文档库 最新最全的文档下载
当前位置:文档库 › 运动控制系统心得

运动控制系统心得

电力拖动自动控制系统

-运动控制系统

系名:物电系

班级:电气工程及其自动化(1)班:昊哲

学号:201214240136

电力拖动自动控制系统

-运动控制系统

大三第二学期我接触到了一门很重要的专业课《电力拖动自动控制系统》,通过对这门课的学习使我对运动控制系统有了更深刻的理解。现代运动控制已成为电机学,电力电子技术,微电子技术,计算机控制技术,控制理论,信号检测与处理技术等多门学科相互交叉的综合性学科。文中简单介绍了运动控制及其相关学科的关系,随着其他相关学科的不断发展,运动控制系统也在不断发展,不断提高系统的安全性,可靠性。文中最后简述了其发展历程及其未来发展的展望。

电力拖动实现了电能与机械能之间的能量转换,而电力拖动自动控制系统—运动控制系统的任务是通过控制电动机电压、电流、频率等输入量,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。工业生产和科学的发展,对运动控制系统提出新的更为复杂的要求,同时也为研制和生产各类新型控制系统提供可能。

运动控制系统分为两大部分的学习,第一部分为直流调速系统,第二部分为交流调速系统,其中第一部分为整本书重要掌握的容。

第一部分分为转速反馈控制的直流调速系统,转速、电流反馈的直流调速系统,可逆控制和弱磁控制的直流调速系统。第一部分中主要介绍直流调速系统,调节直流电动机的转速有三种方法:改变电枢

回路电阻,减弱磁通调速法,调节电枢电压调速法。

变压调速是是直流调速系统的主要方法,系统的硬件结构至少包含了两部分:能够调节直流电动机电枢电压的直流电源和产生被调节转速的直流电动机。随着电力电子技术的发展,可控直流电源主要有两大类,一类是相控整流器,它把交流电源直接转换成可控直流电源;另一类是直流脉宽变换器,它先把交流电整流成不可控的直流电,然后用PWM方式调节输出直流电压。本章说明了两类直流电源的特性和数学模型。当用可控直流电源和直流电动机组成一个直流调速系统时,它们所表现车来的性能指标和人们的期望值必然存在一个不小的差距,并做出了分析。开环控制系统无法满足人们期望的性能指标,本章就闭环控制的直流调速系统展开分析和讨论。论述哦了转速单闭环直流调速系统的控制规律,分析了系统的静差率,介绍了PI调节器和P调节器的控制作用。转速单闭环直流调速系统能够提高调速系统的稳态性能,但动态性能仍不理想,转速,电流双闭环直流调速系统是静动态性能良好,应用最广的直流调速系统;还介绍了转速,电流双闭环系统的组成及其静特性,数学模型,并对双闭环直流调速系统的动态特性进行了详细分析。本章对直流调速系统的数字实现进行了讨论,论述了与调速系统紧密关联的数字测速方法和数字PI调节器的实现方法,并用MATLAB仿真软件对转速,电流双闭环调速系统进行了仿真。

第二部分主要介绍交流调速系统。交流调速系统有异步电动机和同步电动机两大类。异步电动机调速系统分为3类:转差功率消耗型

调速系统,转差功率馈送型调速系统,转差功率不变型调速系统。同步电动机的转差率恒为零,同步电动机调速只能通过改变同步转速来实现,由于同步电动机极对数是固定的,只能采用变压变频调速。

通过对运动控制系统的学习,我还学到了如何设计转速、电流反馈控制的直流调速系统。

设计转速、电流反馈控制的直流调速系统的一般步骤:

1.电流调节器的设计

(1)确定时间常数

(2)选择电流调节器结构

(3)计算电流调节器参数

(4)校验近似条件

a)校验晶闸管整流装置传递函数的近似条件

b)校验忽略反电动势变化对电流环动态影响的条件

c)校验电流环小时间常数近似处理条件

(5)计算调节器电阻和电容

2.转速调解器的设计

(1)确定时间常数

(2)选择转速调节器结构

(3)计算转速调节器参数

(4)校验近似条件

a)电流环传递函数简化条件

b)转速环小时间常数近似处理条件

(5)计算调节器电阻和电容

(6)校核转速超调量

3.转速调节器退饱和时转速超调量的计算

(1)转速的退饱和超调量与稳态转速有关

(2)反电动势对转速环和转速超调量的影响

(3)、外环开环对数幅频特性的比较

通过对电力拖动自动控制系统的学习,又让我学到了不少,通过老师对我们的教导,使我深入了解了运动控制系统也学到了许多东西,也给自己之后的实习奠定了基础。

电子控制系统的组成和工作过程

电子控制系统的组成和工作过程 一、教学分析 1.教材分析 本课是第一章第二节“电子控制系统的组成和工作过程”。从对比分析两种路灯控制系统的基本组成入手,再通过搭接一个路灯自动控制的电子模型,来学习电子控制系统的基本组成和工作过程,从而为学生学习后面各章提供了一把钥匙。 2.学情分析 学生在通用技术必修2的学习中,已学过关于控制系统的一些概念,例如输入、控制、输出,以及功能模拟方法的含义,但对电子控制系统内部电子元件,例如发光二极管、光敏电阻、三极管等的工作原理不太了解,教师可用通俗的语言补充解释其作用,以利于学生的学习。 二、教学目标 1.知识与技能目标 (1)知道电子控制系统的基本组成。 (2)能用方框图分析生活中常见电子控制系统的工作过程。 2.过程与方法目标 (1)通过对两种路灯控制系统方框图的对照,知道电子控制系统的基本组成。 (2)通过搭接一个路灯自动控制的电子模型,加深对电子控制系统组成的理解。 3.情感态度和价值观目标 (1)激发学生动手尝试的兴趣和热爱技术的情感。 (2)提高学生比较及分析电子控制系统的能力。 三、教学重难点 1.重点 (1)电子控制系统的基本组成。 (2)能用方框图分析生活中常见电子控制系统的工作过程。 2.难点 电子控制系统内部常见电子元件的工作原理。 四、教学策略 本节课程以多媒体技术为辅助教学手段,通过观察、基本知识讲授、小组探究、分析表达、技术试验、能力展示等教学方法和策略,在教师指导下,通过学生自主探究建构知识和技能。 五、教学准备 通用技术专用教室、多媒体、课件、路灯自动控制模型。 六、课时安排 共1课时 七、教学过程 (一)新课导入 教师展示:路灯自动控制模型 板书:第一章电子控制系统概述 第二节电子控制系统的组成和工作过程

电力传动控制系统——运动控制系统

电力传动控制系统——运动控制系统 (习题解答) 第 1 章电力传动控制系统的基本结构与组成.......... 第 2 章电力传动系统的模型................. 第 3 章直流传动控制系统................... 第 4 章交流传动控制系统................... 第 5 章电力传动控制系统的分析与设计* ............ 错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签

第1章电力传动控制系统的基本结构与组成 1.根据电力传动控制系统的基本结构,简述电力传动控制系统的基本原理和共性问题。 答:电力传动是以电动机作为原动机拖动生产机械运动的一种传动方式,由于电力传输和变换的便利,使电力传动成为现代生产机械的主要动力装置。电力传动控制系统的基本结构如图1-1所示,一般由电源、变流器、电动机、控制器、传感器和生产机械(负载)组成。 控制指令 图1-1电力传动控制系统的基本结构 电力传动控制系统的基本工作原理是,根据输入的控制指令(比如:速度或位置指令),与传感器采集的系统检测信号(速度、位置、电流和电压等),经过一定的处理给出相应的反馈控制信号,控制器按一定的控制算法或策略输出相应的控制信号,控制变流器改变输入到电动机的电源电压、频率等,使电动机改变转速或位置,再由电动机驱动生产机械按照相应的控制要求运动,故又称为运动控制系统。 虽然电力传动控制系统种类繁多,但根据图1-1所示的系统基本结构,可以归纳出研发或应用电力传动控制系统所需解决的共性问题: 1)电动机的选择。电力传动系统能否经济可靠地运行,正确选择驱动生产 机械运动的电动机至关重要。应根据生产工艺和设备对驱动的要求,选择合适的电动机的种类及额定参数、绝缘等级等,然后通过分析电动机的发热和冷却、工作制、过载能力等进行电动机容量的校验。 2)变流技术研究。电动机的控制是通过改变其供电电源来实现的,如直流 电动机的正反转控制需要改变其电枢电压或励磁电压的方向,而调速需要改变电 枢电压或励磁电流的大小;交流电动机的调速需要改变其电源的电压和频率等,因此,变流技术是实现电力传动系统的核心技术之一。 3)系统的状态检测方法。状态检测是构成系统反馈的关键,根据反馈控制 原理,需要实时检测电力传动控制系统的各种状态,如电压、电流、频率、相位、 磁链、转矩、转速或位置等。因此,研究系统状态检测和观测方法是提高其控制

运动控制系统实验指导书(修改

运动控制系统实验指导书 2013年3月

目录 第一部分MCL-11型电机及控制教学实验台介绍 (2) 第二部分实验项目 实验一晶闸管直流调速系统电流-转速调节器调试 (8) 实验二双闭环晶闸管不可逆单闭环直流调速系统测试 (10) 实验三异步电动机的变压变频调速演示实验 (15)

第一部分MCL-11型电机及控制教学实验台介绍 一、实验机组 =1500r/pm。 直流电动机:P N=185w,U N=220V,I N=1.1A,n N 二、实验挂箱 (1)MCL-18挂箱:G(给定),(GT+MF)触发电路及功放,单双脉冲观察,(FBC+FA)电流反馈及过流过压保护,零速封锁器(DZS),速度变换器(FBS),速度调节器(ASR),电流调节器(ACR)。 (2)MCL-33挂箱:脉冲通断控制及显示,一组、二组可控硅,平波电抗器。 (3)MEL-11挂箱:六组可调电容。 三、选配挂箱 (1)MEL-03挂箱:可调电阻器。 (2)电机导轨及测速发电机,直流发电机M01:P N=100W,U N=200V。 (3)电机导轨及测功机、测速发电机,MEL-13组件。 控制系统挂箱介绍和使用说明 (一)、MCL-18挂箱 MCL—18由G(给定),(GT+MF)触发电路及功放,双脉冲观察,(FBC+FA)电流反馈及过流过压保护,零速封锁器(DZS),速度变换器(FBS),速度调节器(ASR),电流调节器(ACR)组成。 1.G(给定) 原理图如图1-1。它的作用是得到下列几个阶跃的给定信号: (1)0V突跳到正电压,正电压突跳到0V; (2)0V突跳到负电压,负电压突跳到OV; (3)正电压突跳到负电压。负电压突跳到正电压。

运动控制卡概述

运动控制卡概述 ? ?主要特点 ?SMC6400B独立工作型高级4轴运动控制器 功能介绍: 高性能的独立工作型运动控制器以32位RISC为核心,控制4轴步进电机、伺服电机完成各种功能强大的单轴、多轴运动,可脱离PC机独立工作。 ●G代码编程 采用ISO国标标准G代码编程,易学易用。既可以在文本显示器、触摸屏上直接编写G代码,也可以在PC机上编程,然后通过USB通讯口或U盘下载至控制器。 ●示教编程 可以通过文本显示器、触摸屏进行轨迹示教,编写简单的轨迹控制程序,不需要学习任何编程语言。 ●USB通讯口和U盘接口 支持USB1.1全速通讯接口及U盘接口。可以通过USB接口从PC机下载用户程序、设置系统参数,也可用U盘拷贝程序。

●程序存储功能 程序存储器容量达32M,G代码程序最长可达5000行。 ●直线、圆弧插补及连续插补功能 具有任意2-4轴高速直线插补功能、任意2轴圆弧插补功能、连续插补功能。应用场合: 电子产品自动化加工、装配、测试 半导体、LCD自动加工、检测 激光切割、雕铣、打标设备 机器视觉及测量自动化 生物医学取样和处理设备 工业机器人 专用数控机床 特点: ■不需要PC机就可以独立工作 ■不需要学习VB、VC语言就可以编程 ■32位CPU, 60MHz, Rev1.0 ■脉冲输出速度最大达8MHz ■脉冲输出可选择: 脉冲/方向, 双脉冲 ■2-4轴直线插补 ■2轴圆弧插补 ■多轴连续插补 ■2种回零方式 ■梯型和S型速度曲线可编程

■多轴同步启动/停止 ■每轴提供限位、回零信号 ■每轴提供标准伺服电机控制信号 ■通用16位数字输入信号,有光电隔离 ■通用24位数字输出信号 ■提供文本显示器、触摸屏接口 技术规格: 运动控制参数 运动控制I/O 接口信号 通用数字 I/O 通用数字输入口 通用数字输出口 28路,光电隔离 28路,光电隔离,集电极开路输出 通讯接口协议

运动控制系统基本要求

11级电气工程与自动化专业《运动控制系统》基本要求(2014-05-23) 第一章 绪论 了解本课程的研究内容。 第二章 (转速单)闭环控制的直流调速系统 1、 了解V (SCR )--M 、PWM--M 两种主电路方案及其特点(2.1节、P16、P97--98、笔记); 2、 他励(或永磁)直流电动机三种数学模型及转换,解耦模型中I do ~U d 环节的处理(P27--28、笔记); 3、 稳态性能指标中D 、S 间关系及适用范围(2.2.1节、P29--30、笔记); 4、 转速单闭环直流调速系统组成原理、特点及适用范围(P2 5、笔记); 5、 带电流截至负反馈的转速单闭环直流调速系统的组成原理、特点(笔记、2.5.2节)。 第三章 转速、电流反馈控制的直流调速系统 1、 双闭环直流调速系统的组成原理(主要指:V —M 不可逆调速系统、PWM-M 调速系统)、特点,符合实际的系统数学模型,静(稳)态参数的整定及计算(P60、P59--6 2、笔记); 2、 ASR 、ACR 的作用(P65); 3、 典1、典2系统的特点、适用范围、参数整定依据(3.3.2节、笔记); 4、 基于工程设计法的ASR 、ACR 调节器参数整定方法(P77--78、3.3.3节、例3-1、3-2、笔记); 5、 理解ASR 退饱和时的(阶跃响应)转速超调量等时域指标算式(P86--88、笔记); 6、 系统分别在正常恒流动态、稳态阶段,及机械堵转故障、转速反馈断开故障下的(新稳态)物理量计算; 7、 M 、T 、M/T 三种数字测速方法及特点(2.4.2节、笔记); 8、 了解了解M/T 数字测速的技术实现方法、系统控制器的技术实现方法(P82-85、笔记)。 第四章 可逆控制和弱磁控制的直流调速系统 1、 PWM--M 可逆直流调速系统组成原理及特点(4.1节,笔记) 2、 V (SCR )--M 可逆主电路中的环流概念、类型、特点(P103--104、笔记); 3、 常用的晶闸管-直流电动机可逆调速系统组成原理及特点(4.2.2节,图4-1 4、图4-1 5、4.2.3节)。 第五章 基于稳态模型的异步电动机调速系统 1、 异步电动机定子调压调速的机械特性簇与特点,转速闭环调压调速系统组成原理及适用范围(5.1--5.2节); 2、 软起动器的作用及适用条件(5.2.4节); 3、 异步电动机变压变频调速的基本协调控制关系(一点两段)及其依据(5.3.1节); 4、 异步电动机四种协调控制的特点,各自的机械特性簇、特点及比较(5.3.2节--5.3.3节、笔记); 5、 SPWM 、CFPWM 、SVPWM 变频调速器组成原理与特点,及其中各环节的作用(5.4节); 6、 了解基于转差频率控制的转速闭环变频变压调速系统的基本原理(5.6节)。 第六章 基于动态模型的异步电动机调速系统 1、 交流电动机坐标变换的作用,矢量控制(VC )的基本思想、特点(6.6、6.7、笔记); 2、 异步电动机VC 系统的一般组成原理(图6-20); 3、 了解各种具体的VC 系统组成方案,理解转子磁链直接与间接定向控制的区别(6.6. 4、6.6.6节、笔记); 4、 异步电动机直接转矩控制(DTC )系统的基本原理及特点(6.7.3节),DTC 与VC 的比较(6.8节)。 第七章 绕线转子异步电动机双馈调速系统 1、 绕线转子异步电动机次同步串级调速主电路及其工作原理,()S f β=公式及特点(7.2.1节、笔记); 2、 绕线转子异步电动机双闭环次同步串级调速系统组成原理;起动、停车操作步骤;(7.5、7.6、7.4.3节、笔记)。 第八章 同步电动机变压变频调速系统 1、 正弦波永磁同步电动机(PMSM )矢量控制系统组成原理,0sd i =时的转矩公式(8.4.3节); 2、 具有位置、速度闭环的正弦波永磁同步电动机(伺服)矢量控制系统组成原理(图8-26、27扩展、笔记)。 第九章 伺服系统 1、 位置伺服系统的典型结构(开环、半闭环、闭环、混合闭环)及特点(笔记、9.1.2); 2、 位置伺服系统的三种运行方式、位置伺服系统的三种方案;(笔记、9.3.2--9.3.4) 3、 数字伺服系统中电子齿轮的作用(笔记); 4、 数字式位置、速度伺服系统的指令形式(笔记)。 *** 考试须知---要点提示: (1)无证件者不能考试;(2)未交卷者中途不得离场;(3)严禁带手机到座位,操作手机者按作弊论处。 附:答疑地点(2-216)、时间:(1)2014-6-6,13:00--15:00;(2)2014-6-7,8:00--11:00,13:00--15:00。

运动控制实验报告分析

运动控制系统实验报 告 姓名刘炜原 学号 201303080414

实验一 晶闸管直流调速系统电流 -转速调节器调试 一. 实验目的 1 ?熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。 2?掌握直流调速系统主要单元部件的调试步骤和方法。 三. 实验设备及仪器 1?教学实验台主控制屏。 2. ME —11 组件 3. MC —18 组件 4. 双踪示波器 5. 万用表 四. 实验方法 1. 速度调节器(ASR 的调试 按图1-5接线,DZS (零速封锁 器)的扭子 开关扳向“解除”。 (1) 调整输出正、负限幅值 “ 5”、“ 6”端 接可调电容, 使ASR 调节器为PI 调节器,加入 一定的输入电压(由MC —18的给 定提供,以下同),调整正、负限 幅电位器RR 、 RP ,使输出正负值 等于:5V 。 (2) 测定输入输出特性 将反馈网络中的电容短接 (“ 5”、“6 ”端短接),使 ASR 调节器为P 调节器,向调节器输入 端逐渐加入正负电压,测出相应的 输出电压,直至输出限幅值,并画 出曲线。 (3) 观察PI 特性 拆除“ 5”、“6”端短接线,突加 二.实验内容 1?调节器的调试 C B RF 4 2 HP1 RP2 6 4 2 3 1 NMCL-31A 可调电容,位于 NMCL-18的下部 封锁 -S 2 反 号 Q 9 ASR ( ??) DZS (零速封锁 解除 ACR 电就声书器) 11 12 图1-5速度调节器和电流调节器的调试接线图

给定电压(_0.1V),用慢扫描示波器观察输出电压的 变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容 箱改变数值。 2.电流调节器(ACR的调试 按图1-5接线。 (1)调整输出正,负限幅值 “9”、“10”端接可调电容,使调节器为PI调节器,加入一定的输入电压,调整正,负限幅电位器,使输出正负最大值等于_5V。 (2)测定输入输出特性 将反馈网络中的电容短接(“ 9”、“10”端短接),使调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。 (3)观察PI特性 拆除“ 9”、“10”端短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变 数值。

运动控制系统 复习知识点总结

1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。(运动控制系统框图) 2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。因此,转矩控制是运动控制的根本问题。 第1章可控直流电源-电动机系统内容提要 相控整流器-电动机调速系统 直流PWM变换器-电动机系统 调速系统性能指标 1相控整流器-电动机调速系统原理 2.晶闸管可控整流器的特点 (1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。 晶闸管可控整流器的不足之处 晶闸管是单向导电的,给电机的可逆运行带来困难。 晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。 在交流侧会产生较大的谐波电流,引起电网电压的畸变。需要在电网中增设无功补偿装置和谐波滤波装置。 3.V-M系统机械特 4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。 5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类 (2)简单的不可逆PWM变换器-直流电动机系统 (3)有制动电流通路的不可 逆PWM-直流电动机系统 (4)桥式可逆PWM变换器 (5)双极式控制的桥式可逆PWM变换器的优点 双极式控制方式的不足之处 (6)直流PWM变换器-电动机系统的能量回馈问题 ”。(7)直流PWM调速系统的机械特性 6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式) 当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。 D与s的相互约束关系 对系统的调速精度要求越高,即要求s越小,则可达到的D必定越小。 当要求的D越大时,则所能达到的调速精度就越低,即s越大,所以这是一对矛盾的指标。第二章闭环控制的直流调速系统 内容提要 ?转速单闭环直流调速系统 ?转速、电流双闭环直流调速系统 调节器的设计方法 1.异步电动机从定子传入转子的电磁功率可分成两部分:一部分是机械轴上输出的机械功率;另一部分是与转差率成正比的转差功率。.异步电动机按调速性能分类第一类基于稳态模型,动

汽车电子控制系统概述模板

汽车电子控制系统 概述

第四章汽车电子控制系统概述 第一节汽车电子技术的发展背景 汽车既可作为生产运输的生产用品, 又可作为代步、休闲、旅游等消费用品, 汽车技术的发展是人类文明史的见证。随着社会、经济的发展, 汽车成为人类密不可分的伙伴。当然, 汽车的发展也带来了一些负面的影响, 如随着汽车保有量的增加, 交通条件、安全、环境污染也成了日益严重的问题。汽车的安全、环保和节能是当今汽车技术发展的主要方向。 一、安全、环保和节能推动了汽车技术的发展 汽车的安全性是人类社会的一大祸害, 车辆的制动安全性、驱动安全性与行驶安全性是道路交通安全事故的三大主要根源。全世界每年由于交通事故死亡约50万人, 排在人类死亡原因的第10位; 中国当前每年因交通事故死亡占全国总死亡人数的1.5%, 约每年10万人。为此, 科技人员从汽车的主动安全性和被动安全性两个方面着手, 设计了防滑控制系统、车辆姿态控制系统、智能防撞预警与应急保护系统、碰撞后的保护系统等一系列电子控制装置。 HC和NOx 混合在一起, 在强烈的阳光照射下, 会发生一系列光化学反应, 产生臭氧和各种化合物。臭氧( O3) 具有很强的氧化性和毒性。1963年美国洛杉矶地区发生了光化学烟雾事件, 促使各国对大气污染的重视研究。据统计, 城市大气污染物一氧化碳( CO) 、碳氢化合物( HC) 和氮氧化物( NOx) 的主要污染源是汽车排气。因此, 世界各国都相继制订了日益严格的汽车排放物限制法规。另外, 随着汽车保有量的增加, 汽车噪声也是环境保护的重点治理对象。于是, 现代轿车普遍装有喷油与点火控制、废气再循环及三元催化等发动机尾气控制装置。人们还在降低机械噪声、隔振、隔音等方面进行了大量的实验与改进工作。 进入二十世纪70年代, 全球的石油危机, 使汽车节能问题受到

运动控制系统实验指导书分解

运动控制系统 实验指导书 赵黎明、王雁编 广东海洋大学信息学院自动化系

直流调速 实验一不可逆单闭环直流调速系统静特性的研究 一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图6-7。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33(A)组件或MCL—53组件。 4.MEL-11挂箱 5.MEL—03三相可调电阻(或自配滑线变阻器)。 6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件)。 7.直流电动机M03。 8.双踪示波器。 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。 4.三相主电源连线时需注意,不可换错相序。 5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1

即可正常工作。 6.系统开环连接时,不允许突加给定信号U g起动电机。 7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。 8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 六.实验内容 1.移相触发电路的调试(主电路未通电) (a)用示波器观察MCL—33(或MCL—53,以下同)的双脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V~2V 的双脉冲。 (b)触发电路输出脉冲应在30°~90°范围内可调。可通过对偏移电压调节单位器及ASR输出电压的调整实现。例如:使ASR输出为0V,调节偏移电压,实现α=90°;再保持偏移电压不变,调节ASR的限幅电位器RP1,使α=30°。 2.求取调速系统在无转速负反馈时的开环工作机械特性。 a.断开ASR的“3”至U ct的连接线,G(给定)直接加至U ct,且Ug调至零,直流电机励磁电源开关闭合。 b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=200V。 注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同。 c.调节给定电压U g,使直流电机空载转速n0=1500转/分,调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载的范围内测取7~8点,读取整流装置输出电压U d 3.带转速负反馈有静差工作的系统静特性 a.断开G(给定)和U ct的连接线,ASR的输出接至U ct,把ASR的“5”、“6”点短接。 b.合上主控制屏的绿色按钮开关,调节U uv,U vw,U wu为200伏。 c.调节给定电压U g至2V,调整转速变换器RP电位器,使被测电动机空载转速n0=1500转/分,调节ASR的调节电容以及反馈电位器RP3,使电机稳定运行。 调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载范围内测取7~8

运动控制基础教学大纲2017版

《运动控制基础》课程教学大纲 课程代码:060131004 课程英文名称:Moving-Control Foundation 课程总学时:40 讲课:36 实验:4 上机:0 适用专业:自动化专业 大纲编写(修订)时间:2017.11 一、大纲使用说明 (一)课程的地位及教学目标 本课程是高等工业学校自动化专业开设的一门专业基础课。课程主要讲授运动控制系统的动力学基础;直流运动控制系统基础;交流运动控制系统基础。 本课程的教学目的是使学生掌握运动控制系统的组成、功能及分析运动控制系统的知识;掌握电动机起动、制动、调速的实现方法:掌握直流运动控制系统、交流运动控制系统静态特性、动态特性的分析方法。为学习后续课程打下基础。 (二)知识、能力及技能方面的基本要求 通过本门课程学习,要求学生掌握运动控制系统的基本知识,并具备一定的实际工作能力。 本课程理论严谨,系统性强,教学过程中培养学生的思维能力,以及严谨的科学学风。 在本课程的教学过程中,应注意运用启发式教学,注意阐述各种分析方法的横向联系,以培养分析,归纳与总结的能力。 (三)实施说明 1.教学方法:课堂讲授中要重点对基本概念、基本设计方法和解题思路的讲解; 采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;增加讨论课,调动学生学习的主观能动性;讲课要联系实际并注重培养学生的创新能力。 2.教学内容:在运动控制系统动力学基础部分,着重介绍:运动方程式,多轴运动控制系统等效为单轴运动控制系统的折算原则,并在此基础上讲解各量折算式。 在直流运动控制系统基础部分,着重介绍:直流电动机机械特性,直流电动机起动、制动的实现方法及静态特性,调速的基本原理、性能指标及调速方法。 在交流运动控制系统基础部分,着重介绍:三相异步电动机的机械特性,三相异步电动机起动、制动的实现方法及静态特性,三相异步电动机调速的基本原理及调速方法。 3.教学手段:本课程属于专业基础课,在教学中采用多媒体教学先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 (四)对先修课的要求 本课程的教学必须在完成先修课程之后进行,本课程的主要先修课程有电路及电机学等。 (五)对习题课、实践环节的要求 1.对重点、难点章节应安排习题课,例题的选择以培养学生消化和巩固所学知识,用以解决实际问题为目的。因此,要求学生按时完成作业,并将作业内容带到实践环节去验证. 2.课后作业要少而精,内容要多样化,作业题内容必须包括基本概念、基本理论及计算方面的内容,作业要能起到巩固理论,掌握计算方法和技巧,提高分析问题、解决问题能力,熟悉标准、规范等的作用,对作业中的重点、难点,课上应做必要的提示,并适当安排课内讲评作业。学生必须独立、按时完成课外习题和作业,作业的完成情况应作为评定课程成绩的一部分。 3.每个学生要完成大纲中规定的必修实验,要求学生在做实验前,充分阅读实验指导书,以免实验时不知所措;要求每个学生亲自动手,通过实验,独立思考,加强对运动控制原理的理

运动控制系统仿真---实验讲义

《运动控制系统仿真》实验讲义 谢仕宏 xiesh@https://www.wendangku.net/doc/5613029759.html,

实验一、闭环控制系统及直流双闭环调速系统仿真 一、实验学时:6学时 二、实验内容: 1. 已知控制系统框图如图所示: 图1-1 单闭环系统框图 图中,被控对象s e s s G 1501 30010 )(-+= ,Gc(s)为PID 控制器,试整定PID 控制器 参数,并建立控制系统Simulink 仿真模型。再对PID 控制子系统进行封装,要求可通过封装后子系统的参数设置页面对Kp 、Ti 、Td 进行设置。 2. 已知直流电机双闭环调速系统框图如图1-2所示。试设计电流调节器ACR 和转速调节器ASR 并进行Simulink 建模仿真。 图1-2 直流双闭环调速系统框图 三、实验过程: 1、建模过程如下: (1)PID 控制器参数整顿 根据PID 参数的工程整定方法(Z-N 法),如下表所示, Kp=τ K T 2.1=0.24,Ti=τ2=300, Td=τ5.0=75。 表1-1 Z-N 法整定PID 参数

(2)simulink仿真模型建立 建立simulink仿真模型如下图1-3所示,并进行参数设置: 图1-3 PID控制系统Simulink仿真模型 图1-3中,step模块“阶跃时间”改为0,Transport Delay模块的“时间延迟”设置为150,仿真时间改为1000s,如下图1-4所示: 图1-3 PID控制参数设置 运行仿真,得如下结果:

图1-5 PID控制运行结果 (3)PID子系统的创建 首先将参数Gain、Gain1、Gain三个模块的参数进行设置,如下图所示: 图1-6 PID参数设置 然后建立PID控制器子系统,如下图1-7所示: 图1-7 PID子系统 再对PID子系统进行封装,选中“Subsystem”后,单击鼠标右键,选择“Mask subsystem”,弹

运动控制的基础

运动控制的基础 概观本教程是在NI测量基础系列的一部分。每个在这个系列的教程,教你一个常用的测量应用的特定主题的解释理论概念,并提供实际的例子。在本教程中,学习运动控制系统的基础知识,包括软件,运动控制器,驱动器,电机,反馈装置,I / O。您还可以查看交互式演示,通过本教程的材料在自己的步伐。有关更多信息,返回到NI测量基础主页。目录运动控制系统的组成部分软件配置,原型设计,开发运动控制器移动类型电机放大器和驱动器汽车和机械要素反馈装置和运动的I / O NI相关产品运动控制系统的组成部分图1显示了一个运动控制系统的不同组件。图1。运动控制系统组件应用软件-您可以使用应用软件,以命令的目标位置和运动控制型材。运动控制器-运动控制系统的大脑作用到所需的目标位置和运动轨迹,并建立电机的轨迹遵循,但输出±10 V的伺服电机或步进和方向脉冲信号,步进电机。 放大器或放大器(也称为驱动器)驱动器-从控制器的命令和需要开车或关闭电机的电流产生。电机-电机机械能变成电能和生产所需的目标位置移动到所需的扭矩。机械部件-电机的设计提供一些力学的扭矩。这些措施包括线性滑轨,机械手臂,和特殊的驱动器。反馈装置或位置传

感器-位置反馈装置是不是需要一些运动控制应用(如步进电机控制),但重要的是为伺服电机。反馈装置,通常是一个正交编码器,感应电机的位置和结果报告控制器,从而结束循环的运动控制器。软件配置,原型设计,开发应用软件分为三大类:配置,原型和应用程序开发环境(ADE)。图2说明了运动控制系统的编程过程和相应的NI产品设计过程:图2。运动控制系统开发过程组态 做的第一件事情之一,是您的系统配置。为此,美国国家仪器公司提供测量与自动化浏览器(MAX),不仅运动控制,但所有其他NI硬件配置的交互式工具。对于运动控制,MAX 提供交互式的测试和调整面板,帮助您验证系统功能之前,你的程序。图3 NI MAX是一个交互式工具,用于配置和调整您的运动控制系统。 应用笔记 了解伺服调谐 使用1D互动的环境测试电机功能 轴运动控制器的配置 轴运动控制器设置 运动控制器的编码器设置 运动控制器的参考设置 数字运动控制器的I / O设置原型 当你配置你的系统,你可以开始原型和开发应用程序。在

运动控制系统基本架构及控制轨迹要点简述

运动控制系统基本架构及控制轨迹要点简述 运动控制起源于早期的伺服控制。简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。早期的运动控制技术主要是伴随着数控技术、机器人技术和工厂自动化技术的发展而发展的。早期的运动控制器实际上是可以独立运行的专用的控制器,往往无需另外的处理器和操作系统支持,可以独立完成运动控制功能、工艺技术要求的其他功能和人机交互功能。这类控制器可以成为独立运行的运动控制器。这类控制器主要针对专门的数控机械和其他自动化设备而设计,往往已根据应用行业的工艺要求设计了相关的功能,用户只需要按照其协议要求编写应用加工代码文件,利用RS232或者DNC方式传输到控制器,控制器即可完成相关的动作。这类控制器往往不能离开其特定的工艺要求而跨行业应用,控制器的开放性仅仅依赖于控制器的加工代码协议,用户不能根据应用要求而重组自己的运动控制系统。 运动控制的定义 运动控制(MC)是自动化的一个分支,它使用通称为伺服机构的一些设备如液压泵,线性执行机或者是电机来控制机器的位置和/或速度。运动控制在机器人和数控机床的领域内的应用要比在专用机器中的应用更复杂,因为后者运动形式更简单,通常被称为通用运动控制(GMC)。运动控制被广泛应用在包装、印刷、纺织和装配工业中。 运动控制系统的基本架构组成 一个运动控制器用以生成轨迹点(期望输出)和闭合位置反馈环。许多控制器也可以在内部闭合一个速度环。 一个驱动或放大器用以将来自运动控制器的控制信号(通常是速度或扭矩信号)转换为更高功率的电流或电压信号。更为先进的智能化驱动可以自身闭合位置环和速度环,以获得更精确的控制。 一个执行器如液压泵、气缸、线性执行机或电机用以输出运动。

运动控制实验报告标准范本

报告编号:LX-FS-A69109 运动控制实验报告标准范本 The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior. 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

运动控制实验报告标准范本 使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 实验一晶闸管直流调速系统电流-转速调节器调试 一.实验目的 1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。2.掌握直流调速系统主要单元部件的调试步骤和方法。 二.实验内容 1.调节器的调试 三.实验设备及仪器 1.教学实验台主控制屏。2.MEL—11组件3.MCL—18组件4.双踪示波器5.万用表

四.实验方法 1.速度调节器(ASR)的调试 按图1-5接线,DZS(零速封锁器)的扭子开关扳向“解除”。 (1)调整输出正、负限幅值“5”、“6”端接可调电容,使ASR调节器为PI调节器,加入一定的输入电压(由MCL—18的给定提供,以下同),调整正、负限幅电位器RP1、RP2,使输出正负值等于5V。 (2)测定输入输出特性将反馈网络中的电容短接(“5”、“6”端短接),使ASR调节器为P 调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画 图1-5 速度调节器和电流调节器的调试接线图 出曲线。

汽车电子控制系统概述模板

汽车电子控制系统 概述 第四章汽车电子控制系统概述第一节汽车电子技术的发展背景汽车既可作为生产运输的生产用品, 又可作为代步、休闲、旅游等消费用品, 汽车技术的发展是人类文明史的见证。随着社会、经济的发展, 汽车成为人类密不可分的伙伴。当然, 汽车的发展也带来了一些负面的影响, 如随着汽车保有量的增加, 交通条件、安全、环境污染也成了日益严重的问题。汽车的安全、环保和节能是当今汽车技术发展的主要方向。 一、安全、环保和节能推动了汽车技术的发展汽车的安全性是人类社会的一大祸害, 车辆的制动安全性、驱动安全性与行驶安全性是道路交通安全事故的三大主要根源。全世界每年由于交通事故死亡约50 万人, 排在人类死亡原因的第10位; 中国当前每年因交通事故死亡占全

国总死亡人数的 1.5%, 约每年10 万人。为此, 科技人员从汽车的主动安全性和被动安全性两个方面着手, 设计了防滑控制系统、车辆姿态控制系统、智能防撞预警与应急保护系统、碰撞后的保护系统等一系列电子控制装置。 HC 和NOx 混合在一起, 在强烈的阳光照射下, 会发生一系列光化学反应, 产生臭氧和各种化合物。臭氧( O3) 具有很强的氧化性和毒性。1963 年美国洛杉矶地区发生了光化学烟雾事件, 促使各国对大气污染的重视研究。据统计, 城市大气污染物一氧化碳( CO) 、碳氢化合物( HC) 和氮氧化物( NOx) 的主要污染源是汽车排气。因此, 世界各国都相继制订了日益严格的汽车排放物限制法规。另外, 随着汽车保有量的增加, 汽车噪声也是环境保护的重点治理对象。于是, 现代轿车普遍装有喷油与点火控制、废气再循环及三元催化等发动机尾气控制装置。人们还在降低机械噪声、隔振、隔音等方面进行了大量的实验与改进工作。 进入二十世纪70 年代, 全球的石油危机, 使汽车节能问题受到世界各国高度重视, 汽车耗油量被相应的法规限制, 并成为汽车报废的一个主要标志。到二十世纪末, 美国政府提出了耗油为3L/100km 的” 3 升车”计划。传统的化油器等发动机部件虽然有了很大的改进, 依然满足不了排放和油耗两大法规的要求。可见, 传统技术已无能为力, 只有采用汽油喷射及电子点火等易于应用的电子控制新技术, 才能有所突破。 二、电子信息技术的发展推进了汽车技术向集成与智能迈进汽车技术特别是汽车电子控制技术在世界较发达国家发展迅猛, 其先决条件是电子技术和计算机技术的迅猛发展。二十世纪物理学的革命, 促使半导体技术的迅速发展, 特别是集成电路( IC) 和大规模集成电路( LSI) 及超大规模集成电路( VLSI) 的发展, 使电子元件过渡到了功能块和微型计算机, 不但功能极强, 而且价格便宜, 可靠性好, 结构紧凑, 响应敏捷, 迅速推动了汽车电控技术的发展。

电力拖动自动控制系统运动控制(四版)课后习题答案,基本全

习题解答(供参考) 习题二 2.2 系统的调速范围是1000~100min r ,要求静差率s=2%,那么系统允许的静差转速降是多少? 解:10000.02(100.98) 2.04(1) n n s n rpm D s ?= =??=- 系统允许的静态速降为2.04rpm 。 2.3 某一调速系统,在额定负载下,最高转速特性为0max 1500min n r =,最低转速特性为 0min 150min n r =,带额定负载时的速度降落15min N n r ?=,且在不同转速下额定速降 不变,试问系统能够达到的调速范围有多大?系统允许的静差率是多少? 解:1)调速范围 max min D n n =(均指额定负载情况下) max 0max 1500151485N n n n =-?=-= min 0min 15015135N n n n =-?=-= max min 148513511D n n === 2) 静差率 01515010%N s n n =?== 2.4 直流电动机为P N =74kW,UN=220V ,I N =378A ,n N =1430r/min ,Ra=0.023Ω。相控整流器内阻Rrec=0.022Ω。采用降压调速。当生产机械要求s=20%时,求系统的调速范围。如果s=30%时,则系统的调速范围又为多少?? 解:()(2203780.023)14300.1478N N a N Ce U I R n V rpm =-=-?= 378(0.0230.022)0.1478115N n I R Ce rpm ?==?+=

(1)]14300.2[115(10.2)] 3.1N D n S n s =?-=??-= [(1)]14300.3[115(10.3)] 5.33N D n S n s =?-=??-= 2.5 某龙门刨床工作台采用V-M 调速系统。已知直流电动机 60,220,305,1000min N N N N P kW U V I A n r ====,主电路总电阻R=0.18Ω,Ce=0.2V ?min/r,求: (1)当电流连续时,在额定负载下的转速降落N n ?为多少? (2)开环系统机械特性连续段在额定转速时的静差率N S 多少? (3)若要满足D=20,s ≤5%的要求,额定负载下的转速降落N n ?又为多少? 解:(1)3050.180.2274.5/min N N n I R r ?=?=?= (2) 0274.5274.5)21.5%N N S n n =?=+= (3) (1)]10000.05[200.95] 2.63/min N n n S D s r ?=-=??= 2.6 有一晶闸管稳压电源,其稳态结构图如图所示,已知给定电压* 8.8u U V =、比例调节器放大系数2P K =、晶闸管装置放大系数15S K =、反馈系数γ=0.7。求:(1)输出电压d U ;(2)若把反馈线断开,d U 为何值?开环时的输出电压是闭环是的多少倍?(3)若把反馈系数减至γ=0.35,当保持同样的输出电压时,给定电压* u U 应为多少? 解:(1)* (1)2158.8(12150.7)12d p s u p s U K K U K K V γ=+=??+??= (2) 8.8215264d U V =??=,开环输出电压是闭环的22倍 (3) * (1)12(12150.35)15) 4.6u d p s p s U U K K K K V γ=+=?+???= 2.7 某闭环调速系统的调速范围是1500r/min~150r/min ,要求系统的静差率5%s ≤,那么系统允许的静态速降是多少?如果开环系统的静态速降是100r/min ,则闭环系统的开环放大倍数应有多大? 解: 1)()s n s n D N N -?=1/ 1015002%/98%N n =???

电力拖动自动控制系统-运动控制系统答案,完整版..

事情是这样的,一个月前我的同事小度找到我吐槽…… 当时一听这话直接吓的我都坐地上了!!!完蛋了,莫不是要我卷铺盖了… 但听完接下来的话我又爬了起来(老板拜托你说话不要大喘气好不好!) 领导指着电脑: 哧,还以为什么事儿呢。我镇定地捋了捋头发站好: “老板你放心,不就是发福利么,这事儿包我身上了。” 虽然话放出去了,但说实话这一大堆福利具体怎么发心里还真没底。 但毕竟小度好歹是全国新媒体编辑里机智程度排名前一万的人,经过好几夜的苦思冥想后…哦呵呵呵… 第五章 思考题 5-1 对于恒转矩负载,为什么调压调速的调速范围不大?电动机机械特性越软,调速范围越大吗? 答:对于恒转矩负载,普通笼型异步电动机降压调速时的稳定工作范围为0

可行?为何在基频以下时,采用恒压频比控制,而在基频以上保存电压恒定? 答:当异步电动机在基频以下运行时,如果磁通太弱,没有充分利用电动机的铁心,是一种浪费;如果磁通,又会使铁心饱和, 从而导致过大的励磁电流,严重时还会因绕组过热而损 坏电动机。由此可见,最好是保持每极磁通量为额定值不变。当频率从额定值向下调节时,必须同时降低 E g 使 1 4.44常值S g S N mN E N K f ,即在基频以下应采用电动势频 率比为恒值的控制方式。然而,异步电动机绕组中的电动势是难以直接检测与控制的。 当电 动势值较高时,可忽略定子电阻和漏感压降,而认为定子相电压s g U E 。 在整个调速范围内,保持电压恒定是不可行的。在基频以上调速时,频率从额定值向上升高,受到电动机绝缘耐压和磁路饱和的限制, 定子电压不能随之升高,最多只能保持额定电压不变, 这将导致磁通与频率成反比地降低, 使得 异步电动机工作在弱磁状态。5-3 异步电动机变频调速时,基频以下和基频以上分别属于恒功率还是恒转矩调速方式?为 什么?所谓恒功率或恒转矩调速方式, 是否指输出功率或转矩恒定?若不是, 那么恒功率或 恒转矩调速究竟是指什么? 答:在基频以下,由于磁通恒定,允许输出转矩也恒定,属于“恒转矩调速”方式;在基频以上,转速升高时磁通减小,允许输出转矩也随之降低,输出功率基本不变,属于“近似的恒功率调速”方式。 5-4基频以下调速可以是恒压频比控制、 恒定子磁通、恒气隙磁通和恒转子磁通的控制方式, 从机械特性和系统实现两个方面分析与比较四种控制方法的优缺点。答: 恒压频比控制:恒压频比控制最容易实现,它的变频机械特性基本上是平行下移, 硬度也较 好,能够满足一般的调速要求,低速时需适当提高定子电压, 以近似补偿定子阻抗压降。在 对于相同的电磁转矩,角频率越大, 速降落越大,机械特性越软,与直流电动机弱磁调速相 似。在基频以下运行时,采用恒压频比的控制方法具有控制简便的优点, 但负载变化时定子 压降不同,将导致磁通改变,因此需采用定子电压补偿控制。 根据定子电流的大小改变定子 电压,以保持磁通恒定。 恒定子磁通:虽然改善了低速性能, 但机械特性还是非线性的,仍受到临界转矩的限制。频 率变化时,恒定子磁通控制的临界转矩恒定不变。恒定子磁通控制的临界转差率大于恒压 频比控制方式。恒定子磁通控制的临界转矩也大于恒压频比控制方式。 控制方式均需要定子 电压补偿,控制要复杂一些。恒气隙磁通:虽然改善了低速性能,但机械特性还是非线性的,仍受到临界转矩的限制。保 持气隙磁通恒定: 1 常值g E ,除了补偿定子电阻压降外,还应补偿定子漏抗压降。与

相关文档
相关文档 最新文档