文档库 最新最全的文档下载
当前位置:文档库 › 英文文献及翻译

英文文献及翻译

英文文献及翻译
英文文献及翻译

毕业设计外文文献翻译

毕业设计题目护发素瓶盖注塑模设计翻译题目注塑模设计过程

专业材料成型及控制工程姓名林永明

班级材A0711班

学号23

指导教师李永志

机械与材料工程学院

二O一O年十一月

注塑模设计过程1

当设计塑料模具时,通常初学者经历的主要是应该从哪里下手以及应该采取的一般步骤是什么。本课内容包括介绍性的指导,使读者能够遵循确定的步骤来上掌握设计模具的方法。

实际上,模具制图通常包括三个视图,即:动模的俯视图、定模的俯视图及动定模的俯视图。这个总装配图应该包含足够的信息,以使绘图员可以画出每一个模具零件的详细图纸。然而,对于初学者,只画两个视图就够了,通常选择的这两个视图时动模部分的俯视图和整个模具的俯视图。

下面分七个阶段给出了模具典型设计的步骤。其顺序从工作零件的初始定位开始,直到检查整个制图结束。

阶段A:镶嵌件的初始位置。这一步的目标是确定工作零件相对整个视图水平及垂直中心线的位置。这一阶段里,要在俯视图及侧视图中确定出型腔及型芯的尺寸和位置。

阶段B:推出系统。在这一设计阶段,将确定推杆及复位杆的尺寸和位置,还要确定推件板及支撑板的总体尺寸。然而,在开始确定各种推出零件的位置之前,需谨慎确定冷却系统的类型,冷却系统最有利于控制模具的温度。对于这个基本的设计,可以采用平行的孔,在动定模板部分都包含两个通过模具工作零件侧边的孔。关于冷却系统位置的初步考虑对于防止后续设计中出现困难时非常重要的。

阶段C:推杆。这一阶段,制图进行到包括在俯视图及侧视图中推杆的细节问题,更进一步,如推杆及推杆导套加入到推出系统中。

阶段D:完成上半部分。将冷却系统和导柱加入到俯视图中,确定并画出模具的而最终外形轮廓。在俯视图中,画出浇口套。另外,再加入许多其他的项目,如浇注系统,拉料杆,定位圈和调整版等。

阶段E:完成俯视图。作为上半部分的镜像,可以画出俯视图的下半部分,再加入分流道及主流道的细节。一旦完成了俯视图,那么剖面图也就确定下来了。剖视图说明了模具中的每一个零件,这是非常重要的。这样,因为剖面图已经表示了支撑块、复位杆、推杆及其他的在前面的阶段已经包括的细节问题,剩下的就是导柱和导套以及水道的位置。注意,通过两个同样的零件做截面是没有好处的,那样做只是浪费绘图时间。

阶段F:完成剖视图。在这个设计阶段,要完成剖视图的绘制。与俯视图相关联的每一个局部剖视图都要考虑,以确保模具所有的有关元件都包括在图纸中,并清除明白地画出。这就意味着在这一阶段要完成剖视图下半部分的绘制。

阶段G:完成绘图。这最后一个阶段包括清洁图纸、要擦掉不想要的线、检查、打剖面线以及标示出模具中的所有零件。

模具设计者有时会遇到带有拼块的设计,拼块形成塑料的(侧向)凹陷或凸起,并使塑件不能以简单方式从模具中直接脱出。塑件的(侧向)凹陷或凸起是为了执行塑件的特殊功能或满足

1Peter Smid,CNC programming handbook(Second Edition), NewYork,U.S.A,Industrial Press,Inc.,2003

艺术要求,为生产这种塑件而采用组合设计的目的是使塑件顺利脱模。带有凹陷或凸起的塑件称做侧凹塑件。因为脱模前要抽出形成塑件侧凹凸的那部分型芯,所以这类塑件的模具设计比直接脱模的塑件模具复杂得多。

当设计塑料模时,必须采取的最后一步就是检查绘制完成的图纸。在这最重要的阶段,要带着发现和纠正可能已经发生的错误的目标,以一种找出问题的方式来细察设计的图纸。这些错误可能是以设计中的,也可能是绘图或是尺寸标记中的。

当绘图完成后,绘图员只有这一次机会来重新检查这个设计,确保每一方面正确以形成可使用的、有效的模具组合。

对于模具绘图员来说,检查的过程是非常重要的,这样才能确保图纸中的错误不在模具生产中发生。如果某一个错误没有被检查出来,而且还按指定的要求被加工,那么再去做必要的改正将要花费大量的开支,并且延期交货。通过一个没有参与设计的专门的检查员来检查设计图纸,是一种非常可行的办法,这样讲能够非常公正地检查图纸。

Procedure for Designing an Injection Mould

The major difficulty which beginners normally experience is the decision of where to start an the general procedure to adopt when designing a mould. This lesson is included as an introductory guide to permit the reader to follow a definite approach in order to establish a sequential technique of his own.

In practice a mould drawing normally comprises three views: a plan view of the moving half, a plan view of the fixed half, and a side sectional view of both mould halves. This “general arrangement”drawing should contain sufficient information to permit a draughtsman to make detailed drawings of each individual mould part. For the novice, however, it is sufficient to draw only two views, and the views normally chosen are the plan view of the moving half and the side sectional view of both mould halves.

In the following drawings the evolution of a typical design is given in seven separate checking of the completed drawing. The operation number given in both the drawings and the notes indicates the procedural sequence of the operations.

Stage A: primary positioning of inserts. The object of the primary positioning stage is to determine the position of the impression with respect to the major horizontal and vertical centre-lines. During this stage, the size and position of the cavity and core inserts are established in both and sectional views.

Stage B: the ejector system. During this design stage the size and position of the ejector pins and push-back pins are established. The overall sizes of ejector plate and retaining plate are also determined. Before commencing to position the various ejector elements, however, it is prudent to consider the type of fluid circulation system that is most applicable tor controlling the temperature of the mould. For this basic design, a parallel drilled hole system is adopted, with two holes being incorporated in each half, the holes passing on either side of the mould insert. This preliminary consideration regarding the position of the fluid circulation system is essential to prevent difficulties being experienced later in the design.

Stage C: the ejector grid. During this design stage the drawing progresses to include detail of the ejector grid in both plan and sectional views. Further details, such as the ejector rod and ejector rod bush, are added to the ejector system.

Stage D: complete the top half. The fluid circulation system and the guide pillars are added to the plan view which permits the final outside shape of the mould to be determined and drawn and drawn. In the sectional view the sprue drawing is complete. In addition, various items such as the feed system, spure pin, bridge piece and register plate details are added.

Stage E: complete the plan. The lower half of the plan view can now be drawn as a mirror image of the top half. The runner and sprue pin details are added. Once the plan view is complete, the section cutting plane can be decided upon. It is essential that the cross-sectional view illustrates each component part of the mould. Thus, as the cross-section already shows such items as support block, push-back pin, ejector pin and other centre-line details which have been incorporated in previous stages, the only remaining items to be included are the guide pillars and bushes, and the position of the fluid holes. Note that there is no advantage in taking a section through two identical part. To de so is a complete waste of draughting time.

Stage F: complete the cross-sectional view. During this design stage the cross-sectional drawing is completed. Each part-section is considered independently in relations to the plan view to ensure that all

relevant component parts of the mould are included and are drawn correctly. This will mean that the lower part of the cross-sectional drawing is completed in the process.

Stage G: complete the drawing. This final stage involves cleaning up the drawing, erasing unwanted lines, cross-hatching and indicating those parts of the mould that are to be secured together.

The mould designer is frequently confronted with a confronted design that incorporates a recess or projection which prevents the simple removal of the moulding from the mould.The component designer,while endeavouring to produce in line of draw component designs,has often to include a recess or a projection to perform a particular function or to satisfy an artisitic requirement.A moulding which has a recess or projection is termed an undercut moulding.The mould design for this type of component is inevitably more complex than for the in line of draw component,as it necessitates the removal of that part of the impression which forms the undercut prior to ejection.

The final stage which must be undertaken when designing an injection mould is that of checking the completer drawing. During this most important stage the design is scrutinized in a critical manner with the objects of discovering and correcting errors which may have occurred. The errors may be in design, or in drawing or in dimensioning.

When the drawing is complete, the draughtsman has the unique opportunity of being able to re-examine the overall design to ensure that the individual features combine to form a workable and efficient mould unit.

For the mould draughtsman, the process of checking is essential to ensure that errors incorporated in the drawing are not produced in the manufactured mould. Naturally if an error remains undetected, and if the mould is manufactured to specification, considerable expense and delay will be incurred in making the necessary corrections. It is sound practice to have the mould drawing checked by an independent design(a checker) who, not having been connected with the design previously, will be able to check the drawing quite impartially. However, the fact that a drawing is subsequently scrutinized by a checker must not prevent the draughtsman from checking the design thoroughly himself.

论文外文文献翻译3000字左右

南京航空航天大学金城学院 毕业设计(论文)外文文献翻译 系部经济系 专业国际经济与贸易 学生姓名陈雅琼学号2011051115 指导教师邓晶职称副教授 2015年5月

Economic policy,tourism trade and productive diversification (Excerpt) Iza Lejárraga,Peter Walkenhorst The broad lesson that can be inferred from the analysis is that promoting tourism linkages with the productive capabilities of a host country is a multi-faceted approach influenced by a variety of country conditions.Among these,fixed or semi-fixed factors of production,such as land,labor,or capital,seem to have a relatively minor influence.Within the domain of natural endowments,only agricultural capital emerged as significant.This is a result that corresponds to expectations,given that foods and beverages are the primary source of demand in the tourism economy.Hence,investments in agricultural technology may foment linkages with the tourism market.It is also worth mentioning that for significant backward linkages to emerge with local agriculture,a larger scale of tourism may be important. According to the regression results,a strong tourism–agriculture nexus will not necessarily develop at a small scale of tourism demand. It appears that variables related to the entrepreneurial capital of the host economy are of notable explanatory significance.The human development index(HDI), which is used to measure a country's general level of development,is significantly and positively associated with tourism linkages.One plausible explanation for this is that international tourists,who often originate in high-income countries,may feel more comfortable and thus be inclined to consume more in a host country that has a life-style to which they can relate easily.Moreover,it is important to remember that the HDI also captures the relative achievements of countries in the level of health and education of the population.Therefore,a higher HDI reflects a healthier and more educated workforce,and thus,the quality of local entrepreneurship.Related to this point,it is important to underscore that the level of participation of women in the host economy also has a significantly positive effect on linkages.In sum, enhancing local entrepreneurial capital may expand the linkages between tourism and other sectors of the host country.

关于力的外文文献翻译、中英文翻译、外文翻译

五、外文资料翻译 Stress and Strain 1.Introduction to Mechanics of Materials Mechanics of materials is a branch of applied mechanics that deals with the behavior of solid bodies subjected to various types of loading. It is a field of study that i s known by a variety of names, including “strength of materials” and “mechanics of deformable bodies”. The solid bodies considered in this book include axially-loaded bars, shafts, beams, and columns, as well as structures that are assemblies of these components. Usually the objective of our analysis will be the determination of the stresses, strains, and deformations produced by the loads; if these quantities can be found for all values of load up to the failure load, then we will have obtained a complete picture of the mechanics behavior of the body. Theoretical analyses and experimental results have equally important roles in the study of mechanics of materials . On many occasion we will make logical derivations to obtain formulas and equations for predicting mechanics behavior, but at the same time we must recognize that these formulas cannot be used in a realistic way unless certain properties of the been made in the laboratory. Also , many problems of importance in engineering cannot be handled efficiently by theoretical means, and experimental measurements become a practical necessity. The historical development of mechanics of materials is a fascinating blend of both theory and experiment, with experiments pointing the way to useful results in some instances and with theory doing so in others①. Such famous men as Leonardo da Vinci(1452-1519) and Galileo Galilei (1564-1642) made experiments to adequate to determine the strength of wires , bars , and beams , although they did not develop any adequate theo ries (by today’s standards ) to explain their test results . By contrast , the famous mathematician Leonhard Euler(1707-1783) developed the mathematical theory any of columns and calculated the critical load of a column in 1744 , long before any experimental evidence existed to show the significance of his results ②. Thus , Euler’s theoretical results remained unused for many years, although today they form the basis of column theory. The importance of combining theoretical derivations with experimentally determined properties of materials will be evident theoretical derivations with experimentally determined properties of materials will be evident as we proceed with

快速外文文献翻译

快速外文文献翻译 在科研过程中阅读翻译外文文献是一个非常重要的环节,许多领域高水平的文献都是外文文献,借鉴一些外文文献翻译的经验是非常必要的。由于特殊原因我翻译外文文献的机会比较多,慢慢地就发现了外文文献翻译过程中的三大利器:Google“翻译”频道、金山词霸(完整版本)和CNKI“翻译助手"。 具体操作过程如下: 1.先打开金山词霸自动取词功能,然后阅读文献; 2.遇到无法理解的长句时,可以交给Google处理,处理后的结果猛一看,不堪入目,可是经过大脑的再处理后句子的意思基本就明了了; 3.如果通过Google仍然无法理解,感觉就是不同,那肯定是对其中某个“常用单词”理解有误,因为某些单词看似很简单,但是在文献中有特殊的意思,这时就可以通过CNKI的“翻译助手”来查询相关单词的意思,由于CNKI的单词意思都是来源与大量的文献,所以它的吻合率很高。 另外,在翻译过程中最好以“段落”或者“长句”作为翻译的基本单位,这样才不会造成“只见树木,不见森林”的误导。 注: 1、Google翻译:https://www.wendangku.net/doc/557543352.html,/language_tools google,众所周知,谷歌里面的英文文献和资料还算是比较详实的。我利用它是这样的。一方面可以用它查询英文论文,当然这方面的帖子很多,大家可以搜索,在此不赘述。回到我自己说的翻译上来。下面给大家举个例子来说明如何用吧比如说“电磁感应透明效应”这个词汇你不知道他怎么翻译, 首先你可以在CNKI里查中文的,根据它们的关键词中英文对照来做,一般比较准确。 在此主要是说在google里怎么知道这个翻译意思。大家应该都有词典吧,按中国人的办法,把一个一个词分着查出来,敲到google里,你的这种翻译一般不太准,当然你需要验证是否准确了,这下看着吧,把你的那支离破碎的翻译在google里搜索,你能看到许多相关的文献或资料,大家都不是笨蛋,看看,也就能找到最精确的翻译了,纯西式的!我就是这么用的。 2、CNKI翻译:https://www.wendangku.net/doc/557543352.html, CNKI翻译助手,这个网站不需要介绍太多,可能有些人也知道的。主要说说它的有点,你进去看看就能发现:搜索的肯定是专业词汇,而且它翻译结果下面有文章与之对应(因为它是CNKI检索提供的,它的翻译是从文献里抽出来的),很实用的一个网站。估计别的写文章的人不是傻子吧,它们的东西我们可以直接拿来用,当然省事了。网址告诉大家,有兴趣的进去看看,你们就会发现其乐无穷!还是很值得用的。https://www.wendangku.net/doc/557543352.html, 3、网路版金山词霸(不到1M):https://www.wendangku.net/doc/557543352.html,/6946901637944806 翻译时的速度: 这里我谈的是电子版和打印版的翻译速度,按个人翻译速度看,打印版的快些,因为看电子版本一是费眼睛,二是如果我们用电脑,可能还经常时不时玩点游戏,或者整点别的,导致最终SPPEED变慢,再之电脑上一些词典(金山词霸等)在专业翻译方面也不是特别好,所以翻译效果不佳。在此本人建议大家购买清华大

外文文献及翻译

外文文献及翻译 题目:利用固定化过氧化氢酶 回收纺织品漂染的废水 专业食品科学与工程 学生姓名梁金龙 班级B食品072 学号0710308119 指导教师郑清

利用固定化过氧化氢酶回收纺织品漂染的废水 Silgia A. Costa1, Tzanko Tzanov1, Filipa Carneiro1, Georg M. Gübitz2 &Artur Cavaco-Paulo1,? 1纺织工程系, 米尼奥大学, 4810吉马尔, 葡萄牙 2环境生物技术系, 格拉茨技术大学, 8010格拉茨, 奥地利 ?作者联系方式(Fax: +351 253 510293; E-mail: artur@det.uminho.pt) 关键词:过氧化氢酶的固定化,酶稳定,过氧化氢,纺织印染 摘要 过氧化氢酶固定在氧化铝载体上并用戊二醛交联,在再循环塔反应器和CSTR反应器中研究贮存稳定性,温度和pH值对酶的活性。固定化酶的在的活性维持在44%,pH值11(30?C),对照组是活性为90%,pH值7(80?C),过氧化氢酶固定化的半衰期时间被提高到2小时(pH12,60?C)。用过氧化氢漂白织物后,洗涤过程中的残留水被固定化酶处理,可以用于再次印染时,记录实验数据。 1 序言 由于新的法规的出台,从生态经济的角度来看(Dickinson1984年),对于纺织行业中存在的成本和剩余水域的污染问题,必须给予更多的关注。过氧化氢是一种漂白剂,广泛应用于工业纺织工艺(Spiro & Griffith1997年)。在去除H2O2时,会消耗大量的水和能源(Weck 1991, St?hr & Petry 1995),以避免对氧气敏感的染料(Jensen 2000)产生后续问题。过氧化氢酶可用于降低过氧化氢的含量(Vasudevan & Thakur 1994, Emerson et al. 1996),从而减少水分消耗或方便回收印染洗涤液。过氧化氢酶的使用主要问题出在漂白时温度和清洗液碱度过高。以前,我们试图通过筛选新的嗜热嗜碱的微生物(Paar et al. 2001)或使用不同的酶稳定剂(Costa et al. 2001)来解决此问题。但是染料与蛋白质之间的潜在相互作用(Tzanov et al. 2001a, b)表明,可溶性过氧化氢酶的使用是不恰当的。固定化过氧化氢酶的使用还有一种选择(Costa et al. 2001, Amar et al. 2000)。在这项研究中,我们对氧化铝进行共价固定并使用戊二醛作为交联剂,这种方法在商业中得到验证。本项研究的目的就是探讨过氧化氢酶的固定化动力学,及其稳定性和工艺条件,这将使我们能够应用此系统,以处理可能被用于清洗染色的反复使用的酒。 2 材料和方法 2.1 酶 Terminox(EC1.11.1.6),50L以上,由AQUITEX- Maia提供,葡萄牙产。 2.2 过氧化氢酶的固定化 取Al2O3颗粒或薄片(Aldrich),直径分别为3和7毫米,在45摄氏度下,先经浓度4%的γ-氨丙基三乙氧基硅烷(Sigma)烷基化,再放入丙酮中浸泡24小时。用蒸馏水洗涤硅烷化载体后,放入浓度为2%戊二醛水溶液中室温下浸泡2小时(Aldrich),重复清洗一次并在60?C下干燥1小时。取五克的烷基化载体,室温24?C下浸泡在25毫升粗酶制剂中(Costa et al. 2001)。得出,每克Al2O3

java毕业论文外文文献翻译

Advantages of Managed Code Microsoft intermediate language shares with Java byte code the idea that it is a low-level language witha simple syntax , which can be very quickly translated intonative machine code. Having this well-defined universal syntax for code has significant advantages. Platform independence First, it means that the same file containing byte code instructions can be placed on any platform; atruntime the final stage of compilation can then be easily accomplished so that the code will run on thatparticular platform. In other words, by compiling to IL we obtain platform independence for .NET, inmuch the same way as compiling to Java byte code gives Java platform independence. Performance improvement IL is actually a bit more ambitious than Java bytecode. IL is always Just-In-Time compiled (known as JIT), whereas Java byte code was ofteninterpreted. One of the disadvantages of Java was that, on execution, the process of translating from Javabyte code to native executable resulted in a loss of performance. Instead of compiling the entire application in one go (which could lead to a slow start-up time), the JITcompiler simply compiles each portion of code as it is called (just-in-time). When code has been compiled.once, the resultant native executable is stored until the application exits, so that it does not need to berecompiled the next time that portion of code is run. Microsoft argues that this process is more efficientthan compiling the entire application code at the start, because of the likelihood that large portions of anyapplication code will not actually be executed in any given run. Using the JIT compiler, such code willnever be compiled.

毕业论文英文参考文献与译文

Inventory management Inventory Control On the so-called "inventory control", many people will interpret it as a "storage management", which is actually a big distortion. The traditional narrow view, mainly for warehouse inventory control of materials for inventory, data processing, storage, distribution, etc., through the implementation of anti-corrosion, temperature and humidity control means, to make the custody of the physical inventory to maintain optimum purposes. This is just a form of inventory control, or can be defined as the physical inventory control. How, then, from a broad perspective to understand inventory control? Inventory control should be related to the company's financial and operational objectives, in particular operating cash flow by optimizing the entire demand and supply chain management processes (DSCM), a reasonable set of ERP control strategy, and supported by appropriate information processing tools, tools to achieved in ensuring the timely delivery of the premise, as far as possible to reduce inventory levels, reducing inventory and obsolescence, the risk of devaluation. In this sense, the physical inventory control to achieve financial goals is just a means to control the entire inventory or just a necessary part; from the perspective of organizational functions, physical inventory control, warehouse management is mainly the responsibility of The broad inventory control is the demand and supply chain management, and the whole company's responsibility. Why until now many people's understanding of inventory control, limited physical inventory control? The following two reasons can not be ignored: First, our enterprises do not attach importance to inventory control. Especially those who benefit relatively good business, as long as there is money on the few people to consider the problem of inventory turnover. Inventory control is simply interpreted as warehouse management, unless the time to spend money, it may have been to see the inventory problem, and see the results are often very simple procurement to buy more, or did not do warehouse departments . Second, ERP misleading. Invoicing software is simple audacity to call it ERP, companies on their so-called ERP can reduce the number of inventory, inventory control, seems to rely on their small software can get. Even as SAP, BAAN ERP world, the field of

10kV小区供配电英文文献及中文翻译

在广州甚至广东的住宅小区电气设计中,一般都会涉及到小区的高低压供配电系统的设计.如10kV高压配电系统图,低压配电系统图等等图纸一大堆.然而在真正实施过程中,供电部门(尤其是供电公司指定的所谓电力设计小公司)根本将这些图纸作为一回事,按其电脑里原有的电子档图纸将数据稍作改动以及断路器按其所好换个厂家名称便美其名曰设计(可笑不?),拿出来的图纸根本无法满足电气设计的设计意图,致使严重存在以下问题:(也不知道是职业道德问题还是根本一窍不通) 1.跟原设计的电气系统货不对板,存在与低压开关柜后出线回路严重冲突,对实际施工造成严重阻碍,经常要求设计单位改动原有电气系统图才能满足它的要求(垄断的没话说). 2.对消防负荷和非消防负荷的供电(主要在高层建筑里)应严格分回路(从母线段)都不清楚,将消防负荷和非消防负荷按一个回路出线(尤其是将电梯和消防电梯,地下室的动力合在一起等等,有的甚至将楼顶消防风机和梯间照明合在一个回路,以一个表计量). 3.系统接地保护接地型式由原设计的TN-S系统竟曲解成"TN-S-C-S"系统(室内的还需要做TN-C,好玩吧?),严格的按照所谓的"三相四线制"再做重复接地来实施,导致后续施工中存在重复浪费资源以及安全隐患等等问题.. ............................(违反建筑电气设计规范等等问题实在不好意思一一例举,给那帮人留点混饭吃的面子算了) 总之吧,在通过图纸审查后的电气设计图纸在这帮人的眼里根本不知何物,经常是完工后的高低压供配电系统已是面目全非了,能有百分之五十的保留已经是谢天谢地了. 所以.我觉得:住宅建筑电气设计,让供电部门走!大不了留点位置,让他供几个必需回路的电,爱怎么折腾让他自个怎么折腾去.. Guangzhou, Guangdong, even in the electrical design of residential quarters, generally involving high-low cell power supply system design. 10kV power distribution systems, such as maps, drawings, etc. low-voltage distribution system map a lot. But in the real implementation of the process, the power sector (especially the so-called power supply design company appointed a small company) did these drawings for one thing, according to computer drawings of the original electronic file data to make a little change, and circuit breakers by their the name of another manufacturer will be sounding good design (ridiculously?), drawing out the design simply can not meet the electrical design intent, resulting in a serious following problems: (do not know or not know nothing about ethical issues) 1. With the original design of the electrical system not meeting board, the existence and low voltage switchgear circuit after qualifying serious conflicts seriously hinder the actual construction, often require changes to the original design unit plans to meet its electrical system requirements (monopoly impress ). 2. On the fire load and fire load of non-supply (mainly in high-rise building in) should be strictly sub-loop (from the bus segment) are not clear, the fire load and fire load of non-qualifying press of a circuit (especially the elevator and fire elevator, basement, etc.

英文文献翻译

中等分辨率制备分离的 快速色谱技术 W. Clark Still,* Michael K a h n , and Abhijit Mitra Departm(7nt o/ Chemistry, Columbia Uniuersity,1Veu York, Neu; York 10027 ReceiLied January 26, 1978 我们希望找到一种简单的吸附色谱技术用于有机化合物的常规净化。这种技术是适于传统的有机物大规模制备分离,该技术需使用长柱色谱法。尽管这种技术得到的效果非常好,但是其需要消耗大量的时间,并且由于频带拖尾经常出现低复原率。当分离的样本剂量大于1或者2g时,这些问题显得更加突出。近年来,几种制备系统已经进行了改进,能将分离时间减少到1-3h,并允许各成分的分辨率ΔR f≥(使用薄层色谱分析进行分析)。在这些方法中,在我们的实验室中,媒介压力色谱法1和短柱色谱法2是最成功的。最近,我们发现一种可以将分离速度大幅度提升的技术,可用于反应产物的常规提纯,我们将这种技术称为急骤色谱法。虽然这种技术的分辨率只是中等(ΔR f≥),而且构建这个系统花费非常低,并且能在10-15min内分离重量在的样本。4 急骤色谱法是以空气压力驱动的混合介质压力以及短柱色谱法为基础,专门针对快速分离,介质压力以及短柱色谱已经进行了优化。优化实验是在一组标准条件5下进行的,优化实验使用苯甲醇作为样本,放在一个20mm*5in.的硅胶柱60内,使用Tracor 970紫外检测器监测圆柱的输出。分辨率通过持续时间(r)和峰宽(w,w/2)的比率进行测定的(Figure 1),结果如图2-4所示,图2-4分别放映分辨率随着硅胶颗粒大小、洗脱液流速和样本大小的变化。

英文文献及中文翻译

毕业设计说明书 英文文献及中文翻译 学院:专 2011年6月 电子与计算机科学技术软件工程

https://www.wendangku.net/doc/557543352.html, Overview https://www.wendangku.net/doc/557543352.html, is a unified Web development model that includes the services necessary for you to build enterprise-class Web applications with a minimum of https://www.wendangku.net/doc/557543352.html, is part of https://www.wendangku.net/doc/557543352.html, Framework,and when coding https://www.wendangku.net/doc/557543352.html, applications you have access to classes in https://www.wendangku.net/doc/557543352.html, Framework.You can code your applications in any language compatible with the common language runtime(CLR), including Microsoft Visual Basic and C#.These languages enable you to develop https://www.wendangku.net/doc/557543352.html, applications that benefit from the common language runtime,type safety, inheritance,and so on. If you want to try https://www.wendangku.net/doc/557543352.html,,you can install Visual Web Developer Express using the Microsoft Web Platform Installer,which is a free tool that makes it simple to download,install,and service components of the Microsoft Web Platform.These components include Visual Web Developer Express,Internet Information Services (IIS),SQL Server Express,and https://www.wendangku.net/doc/557543352.html, Framework.All of these are tools that you use to create https://www.wendangku.net/doc/557543352.html, Web applications.You can also use the Microsoft Web Platform Installer to install open-source https://www.wendangku.net/doc/557543352.html, and PHP Web applications. Visual Web Developer Visual Web Developer is a full-featured development environment for creating https://www.wendangku.net/doc/557543352.html, Web applications.Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.wendangku.net/doc/557543352.html,ing the development tools in Visual Web Developer,you can develop https://www.wendangku.net/doc/557543352.html, Web pages on your own computer.Visual Web Developer includes a local Web server that provides all the features you need to test and debug https://www.wendangku.net/doc/557543352.html, Web pages,without requiring Internet Information Services(IIS)to be installed. Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.wendangku.net/doc/557543352.html,ing the development tools in Visual Web Developer,you can develop https://www.wendangku.net/doc/557543352.html, Web pages on your own computer.

毕业论文5000字英文文献翻译

英文翻译 英语原文: . Introducing Classes The only remaining feature we need to understand before solving our bookstore problem is how to write a data structure to represent our transaction data. In C++ we define our own data structure by defining a class. The class mechanism is one of the most important features in C++. In fact, a primary focus of the design of C++ is to make it possible to define class types that behave as naturally as the built-in types themselves. The library types that we've seen already, such as istream and ostream, are all defined as classesthat is,they are not strictly speaking part of the language. Complete understanding of the class mechanism requires mastering a lot of information. Fortunately, it is possible to use a class that someone else has written without knowing how to define a class ourselves. In this section, we'll describe a simple class that we canuse in solving our bookstore problem. We'll implement this class in the subsequent chapters as we learn more about types,expressions, statements, and functionsall of which are used in defining classes. To use a class we need to know three things: What is its name? Where is it defined? What operations does it support? For our bookstore problem, we'll assume that the class is named Sales_item and that it is defined in a header named Sales_item.h. The Sales_item Class The purpose of the Sales_item class is to store an ISBN and keep track of the number of copies sold, the revenue, and average sales price for that book. How these data are stored or computed is not our concern. To use a class, we need not know anything about how it is implemented. Instead, what we need to know is what operations the class provides. As we've seen, when we use library facilities such as IO, we must include the associated headers. Similarly, for our own classes, we must make the definitions associated with the class available to the compiler. We do so in much the same way. Typically, we put the class definition into a file. Any program that wants to use our class must include that file. Conventionally, class types are stored in a file with a name that, like the name of a program source file, has two parts: a file name and a file suffix. Usually the file name is the same as the class defined in the header. The suffix usually is .h, but some programmers use .H, .hpp, or .hxx. Compilers usually aren't picky about header file names, but IDEs sometimes are. We'll assume that our class is defined in a file named Sales_item.h. Operations on Sales_item Objects

相关文档