

【另解】 用裂项相消法求和

例6、设a

n =12×+23×+…+n n()+1 (n∈N),证明:1

2

n(n

+1)

n <1

2

(n+1)2。

三、小结:

四、练习:

五、作业:

1、设f(log

a x)=a x

x a

()

()

2

2

1

1

-

-

, ①.求f(x)的定义域;②.在y=

f(x)的图像上是否存在两个不同点,使经过这两点的直线与x轴平行?证明你的结论。③.求证:f(n)>n (n>1且n∈N)。

2、已知数列{a

n }满足a

1

=1,a

n

=a

n-1

cosx+cos[(n-1)x], (x

≠kπ,n≥2且n∈N)。①.求a

2和a

3

;②.猜测a

n

,并用数

学归纳法证明你的猜测。

高二数学归纳法证明不等式

第四讲:数学归纳法证明不等式 数学归纳法证明不等式是高中选修的重点内容之一,包含数学归纳法的定义和数学归纳法证明基本步骤,用数学归纳法证明不等式。数学归纳法是高考考查的重点内容之一,在数列推理能力的考查中占有重要的地位。 本讲主要复习数学归纳法的定义、数学归纳法证明基本步骤、用数学归纳法证明不等式的方法:作差比较法、作商比较法、综合法、分析法和放缩法,以及类比及猜想、抽象及概括、从特殊到一般等数学思想方法。 在用数学归纳法证明不等式的具体过程中,要注意以下几点: (1)在从n=k 到n=k+1的过程中,应分析清楚不等式两端(一般是 左端)项数的变化,也就是要认清不等式的结构特征; (2)瞄准当n=k+1时的递推目标,有目的地进行放缩、分析; (3)活用起点的位置; (4)有的试题需要先作等价变换。 例题精讲 例1、用数学归纳法证明 n n n n n 212111211214131211+++++=--++-+- 分析:该命题意图:本题主要考查数学归纳法定义,证明基本步骤 证明: 1 当n=1时,左边=1-21=21,右边=111+=21 ,所以等式成立。

2假设当n=k 时,等式成立, 即 k k k k k 212111211214131211+++++=--++-+- 。 那么,当n=k+1时, 221121211214131211+-++--++-+- k k k k 221121212111+-+++++++=k k k k k )2 2111(1212131214131211+-+++++++++=++-+-k k k k k k )1(21 121213121+++++++++= k k k k k 这就是说,当n=k+1时等式也成立。 综上所述,等式对任何自然数n 都成立。 点评: 数学归纳法是用于证明某些及自然数有关的命题的一种方法.设要证命题为P (n ).(1)证明当n 取第一个值n 0时,结论正确,即验证P (n 0)正确;(2)假设n=k (k ∈N 且k≥n 0)时结论正确,证明当n=k+1时,结论也正确,即由P (k )正确推出P (k+1)正确,根据(1),(2),就可以判定命题P (n )对于从n 0开始的所有自然数n 都正确. 要证明的等式左边共2n 项,而右边共n 项。f(k)及f(k+1)相比较,左边增加两项,右边增加一项,并且二者右边的首项也不一样,因此 在证明中采取了将11+k 及221 +k 合并的变形方式,这是在分析了f(k) 及f(k+1)的差异和联系之后找到的方法。 练习: 1.用数学归纳法证明3k ≥n 3(n≥3,n∈N)第一步应验证( )

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

各种数学归纳法

1.5 归纳法原理与反归纳法 数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对n =1正确;若假设此命题对n -1正确,就能推出命题对n 也正确,则命题对所有自然数都正确.通俗的说法:命题对n =1正确,因而命题对n =2也正确,然后命题对n =3也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而上述描述是不够严格的,有了皮阿罗公理后,我们就能给出归纳法的严格证明. 定理1.19 如果某个命题T,它的叙述含有自然数,如果命题T对n =1是正确的,而且假定如果命题T对n 的正确性就能推出命题T对n +1也正确,则命题T对一切自然数都成立.(第一数学归纳法) 证明 设M是使所讨论的例题T正确的自然数集合,则 (1) M ∈1. 设M n ∈,则命题T对n 正确,这时命题对n n '=+1也正确,即 (2) M n ∈' 所以由归纳公理D,M含有所有自然数,即命题T对所有自然数都成立. 下面我们给出一个应用数学归纳法的命题. 例1 求证 6 ) 12)(1(212 2 2 ++= +++n n n n 证明 (1)当n =1时,有 16 ) 112()11(112 =+?++?= 所以n =1,公式正确. (2)假设当k =n 时,公式正确,即 6 ) 12)(1(212 2 2 ++= +++n n n n 那么当k =n +1时,有 =+++++=+++++2 2222222)1()21()1(21n n n n =++++2 ) 1(6 ) 12)(1(n n n n =++++6 ) 1(6)12)(1(2 n n n n =++++6 )] 1(6)12()[1(n n n n =+++6 ) 672)(1(2 n n n =+++6) 32)(2)(1(n n n =+++++6 ) 1)1(2)(1)1)((1(n n n 所以公式对n +1也正确.

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

高考真题突破:数学归纳法

专题十三 推理与证明 第三十九讲 数学归纳法 解答题 1.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈* N . 证明:当n ∈* N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1 122 n n n n x x x x ++-≤ ; (Ⅲ)1211 22 n n n x --≤≤. 2.(2015湖北) 已知数列{}n a 的各项均为正数,1 (1)()n n n b n a n n +=+∈N ,e 为自然对数的 底数. (Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1 (1)n n +与e 的大小; (Ⅱ)计算 11b a ,1212 b b a a ,123123 b b b a a a ,由此推测计算12 12n n b b b a a a 的公式,并给出证明; (Ⅲ)令112()n n n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T , 证明:e n n T S <. 3.(2014江苏)已知函数0sin ()(0) x f x x x =>,设()n f x 为1()n f x -的导数,n *∈N . (Ⅰ)求()() 122222 f f πππ+的值; (2)证明:对任意的n *∈N ,等式()( ) 1444n n nf f -πππ+=成立. 4.(2014安徽)设实数0>c ,整数1>p ,*N n ∈. (Ⅰ)证明:当1->x 且0≠x 时,px x p +>+1)1(; (Ⅱ)数列{}n a 满足p c a 11>,p n n n a p c a p p a -++-= 111, 证明:p n n c a a 1 1>>+. 5.(2014 重庆)设1 11,(*)n a a b n N +==+∈

第一轮复习 放缩法技巧全总结

放缩法在数列不等式中的应用 数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。 1. 直接放缩,消项求解 例1在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈, (Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512 n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。 (Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。 (Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612 a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ??+++<++++ ?+++??+?? …… 111111116223341n n ??=+-+-++- ?+?? … 111111562216412n ??= +-<+= ?+??,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。再用裂项的方法求解。 另外,熟悉一些常用的放缩方法, 如: ),,2,1(1 1121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数

用数学归纳法证明不等式

用数学归纳法证明不等式 在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx. 证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x≠0获得,为下面证明做铺垫) (2)假设n=k时(k≥2),不等式成立,即(1+x)k>1+kx. 师:现在要证的目标是(1+x)k+1>1+(k+1)x,请同学考虑. 师:现将命题转化成如何证明不等式 (1+kx)(1+x)≥1+(k+1)x.显然,上式中“=”不成立.故只需证:(1+kx)(1+x)>1+(k+1)x. 提问:证明不等式的基本方法有哪些? (学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结) 师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生丙用放缩技巧证明显然更简便,利于书写.当n=k+1时,因为x>-1,所以1+x>0,于是左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2;右边=1+(k+1)x.因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.这就是说,原不等式当n=k +1时也成立. 根据(1)和(2),原不等式对任何不小于2的自然数n都成立. (通过例1的讲解,明确在第二步证明过程中,虽然可以采取证明不等式的有关方法,但为了书写更流畅,逻辑更严谨,通常经归纳假设后,要进行合理放缩,以达到转化的目的)例2证明:2n+2>n2,n∈N+. 证:(1)当n=1时,左边=21+2=4;右边=1,左边>右边.所以原不等式成立. (2)假设n=k时(k≥1且k∈N)时,不等式成立,即2k+2>k2. 现在,请同学们考虑n=k+1时,如何论证2k+1+2>(k+1)2成立. 师:将不等式2k2-2>(k+1)2,右边展开后得:k2+2k+1,由于转化目的十分明确,所以只需将不等式的左边向k2+2k+1方向进行转化,即:2k2-2=k2+2k+1+k2-2k-3.由此不难看出,只需证明k2-2k-3≥0,不等式2k2-2>k2+2k+1即成立. 师:由于使不等式不成立的k值是有限的,只需利用归纳法,将其逐一验证原命题成立,因此在证明第一步中,应补充验证n=2时原命题成立,那么,n=3时是否也需要论证? 师:(补充板书)当n=2时,左=22+2=6,右=22=4,所以左>右;当n=3时,左=23+2=10,右=32=9,所以左>右.因此当n=1,2,3时,不等式成立.(以下请学生板书) (2)假设当n=k(k≥3且k∈N)时,不等式成立.即2k+2>k2.因为2k+1+2=2·2k+2=2(2k +2)-2>2k2-2=k2+2k+1+k2-2k-3=(k2+2k+1)+(k+1)(k-3)(因k≥3,则k-3≥0,k+1>0) ≥k2+2k+1=(k+1)2.所以2k+1+2>(k+1)2.故当n=k+1时,原不等式也成立.根据(1)和(2),原不等式对于任何n∈N都成立. 师:通过例2可知,在证明n=k+1时命题成立过程中,针对目标k2+2k+1,采用缩小的手段,但是由于k的取值范围(k≥1)太大,不便于缩小,因此,用增加奠基步骤(把验证

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++??????=?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

归纳法证明不等式

归纳法证明不等式 数学归纳法证明不等式的本质 数学归纳法证明不等式的典型类型是与数列或数列求和有关的问题,凡是与数列或数列求和有关的问题都可统一表述成f(n)?g(n)(n?n?)的形式或近似于上述形式。 这种形式的关键步骤是由n?k时,命题成立推导n?k?1时,命题也成立。为了表示的方便,我们记?左n?f(k?1)?f(k),?右n?g(k?1)?g(k)分别叫做左增量,右增量。那么,上述证明的步骤可表述为 f(k?1)?f(k)??左k?g(k)??左k?g(k)??右k?g(k?1) 例1.已知an?2n?1,求证: 本题要证后半节的关键是证 an1a1a2n????n?(n?n?) 23a2a3an?12 2k?1?11?中k??右k即证k?2? 2?12 而此式显然成立,所以可以用数学归纳法证明。 而要证前半节的关键是证 12k?1?1?左k??中k即证?k?2 22?1 而此式显然不成立,所以不能用数学归纳法证明。如果不进行判断就用数学归纳法证前半节,忙乎半天,只会徒劳。 有时,f(n)?g(n)(n?n?)中f(n),g(n)是以乘积形式出现,且f(n)?0,g(n)?0是显然成立的。此时,可记 ?左k?f(k?1)g(k?1),?右k? f(k)g(k) 分别叫做左增倍,右增倍。那么,用数学归结法证明由n?k时,成立推导 n?k?1成立,可表述为 f(k?1)?f(k)??左k?g(k)??左k?g(k)??右k?g(k?1) 和前面所讲相似,上述四步中,两个“=”和“<”都显然成立,而“≤”是否成立,就需要判断和证明了,既“?左k??右k”若成立,既可用数学归纳法证明;若不成立,则不能用数学归纳法证明。因此,可以这样说,此时,数学归纳法证明不等式的本质是证“左增倍≤右增倍”,而判断能否用数学归纳法证明不等式的标准就是看“左增倍≤右增倍”是否成立。 第二篇:归纳法证明不等式

高三数学课题:数学归纳法(公开课讲解)

课题:数学归纳法 【三维目标】: 一、知识与技能 1.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。 2.抽象思维和概括能力进一步得到提高. 二、过程与方法 通过数学归纳法的学习,体会用不完全归纳法发现规律,用数学归纳法证明是解决问题的一种重要途径,用数学归纳法进行证明时,“归纳奠基”与“归纳递推”两个步骤缺一不可,而关键的第二步,其本质是证明一个递推关系。 三、情感,态度与价值观 体会数学归纳法是用有限步骤解决无限问题的重要方法,提高归纳、猜想、证明能力。 【教学重点与难点】: 重点:是了解数学归纳法的原理及其应用。 难点:是对数学归纳法的原理的了解,关键是弄清数学归纳法的两个步骤及其作用。 【课时安排】:2课时 第一课时 【教学思路】: (一)、创设情景,揭示课题

问题1:P 71中的例1.在数列{a n }中,a 1=1,a n+1= n n a a +1(n ∈N+),先计算a 2,a 3,a 4的值,再推测通项an 的公式. 生:a 2=21,a 3=31,a 4=41.由此得到:a n =n 1(n ∈N +). 问题2:通过计算下面式子,你能猜出()()121531--++-+-n n 的结果吗?证明你的结论? ________97531________ 7531_______531_______ 31=-+-+-=+-+-=-+-=+- 生:上面四个式子的结果分别是:2,-3,4,-5,因此猜想: ()()()n n n n 1121531-=--++-+- (*) 怎样证明它呢? 问题3:我们先从多米诺骨牌游戏说起,这是一种码放骨牌的游戏,码放时保证任意相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌也倒下。只要推倒第一块骨牌,由于第一块骨牌倒下,就可导致第二块骨牌倒下;而第二块骨牌倒下,就可以导至第三块骨牌倒下……最后,不论有多少块,都能全部倒下。 (二)、研探新知 原理分析:问题3:可以看出,使所有骨牌都倒下的条件有两个: (1) 第一块骨牌倒下; (2) 任意相邻的两块骨牌,前一块倒下.一定导致后一块倒下。 可以看出,条件(2)事实上给出了一个递推关系:当第k 块倒下时,相邻的第k+1块也倒下。这样只要第1块骨牌倒下,其他所有的骨牌就能够相继倒下。事实上,无论有多少块骨牌,只要保证(1)

用放缩法证明不等式的方法与技巧答案

用放缩法证明不等式的方法与技巧 一.常用公式 k(k +1) k(k -1) 2. _____________ w ___ £ ________ ____ k 2 2 >k (k > 4) k 4. 1 x 2x 3x”…X k >2 (k > 2) 丄凸丄 k ! 2 ( k _1)! b (待学) 二?放缩技巧 (1) 所谓放缩的技巧:即欲证 A < B ,欲寻找一个(或多个)中间变量 C ,使A < C < B , 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧 若 t 〉0, a+t >"a,a — t ■7^^ = n 1 1 1 —— --- = -------- n n +1 n(n +1) (4) 2( J n +1 - >/n)= 1 1 11,^

----- ,一 < ---- b b+m b b 1 “1 + 1 . . 1 n! 2 22 2n 」 1 1 1 1 + …c 1 +(1 —一) +(— 一一) n 2 2 3 + 1 3! 1 (7) (8) =2(V n - J n -1) J 2! 1 + — + — 22 32 1 1 1 --)(因为—< -------------- ) n n (n-1) n 丄+丄+丄1 n +1 n +2 n +3 或丄十丄十丄 n +1 n +2 n +3 1 +丄+丄+…+丄 …亠丄 2n n +1 ,丄」 2n A 丄+丄+… 需T n +丄 n +1 十丄+ 2n 2n ?+丄 T n "丄 n +1 2n —<1 n +1 _ n _ 1 —2n — 2 -n = V n 等等。 v n 三?常见题型 (一).先求和再放缩: 1?设 s, =! + 1+ 丄+■- + 2 6 12 n(n+1) 1 ,求证:Si <1 1 M 2 .设0=— ( n 匸N ),数列{b n b n^}的前n 项和为T n ,求证: n

高考数学专题训练 数学归纳法

数学归纳法 注意事项:1.考察内容:数学归纳法 2.题目难度:中等难度 3.题型方面:10道选择,4道填空,4道解答。 4.参考答案:有详细答案 5.资源类型:试题/课后练习/单元测试 一、选择题 1.用数学归纳法证明“)1 2...(312))...(2)(1(-???=+++n n n n n n ”从k 到1+k 左端需增乘 的代数式为 ( ) A .12+k B .)12(2+k C . 112++k k D .1 3 2++k k 2.凸n 边形有()f n 条对角线,则凸1n +边形的对角线的条数(1)f n +为( ) A .()1f n n ++ B .()f n n + C .()1f n n +- D .()2f n n +- 3.已知 11 1 ()()12 31 f n n n n n *= +++ ∈++-N ,则(1)f k +=( ) A .1 ()3(1)1 f k k + ++ B .1 ()32f k k + + C .1111 ()3233341f k k k k k +++- ++++ D .11 ()341 f k k k +- ++ 4.如果命题()p n 对n k =成立,那么它对2n k =+也成立,又若()p n 对2n =成立,则下列 结论正确的是( ) A .()p n 对所有自然数n 成立 B .()p n 对所有正偶数n 成立 C .()p n 对所有正奇数n 成立 D .()p n 对所有大于1的自然数n 成立 5.用数学归纳法证明,“当n 为正奇数时,n n x y +能被x y + 整除”时,第二步归纳假设应写 成( ) A .假设21()n k k * =+∈N 时正确,再推证23n k =+正确

数学归纳法知识点大全

数学归纳法 数学归纳法是用于证明与正整数n 有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位. (1)第一数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ① 0n n =(N n ∈01.数学归纳法的基本形式)时,)(n P 成立; ②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. (2)第二数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ①当0n n =(N n ∈0)时,)(n P 成立; ②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. 2.数学归纳法的其他形式 (1)跳跃数学归纳法 ①当l n ,,3,2,1Λ=时,)(,),3(),2(),1(l P P P P Λ成立,

②假设k n =时)(k P 成立,由此推得l k n +=时,)(n P 也成立,那么,根据①②对一切正整数1≥n 时,)(n P 成立. (2)反向数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ① )(n P 对无限多个正整数n 成立; ②假设k n =时,命题)(k P 成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数1≥n 时,)(n P 成立. 例如,用数学归纳法证明: 为非负实数,有 在证明中,由 真,不易证出 真;然而却很容易证出 真,又容易证明不等式对无穷多个 (只要 型的自然数)为真;从而证明 ,不等式成立. (3)螺旋式归纳法 P (n ),Q (n )为两个与自然数 有关的命题,假如 ①P(n0)成立; ②假设 P(k) (k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对于一切自然数n (>n0),P(n),Q(n)都成立;

选修4-5学案§4.1.1数学归纳法证明不等式

选修4-5学案 §4.1.1数学归纳法证明不等式 姓名 ☆学习目标:1. 理解数学归纳法的定义、数学归纳法证明基本步骤; 2. 会运用数学归纳法证明不等式 重点:应用数学归纳法证明不等式. ?知识情景: 关于正整数n 的命题(相当于多米诺骨牌),我们可以采用下面方法来证明其正确性: 10. 验证n 取 时命题 ( 即n =n 时命题成立) (归纳奠基) ; 20. 假设当 时命题成立,证明当n=k +1时命题 (归纳递推). 30. 由10、20知,对于一切n ≥n 的自然数n 命题 !(结论) 要诀: 递推基础 , 归纳假设 , 结论写明 . ☆ 数学归纳法的应用: 例1. 用数学归纳法证明不等式sin sin n n θθ≤. 例2已知x > -1,且x ≠0,n ∈N*,n ≥2.求证:(1+x )n >1+nx .

例3 证明: 如果(n n 为正整数)个正数12,,,n a a a 的乘积121n a a a = , 那么它们的和12n a a a n +++ ≥. 例4 证明:2 2 2 111112(,2).2 3 ≥n N n n n + + +?+ <- ∈

例5.当2n ≥时,求证:1 + +++ > 选修4-5练习 §4.1.1数学归纳法证明不等式(1) 姓名 1、已知f(n)=(2n+7)·3n +9,存在自然数m,使得对任意n ∈N,都能使m 整除f(n),则最大的m 的 值为( ) A.30 B.26 C.36 D.6 2、.观察下列式子:2 2 2 2 2 1311511171, 1, 1222 3 32 3 4 4 + < + +< + ++<

高中数学 数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

数学归纳法

数学归纳法 知识点数学归纳法 证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立. (2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.7 易误提醒运用数学归纳法应注意: (1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值. (2)由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法. 1.利用数学归纳法证明问题时有哪些注意事项? 剖析:(1)用数学归纳法证明有关命题的关键在第二步,即n=k+1时命题为什么成立?n=k+1时命题成立是利用假设n=k时命题成立,根据有关的定理、定义、公式、性质等数学结论推证出来的,而不是直接代入,否则n=k+1时命题成立也成假设了,命题并没有得到证明. (2)用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都能用数学归纳法证明,学习时要具体问题具体分析. 2.运用数学归纳法时易犯的错误有哪些? 剖析:(1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错. (2)没有利用归纳假设:归纳假设是必须要用的.假设是起桥梁作用的,桥梁断了就通不过去了. (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”是数学归纳法的关键一步,也是证明问题中最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性.

【自主练习】 1.已知f (n )=1n +1n +1+1n +2+…+1 n 2,则( ) A .f (n )中共有n 项,当n =2时,f (2)=12+1 3 B .f (n )中共有n +1项,当n =2时,f (2)=12+13+1 4 C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+1 3 D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+1 4 2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1 n +1= 2? ???1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( ) A .k +1 B .k +2 C .2k +2 D .2(k +2)

人教A版选修4-5 4.2用数学归纳法证明不等式举例 学案

4.2 用数学归纳法证明不等式举例 学习目标 1.理解数学归纳法证明不等式的基本思路. 2.会用数学归纳法证明贝努利不等式:(1+x )n >1+nx (x >-1,x ≠0,n 为大于1的自然数). 3.了解n 为实数时贝努利不等式也成立. 一、自学释疑 根据线上提交的自学检测,生生、师生交流讨论,纠正共性问题。 二、合作探究 思考探究 在应用贝努利不等式时应注意什么? 名师点拨: 1.对贝努利(Bernoulli)不等式的理解 当指数n 推广到任意实数α时,x >-1时, ①若0<α<1,则(1+x )α ≤1+αx . ②若α<0或α>1,则(1+x )α ≥1+αx . 当且仅当x =0时等号成立. 2.贝努利不等式的应用 贝努利不等式:如果x 是实数,且x >-1,x ≠0,n 为大于1的自然数,那么有(1+x )n >1+nx . 推论:当x 是实数,且x >-1,x ≠0,n 为不小于2的正整数时,有? ? ???1-x 1+x n >1-nx 1+x . 3.数学归纳法与其他方法的联系 数学归纳法证明不等式有它的局限性,它只能用来证明与正整数有关的不等式,其他证明不等式的方法运用比较广泛,但在具体应用时,各自又有具体的要求,如反证法,必须有严格的格式(以否定结论入手,推出矛盾),分析法也有独特的表达格式,而数学归纳法必须分两步且在第二步中,要从假设出发推证n =k +1命题正确时,也经常用到综合法、分析法、比较法、放缩法等. 4.用数学归纳法证明不等式时常用技巧

用数学归纳法证明与自然数有关的命题时,要注意初始值n 0的定位,要弄清楚n =k 和 n =k +1时的结论是什么,要有目标意识,紧盯n =k +1时的目标,对n =k +1时的结论进行 一系列的变化,变化的目标就是n =k +1时的结论形式,这种变化就是“凑假设,奔结论”.常用放缩法做辅助手段. 【例1】 求证:1n +1+1n +2+1n +3+…+13n >56 (n ≥2,n ∈N ). 【变式训练1】 用数学归纳法证明: 1+122+132+…+1n 2<2-1 n (n ≥2,n ∈N ). 【例2】 求证:当n ≥1(n ∈N )时,(1+2+…+n )? ????1+12+1 3+…+1n ≥n 2. 【变式训练2】 求证:1+12+13+…+1n ≥2n n +1(n ∈N +)

高考数学(人教a版,理科)题库:数学归纳法(含答案)

第3讲数学归纳法一、选择题 1. 利用数学归纳法证明“1+a+a2+…+a n+1=1-a n+2 1-a (a≠1,n∈N*)”时,在验 证n=1成立时,左边应该是( ) A 1 B 1+a C 1+a+a2 D 1+a+a2+a3 解析当n=1时,左边=1+a+a2,故选C. 答案 C 2.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步时,正确的证法是().A.假设n=k(k∈N+),证明n=k+1命题成立 B.假设n=k(k是正奇数),证明n=k+1命题成立 C.假设n=2k+1(k∈N+),证明n=k+1命题成立 D.假设n=k(k是正奇数),证明n=k+2命题成立 解析A、B、C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数. 答案 D 3.用数学归纳法证明1-1 2+ 1 3- 1 4+…+ 1 2n-1 - 1 2n= 1 n+1 + 1 n+2 +…+ 1 2n,则 当n=k+1时,左端应在n=k的基础上加上(). A.1 2k+2B.- 1 2k+2 C.1 2k+1- 1 2k+2 D. 1 2k+1 + 1 2k+2 解析∵当n=k时,左侧=1-1 2+ 1 3- 1 4+…+ 1 2k-1 - 1 2k,当n=k+1时, 左侧=1-1 2+ 1 3- 1 4+…+ 1 2k-1 - 1 2k+ 1 2k+1 - 1 2k+2 . 答案 C

4.对于不等式n2+n

相关文档
相关文档 最新文档