文档库 最新最全的文档下载
当前位置:文档库 › 专家系统概述

专家系统概述

专家系统概述
专家系统概述

一般专家系统构造所需考虑的关键技术的讨论

张永红

哈尔滨工程大学信息与通信工程学院,黑龙江省哈尔滨市 150001

摘要:本文在叙述了人工智能科学技术的发展概况之后,同时粗略的分析力专家系统的发展情况。总结梳理了完成一项专家系统设计所需的关键技术的分析,给出了一般专家系统构造是在各个环节可以考虑和运用的技术。并对各个可用的技术进行了比较分析。总结目前在专家系统设计上飞瓶颈问题和突破口。

关键词 :专家系统,人工智能,知识表示,推理

Abstract:This paper describes the overview of the development of artificial intelligence, science and technology, while rough analytical expert system development. Summary combing analysis of the key technologies required to complete an expert system design, gives the general expert systems can be considered and the use of technology in all aspects. And a comparative analysis of the available technology. Summarizes the current bottlenecks and a breakthrough fly in expert system design.

key: Expert System ,Artificial Intelligence Knowledge Representation , Reasoning

1 引言

自1965年提出专家系统的概念,至今已经过去整整半个世纪了,回顾它的发展历史,专家系统在各个领域的应用已经非常广泛了,这一点不仅可以从网络学术文献搜索的数量和文献研究的领域上,还是实际产品的开发用运上都可以印证。但是由于专家系统是人工智能科学的直接产物,而人工智能的发展始终徘回而前进缓慢。人工智能的主要研究领域有:

(1)符号智能:符号智能以物理符号系统为基础,研究知识表示、获取、推理过程。

(2)计算智能:计算智能包括神经计算、模糊系统、遗传算法、进化程序设计等。神经计算是从神经生理学和认知科学的研究成果出发,应用数学方法描述非程序的和适应性的、大脑风格的人工神经网络信息处理的本质和能力。

而符号智能的研究进展缓慢,这主要是人工智能的在解决知识表示与表示的基本理论和方法这一关键理论问题上还未有完满的结果。这导致以其为基础的人工神经网络、专家系统等的发展各自在不同的小领域内进行突破前行。

1958 年麦卡锡发明了表处理语言LISP。由于 LISP 语言可以方便地处理符号,很快成为人工智能程序设计的主要语言。人工智能经历了自然语言的机器翻译、鲁滨逊

(J.A.Robinson)于 1965 年提出的消解法、神经网络研究等一次次高潮,但是由于人们忽视了现实世界的复杂性和问题的多样性,人工智能的早期研究只能停留在实验室里进行。人工智能研究遇到了比想象的要严重得多的压力和困难。

60 年代中期以后,人工智能由追求万能、通用的一般研究转入特定的具体研究,通用的解题策略同特定领域的专业知识与实际经验结合,产生了以专家系统为代表的基于知识的各类人工智能系统,使人工智能真正走向社会,走向实际应用研究。斯坦福大学的费根鲍姆(E.A.Feigenbaum)于1965 年开创了基于知识的专家系统

( Expert System)这一人工智能研究的新领域。

80 年代末,神经网络得到飞速发展。

1987 年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。目前人工智能研究的几个方向是:智能接口、数据挖掘、主体及多主体系统、模糊处理、并行化、神经网络和机器

情感[1]。

可见作为专家系统基础的人工智能的各个方面都具备坚实的基础,本文将要重点讨论设计一般专家系统时需采取的关键人工智能技术。

2 专家系统的整体的概念

2.1专家系统的定义

专家系统(Expert System)亦称专家咨询系统,它是一种智能计算机(软件)系统。顾名思义,专家系统就是能像人类专家一样解决困难、复杂的实际问题的计算机(软件)系统。专家系统应该具备以下四个要素:

(1)应用于某一个专门领域。

(2)拥有专家级知识。

(3)能模拟专家的思维。

(4)能达到专家的水平。

准确的讲,专家系统就应该是,应用于某一专门领域,拥有该领域相

当数量的专家级知识,能模拟专家的思维,能达到专家级水平,能像专家一样解决困难和复杂的实际问题的计算机(软件)系统。这里需要指出的是,所谓的专家级知识、专家的思维是因为专家拥有自己独特的实践经验,具有独特的分析问题和解决问题的方法和策略,并且这些经验、方法和策略经过长期的实践证明是行之有效的。

2.2专家系统的特点

同一般的计算机应用系统(如数值运算、数据处理系统等)相比,专

家系统具有以下一些特点:

(1)从处理的问题的性质看,专家系统善于解决那些不确定的、非结构化的、没有算法解或虽有算法解但在现有的机器上无法实现的困难问题。例如:医疗诊断、地质勘探、天气预报、市场预测、管理决策、军事指挥等领域的问题。

(2)从处理的问题的方法看,专家系统则是靠知识和推理来解决问题(不像传统的软件系统使用固定的算法来解决问题),所以专家系统是基于知识的问题求解系统。

(3)从系统的结构看,专家系统则强调知识和推理的分离,因而系统具有很好的灵活性和可扩充性。

(4)专家系统一般还具有解释功能,即在运行过程中一方面能回答用户提出的问题,另一方面还能对最后的输出(结论)或处理问题的过程做出解释。

2.3专家系统的结构

(1)概念结构

从概念上讲,一个专家系统应具有图1 所示的一般结构模式。其中知识库和推理机是两个最基本的模块

.

图1 专家系统结构

①知识库

所谓知识库,就是以某种表示形式存储在计算机中的知识的集合。知

识库通常是以一个个文件的形式存放在外部介质上,专家系统运行时将被调入内存。知识库中的知识一般包括专家知识、领域知识和元知识。元知识是关于调度和管理知识的知识。知识库中的知识通常就是按照知识的表示形式、性质、层次、内容来组织的,

构成了知识结构。

②推理机

所谓推理机,就是实现(机器)推理的程序。这里的推理,是一个广

义的概念,它既包括了通常的逻辑推理,也包括了基于产生式的操作。推理机是使用知识库中的知识进行推理而解决问题的,所以推理机也就是专家的思维机制,即专家分析问题、解决问题的方法的一种算法表示和机器实现。

③动态数据库

动态数据库也称全局数据库、综合数据库、工作存储器、黑板等,它是存放初始证据事实、推理结果和控制信息的场所,或者说它是上述数据构成的集合。动态数据库只在系统运行期间产生、变化和撤销,所以称为“动态”数据库,且在图中用虚线包围。需要说明的是,动态数据库虽然也叫数据库,但它并不是通常所说的数据库,两者有本质的区别。

④人机界面

人机界面指的是最终用户与专家系统的交互界面。一方面,用户通过

这个界面向系统提出或者回答问题,或向系统提供原始数据和事实等;另一方面,系统通过这个界面向用户提出或者回答问题,并输出结果以及对系统的行为和最终结果做出适当的解释。

⑤解释模块

解释模块专门向用户解释专家系统的行为和结果。推理过程中它可向

用户解释系统的行为,回答用户“why”的问题,推理结束后它可向用户解释推理的结果是怎样得来的,回答“how”之类的问题。

⑥知识库管理系统

知识库管理系统是知识库的支撑软件。知识库管理系统对知识库的作

用类似于数据库管理系统对数据库的作用,其功能包括知识库的建立、删除、重组;知识的获取(主要指录入和编辑)、维护、查询、更新;以及对知识的检查,包括一致性、冗余性和完整性检查等等。

知识库管理系统主要在专家系统的开发阶段使用,但在专家系统的运

行阶段也要经常用来对知识库进行增、删、改、查等各种管理工作。所以,它的生命周期事实和相应的专家系统是一样的。知识库管理系统的用户一般是系统的开发者,包括领域专家和计算机人员(一般称为知识工程师),而成品的专家系统的用户则一般是领域专业人员。

如果在原来的专家系统的结构上添加自学习模块,就成为更为理想的

一种专家系统结构。这里的自学习功能主要是指在系统的运行过程当中,能不断的自动化的完善丰富知识库中的知识。

3 专家系统构建的几个关键技术

3.1知识获取和知识库的建立的技术知识表示一直是人工智能的重要核心问题,它是知识获取的基础,又是推理的前提。目前在人工智能中信息和知识的表示方法种类繁多,虽然每种方法都有各自的特点,但是他们存在的共同问题就是缺乏严格的理论体系。与其他应用领域相比,知识表示在智能设计中遇到了更大的困难,原因在于现有的知识表示方法都缺少对设计过程创造性思维的支持。知识表示是概括智能行为的模型,其特点是: (1)智能行为所特有的灵活性问题(“常识问题”)不能概括为一类简洁的理论,它是大量小理论的集合; (2)Al的任务受到计算装置的约束.这就导致所采用的“表示”必须同时满足“刻画智能现象”与“计算装置可接受”这两个有时是矛盾的条件.正是对这两个条件的不同侧重导致了对“表示”的不同认识,并由此产生Al 研究的不同方法论.

在Al中常见的知识获取知识表示的方法几乎都是来源于研究者对智能行为

在微观与宏观不同科学层次的观察与分析而抽象出的模型.根据这些表示方法的原理可以将它们分成三类: (1)局部表示类:逻辑,产生式系统,语义网络,框架,脚本,过程等. (2)分布表示类:基因,联接机制.

(3)直接表示类:各种图形,图象,声音及人造环境等. 由此,一种知识表示方法的体系树[2]

可以被总结为图2的形式

.

图2常见知识表示的方法的树结构图

而这些方法各自各有各自的局限性,且新的方法不断出现如文献提出的利用可拓学发展的知识表示方法在知识获取和知识库建立的过程中应根据自己特殊目的的专家系统选用适合的方法把专有领域的知识表示为计算机可识别可计算处理的表示形式,同时应构建这种表示形式完整的语义系统支撑推理机的“常识推理”等等的智能模拟活动。

另有大量文献提出将人工神经网络和融合到专家系统里到设计,这种系统利用人工神经网络结合特定的知识表示方法体系可完成专家系统的知识的获取与更新、知识库的建立。

3.2推理机的构造技术

推理是从已知的知识推出蕴含着的知识,或归纳和发现新知识的重要方法。所有推理方法都要涉及前提与结论之间的关系。按前提到结论置信度的传递方式的不同,推理被区分为主观的充分置信推理与主观的不充分置信推理两大类。前者统称为演绎推理,而后者统称为归纳推理[3]

。严格说,所谓

推理即按某种特定的策略从已知知识

中推出新的内容的过程,也是专 家系统工作的核心(即模拟专家进行问题求解的工程)。在人工智能专家系统中,推理是由计算机程序实现的, 这一程序就叫做推理机

[5,6,7]

.。

专家系统在构造推理机是可采用的推理方法很多,常见的可用于计算机算法设计的有以下三种: (1)数据驱动的正向链推理; (2) 目标驱动的反向链推理; (3)两者结合的混合推理;

正向推理的基本思想:正向推理过程是一个根据事实推导出结论的过程,这个过程又被称为基于数据驱动的控制策略,也叫前向链推理。实现的基本思想是:用户首先要提供一组初始证据,并将初始证据存入综合数据库中。开始推理后,推理机将根据数据库中的事实,查询知识库,寻找当前可用的知识,将这些知识组成一个当前可用知识集合,再按照冲突消解的策略,从集合中选择一条可用知识进行推理,再把推理出的新事实追加到综合数据库中,反复重复这个推理过

程,直到求出所需解决的问题的解,或是知识库中没有可用知识为止[8,9]

与正向推理不同,逆向推理是以目标作为推理出发点的方法,所以又被称为目标驱动的推理,也叫逆向链推理等。逆向推理的基本思想:首先选定一个假设的目标,然后开始寻找支持该目标的证据,如果所需的数据找到,反过来说明原来的假设目标是成立的;如果找不到所需要的证据,那么说明原来假设的目标是不成立的,此时可以重新选定新的假设条件进行新的推理。

混合驱动推理结合了数据正向驱动和目标反向驱动的各自优点,用数据驱动实现初始目标选择,再用目标驱动对目标求解,交替使用两种驱动。推理的目的性不强是正向推理的主要缺点,这样一来,推理过程中可能完成了一些无关的操作。而选择目标盲目则是反向推理的主要缺点,特别是对初始目标的选择。混合推理即将正向推理和逆向推理结合起来,发挥各自的优点,取长补短。混合推理控制策略的思想是:首先通过正向推理实现初始目标的选择,也就是从已知事实中演绎出部分结果,根据这个结果选择一个初始目标,再使用反向推理对该目标进行求解,在求解过程中,又能得到用户提供的更多信息。然后再进行正向推理,演绎出更接近的目标,接着再使用反向推理。反复使用正向和反向推理,直到问题被求解。

除了才用这几种常规的推理方法外,在设计具体的专家系统是可根据自己相应的知识表示体系进行改进。

3.3智能接口设计的技术

人机交互界面是非常重要一个部分,它是专家系统与用户之间可以直接进行信息交流的应用接口。一般情况下包括两大组成部分,输入和输出。它一方面把从外界或键盘等获得的信息或命今进行识别和理解,表示成计算机能够识别的内部形式后再传递给系统。另一方面它又把专家系统产生的结果的内部形式转换成人们能够直接识别的自然表达方式传递给用户。简单的人机交互界面可以仅仅是一个命令解释与结果显示装置。复杂的人机交互界面可以达到系统与用户间用自然语言以声音或文字直接交互。因此,这时除了要解决语声、文字的识别之外,还必须解决自然语言的理解问题,这当然要困难得多。智能接口技术是研究如何使人们能够方便自然地与计算机交流。智能

接口技术的研究既有巨大的应用价值,又有基础的理论意义。

智能接口也是人工智能研究的一个方面,目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。因此在设计自己特有领域的专家系统是可利用这些技术实现知识的获取的多途径,实现专家系统的模拟人化的交流。

4 结论

本文在叙述了人工智能科学技术的发展概况之后,同时粗略的分析力专家系统的发展情况。总结梳理了完成一项专家系统设计所需的关键技术的分析,给出了一般专家系统构造是在各个环节可以考虑和运用的技术。并对各个可用的技术进行了比较分析。总结目前在专家系统设计上飞瓶颈问题和突破口。因为人工智能科学是专家系统设计的理论基础。它的发展前景广阔,就目前的理论发展情况来说它远未形成完满的科学体系,许多关键的瓶颈始终未能解决。我们对它的成熟充满期待。

5 参考文献

[1]郭鹏.基于网络的构件化专家系统的研究硕士论文.2004

[2] 蔡自兴,徐光佑.人工智能及其应用.清华大学出版社.1996

[3] 罗旭东,邱玉辉.专家系统中的不确定性推理

──模型、方法和理论.科学技术文献出版社.1995 [4]王玉,袁小红、石纯一.关于知识表示的讨论. 计算机学报 Vol.18No.3. Mareh1995

[5] 吴泉源.刘江宁.人工智能与专家系统[M].北京:国防科大出版社,1995,89-102

[6]郑扣根.庄越挺.人工智能[M],机械工业出版社,2000,23-30

[7] 蔡自兴,(美)约翰.德尔金,龚涛编著高级专家系统原理设计及应用[M],2005,50-58

[8] Huang, M.Y.; Lin, Y.J.;etc; A framework for

web-based product data management using J2EE. International Journal of Advanced Manufacturing Technology, Dec2004, V ol. 24 Issue 11-12, 847-852 [9]Sood, Mukul. Dr. Dobb's Journal .JDBC drivers and Web security .Software Tools forthe Professional Programmer, Jul98, V ol. 23 Issue 7.

[10]冯玉强,黄梯云,专家系统与神经网络集成系统的设计,管理科学学报,第2卷第1期

人工智能小型动物分类专家系统的设计与实现PPT

小型动物分类专家系统的设计与实现 一、实验目的 通过本实验可使学生能够综合利用C语言(或C++)、面向对象程序设计、数据结构、数据库原理、人工智能、软件工程等课程的相关知识,设计并实现小型动物分类专家系统,培养学生综合运用所学计算机软件知识解决实际问题的能力,为今后从事计算机软件开发及应用打下基础。 二、实验内容 运用下列规则,设计并实现一个小型动物分类专家系统。 规则1: 如果:动物有毛发 则:该动物是哺乳动物 规则2: 如果:动物有奶 则:该单位是哺乳动物 规则3: 如果:该动物有羽毛 则:该动物是鸟 规则4: 如果:动物会飞,且会下蛋 则:该动物是鸟 规则5: 如果:动物吃肉 则:该动物是肉食动物 规则6: 如果:动物有犬齿,且有爪,且眼盯前方 则:该动物是食肉动物 规则7: 如果:动物是哺乳动物,且有蹄 则:该动物是有蹄动物 规则8: 如果:动物是哺乳动物,且是反刍动物 则:该动物是有蹄动物 规则9: 如果:动物是哺乳动物,且是食肉动物,且是黄褐色的,且有暗斑点 则:该动物是豹 规则10: 如果:如果:动物是黄褐色的,且是哺乳动物,且是食肉,且有黑条纹 则:该动物是虎

规则11: 如果:动物有暗斑点,且有长腿,且有长脖子,且是有蹄类 则:该动物是长颈鹿 规则12: 如果:动物有黑条纹,且是有蹄类动物 则:该动物是斑马 规则13: 如果:动物有长腿,且有长脖子,且是黑色的,且是鸟,且不会飞 则:该动物是鸵鸟 规则14: 如果:动物是鸟,且不会飞,且会游泳,且是黑色的 则:该动物是企鹅 规则15: 如果:动物是鸟,且善飞 则:该动物是信天翁 动物分类专家系统由15条规则组成,可以识别七种动物,在15条规则中,共出现 30个概念(也称作事实),共30个事实,每个事实给一个编号,从编号从1到30,在规则对象中我们不存储事实概念,只有该事实的编号,同样规则的结论也是事实概念的编号,事实与规则的数据以常量表示,其结构如下:Char *str{}={"chew_cud","hooves","mammal","forward_eyes","claws", "pointed_teeth","eat_meat","lay_eggs","fly","feathers","ungulate", "carnivore","bird","give_milk","has_hair","fly_well", "black&white_color","can_swim","long_legs","long_neck", "black_stripes","dark_spots","tawny_color","albatross", "penguin","ostrich","zebra","giraffe","tiger","cheetah","\0"} 程序有编号序列的方式表达了产生式规则,如资料中规则15,如果动物是鸟,且善飞,则该动物是信天翁。相应的规则数组第七条是{16,13,0,0,0,0},第十三个是“bird”(鸟),如果事实成立,询问使用者下一个事实,第十六个“fly_well”(善飞),如果也成立,则查找结论断言编号数组{30,29,28, 27,26,25,24,3,3,13,12,12,11,11,0}中第七个“24”,这里24对应事实数组中的“albatross”(信天翁)。 上述就是程序的推理过程,也是程序中的重点,该部分是由规则类(类rul e)中的Query方法实现。 三、实验原理 一个基于规则专家系统的完整结构示于图1。其中,知识库、推理机和工作存储器是构成专家系统的核心。系统的主要部分是知识库和推理引擎。知识库由谓词演算事实和有关讨论主题的规则构成。推理引擎由所有操纵知识库来演绎用户要求的信息的过程构成-如消解、前向链或反向链。用户接口可能包括某种自然语言处理系统,它允许用户用一个有限的自然语言形式与系统交互;也可能用带有菜单的图形接口界面。解释子系统分析被系统执行的推理结构,并把它解释给用户。

海船避碰专家系统领域知识的来源和决策流程初探

编订:__________________ 审核:__________________ 单位:__________________ 海船避碰专家系统领域知识的来源和决策流程初探Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8857-12 海船避碰专家系统领域知识的来源 和决策流程初探 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或 活动达到预期的水平。下载后就可自由编辑。 1 引言 海船避碰专家系统(仿人智能自动避碰控制系统),对于降低碰撞事故具有重要的实用价值,也是实现完全自导的智能化船舶的重要组成部分。近年来,国内外海运界学者对其进行了不少理论研究,但与实用化尚有一定距离。专家系统的性能取决于知识库的质量,而知识库的质量又取决于所获取的领域知识的质量及可操作性。因此,明晰领域知识的来源,对碰撞危险的判断、决策过程予以量值化并明确其流程是建构实用化的海船避碰专家系统的必要步骤。 2 领域知识的来源

海船避碰行动的过程为:观察——判断——决策。《1972年国际海上避碰规则》[1] (以下简称《海规》)第五条“了望”对观察作了规定:“每一船舶应经常用视觉、听觉以及适合当时环境和情况下一切有效的手段保持正规的了望,以便对局面和碰撞危险作出充分的估计。” 观察的项目至少应包括:航区水域、能见度、通航密度、本船操纵性能、风浪流情况、航速、吃水和可用水深的关系,雷达等助航设备可能的误差、来船的距离、方位、航向及动态,等等. 通过观察所收集的信息,与专家系统知识库中的领域知识进行比较、推理,以确定碰撞危险程度、会遇局面的构成、本船的权利和义务、应采取的避让措施,并查核避让行动的有效性及避让结果,即为判断与决策过程。下面列出海船避碰专家系统领域知识的

专家系统习题解答

第七章专家系统 7.1.答: (1)专家系统的定义 费根鲍姆(E.A.Feigenbaum):“专家系统是一种智能的计算机程序,它运用知识和推理步骤来 解决只有专家才能解决的复杂问题” 专家系统是基于知识的系统,用于在某种特定的领域中运用领域专家多年积累的经验和专门知识, 求解需要专家才能解决的困难问题 保存和大面积推广各种专家的宝贵知识 博采众长 比人类专家更可靠,更灵活 (2)专家系统的特点 ①具有专家水平的专门知识 专家系统中的知识按其在问题求解中的作用可分为三个层次:数据级、知识库级和控制级 数据级知识(动态数据):具体问题所提供的初始事实及在问题求解过程中所产生的中间结 论、最终结论 数据级知识通常存放于数据库中 知识库级知识:专家的知识,这一类知识是构成专家系统的基础 一个系统性能高低取决于这种知识质量和数量 控制级知识(元知识):关于如何运用前两种知识的知识 在问题求解中的搜索策略、推理方法 ②能进行有效的推理 推理机构——能根据用户提供的已知事实,通过运用知识库中的知识,进行有效的推理,以实现问题的求解。专家系统的核心是知识库和推理机 ③具有启发性 除能利用大量专业知识外,还必须利用经验判断知识来对求解问题作出多个假设(依据某些条件选定一个假设,使推理继续进行) ④能根据不确定(不精确)的知识进行推理 综合利用模糊的信息和知识进行推理,得出结论 ⑤具有灵活性 知识库与推理机相互独立,使系统易于扩充,具有较大的灵活性 ⑥具有透明性 一般有解释机构,所以具有较好的透明性 解释机构向用户解释推理过程,回答“Why?”、“How?”等问题 ⑦具有交互性 一般都为交互式系统,具有较好的人机界面 一方面它需要与领域专家或知识工程师进行对话以获取知识;另一方面它也需要不断地从用户处 获得所需的已知事实并回答询问。 7.2.答:专家系统的一般结构 人机接口、推理机、知识库、动态数据库、知识获取机构、解释机构 知识库:主要用来存放领域专家提供的专门知识 (1) 知识表达方法的选择(最多的三种表示方法是产生式规则、框架和语义网络) ①充分表示领域知识 ②能充分、有效地进行推理 ③便于对知识的组织、维护与管理

人工智能专家系统论文

人工智能专家系统概述 摘要:人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 专家系统是人工智能应用研究的主要领域。专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。 关键词:人工智能,专家系统。 Abstract: The artificial intelligence (Artificial Intelligence), English abbreviation is AI. It is the research, the development uses in simulating, extending and expands human's intelligence theory, the method, technical and an application system new technical science. The artificial intelligence is a computer science branch, it attempts the understanding intelligence the essence, the parallel intergrowth delivers one kind newly to be able to make the response by the human intelligence similar way the intelligent machine, this domain research including robot, language recognition, pattern recognition, natural language processing and expert system and so on. An expert system is artificial intelligence application research of the main fields. An expert system is a has a large number of specialized knowledge and experience of the program system, it used artificial intelligence technology and computer technology, according to a field one or more experts to provide the knowledge and experience, reasoning and judgment, simulation of human experts decision-making process, so as to solve the need to deal with complicated problems of human experts, in short, the expert system is a kind of simulation to solve the problem domain experts human

人工智能习题&答案-第6章-专家系统

第六章专家系统 6-1 什么叫做专家系统?它具有哪些特点与优点? 专家系统是一种模拟人类专家解决领域问题的智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。 特点: (1)启发性 专家系统能运用专家的知识与经验进行推理、判断和决策 (2)透明性 专家系统能够解释本身的推理过程和回答用户提出的问题,以便让用户能够了解推理过程,提高对专家系统的信赖感。 (3) 灵活性 专家系统能不断地增长知识,修改原有知识,不断更新。 优点: (1) 专家系统能够高效率、准确、周到、迅速和不知疲倦地进行工作。 (2) 专家系统解决实际问题时不受周围环境的影响,也不可能遗漏忘记。 (3) 可以使专家的专长不受时间和空间的限制,以便推广珍贵和稀缺的专家知识与经验。 (4) 专家系统能促进各领域的发展,它使各领域专家的专业知识和经验得到总结和精炼,能够广泛有力地传播专家的知识、经验和能力。 (5) 专家系统能汇集多领域专家的知识和经验以及他们协作解决重大问题的能力,它拥有更渊博的知识、更丰富的经验和更强的工作能力。 (6) 军事专家系统的水平是一个国家国防现代化的重要标志之一。 (7) 专家系统的研制和应用,具有巨大的经济效益和社会效益。 (8) 研究专家系统能够促进整个科学技术的发展。专家系统对人工智能的各个领域的发展起了很大的促进作用,并将对科技、经济、国防、教育、社会和人民生活产生极其深远的影响。

专家系统

专家系统发展概

述 院系:化工学院化工机械系 班级:10自动化(1) 姓名:李正智 学号:1020301016 日期:2013年10月1日 专家系统发展概述 摘要:回顾了专家系统发展的历史和现状。对目前比较成熟的专家系统模型进行分析,指出各自的特点和局限性。最后对专家系统的热点进行展望并介绍了新型专家系统。 关键词:专家系统;知识获取;数据挖掘;多代理系统;人工神经网络 Abstract:The history and recent research ofexpertsystem was reviewed. Severalwell-researched expertsystemmodelswereintroduced respectively, and their featuresand limitationswere analyzed. Finally, the hotspotofexpertsystem wasoverlookedand future research direction ofexpertsystem wasdiscussed. Key words:expertsystem; knowledge acquisition; datamining; multi-agentsystem; artificialneuralnetwork 近三十年来人工智能(Artificial Intelligence,AI)获得了迅速的发展,在很多学科领域都获 得了广泛应用,并取得了丰硕成果。作为人工智能一个重要分支的专家系统在20世纪60年代初期产生并发展起来的一门新兴的应用科学,而且正随着计算机技术的不断发展而日臻完善和成熟。一般认为,专家系统就是应用于某一专门领域,由知识工程师通过知识获取手段, 将领域专家解决特定领域的知识,采用某种知识表示方法编辑或自动生成某种特定表示形式存放在知识库中;然后用户通过人机接口输入信息、数据或命令,运用推理机构控制知识库及整个系统,能像专家一样解决困难的和复杂的实际问题的计算机(软件)统。 专家系统有三个特点:1.启发性,能运用专家的知识和经验进行推理和判断;2.透明性,能解决本身的推理过程,回答用户提出的问题;3.灵活性,能不断地增长知识,修改原有知识。 1 专家系统的产生与发展 专家系统按其发展过程大致可分为三个阶段[1~3],即初创期(1971年前)、成熟期(1972)1977年)和发展期(1978年至今)。 1.1 初创期 人工智能早期工作都是学术性的,其程序都是用来开发游戏的。尽管这些努力产生了如国际象棋、跳棋等有趣的游戏[4],但其真实目的在于在计算机编码中加入人的推理能力,以

关于船舶自动避碰的探讨

武汉理工大学航运学院毕业生专题报告 关于船舶自动避碰的探讨 姓名:熊志鹏 班级:航海0902班 指导老师:周春辉 日期:2013年5月20日

关于船舶自动避碰的探讨 熊志鹏武汉理工大学 430062 摘要:随着国际航运和造船技术的发展,世界海运量迅速扩大,船舶呈大型化、高速化趋 势发展,海域通航状况更为复杂,船舶操纵难度也日益增加。提高船舶运输的安全性和 经济性尤为重要,这引起了航运技术的变革, 促进了船舶自动化技术的发展。船舶驾驶 自动化是目前船舶自动化的重要组成部分, 从船舶驾驶自动化技术的研究成果看, 避 碰系统是其中的一个薄弱环节, 而这一环节与船舶的航行安全直接相关。 关键词: 自动避碰;智能化;自动导航操纵 引言: 近年来尽管航海技术的日益提高,船舶导航通信设备得到了进一步的完善,但由于种种主观和客观的原因,船舶的碰撞事故仍屡屡发生,给海洋环境及生命财产带来极大的危害。随着计算机技术的快速发展,船舶导航系统与操作的自动化程度日益提高和完善,船舶自动避碰技术也得到快速的发展。本文主要提出了船舶避碰系统的组成,现状以及其发展趋势。 1 船舶避碰系统的发展及现状 航海技术随着人类社会的发展而不断向前,它经历了一个由低级到高级、由简单到复杂、由仅仅依靠人力或自然力到使用柴油动力再到应用计算机、自动化等高科技手段的过程;近年来,为了确保船舶的安全航行、降低成本预算、扩大经济效益、减少船员数量,船舶以安全、节约、经济、减员为目标,朝着大型化、快速化、自动化的方向发展。在船舶自动化领域,船舶避碰向来都是研究的热点和难点。一些西方的发达国家在上个世纪五十年代便开始研究船舶避碰问题了。初始时期,他们将几何的原理和方法应用到了避碰上,并且定量化了避碰规则,这一切的努力在很大程度上促进了船舶数学模型的发展。紧接着,他们进一步从特征和表现形式等方面分析了船舶碰撞危险,相应地又融入了会遇船舶之间的距离和方位的变化分析,从而得到了预测船舶碰撞是否会发生的方法。在此基础上,他们又根据会遇船舶的最近会遇距离和到达最近会遇点的时间等数据,最终判定出了避碰行动的操作时机和操作幅度。 目前,两船会遇时的避碰决策无论是在理论上还是在实际操作上都达到了一定的水准,并取得了不错的成绩。然而在《规则》里,关于多船会遇方面并没有什么指导性、建设性的规定和指示,这造成了多船避碰决策判定的不方便,致使这方面的技术还没有很成熟。同时,船舶驾驶员的船舶操纵经验和心理素质在船舶驾驶方面又存在很大的影响。基于以上的种种原因,船舶避碰的研究还不足以应对现实生活中所有的船舶会遇的情况。80年代后,伴随着新兴科技如计算机、智能控制等地飞速发展和实际应用,人们将研究的焦点聚集到了船舶避碰专家系统上,其中最早将其应用到实际上的是英国的 LivepoolUniversity 和日本的Tokyo Mercantile Marine University;美、英、德也紧随其后将他们的船舶避碰专家系统应用到了实际中。进入 21 世纪后,Southampton University 在观察记录目标船的距离、方位等变化特点的基础上,通过判定船舶碰撞危险度的方法得出避碰决策。尽管这种方法还不太成熟,特别是它没有充分地结合船舶驾驶员的习惯操作和《规则》的规定,但它为我们研

人工智能小型专家系统的设计与实现解读

人工智能技术基础实验报告 指导老师:朱力 任课教师:张勇

实验三小型专家系统设计与实现 一、实验目的 (1)增加学生对人工智能课程的兴趣; (2)使学生进一步理解并掌握人工智能prolog语言; (3)使学生加强对专家系统课程内容的理解和掌握,并培养学生综合运用所学知识开发智能系统的初步能力。 二、实验要求 (1)用产生式规则作为知识表示,用产生系统实现该专家系统。 (2)可使用本实验指导书中给出的示例程序,此时只需理解该程序,并增加自己感兴趣的修改即可;也可以参考该程序,然后用PROLOG语言或其他语言另行编写。 (3)程序运行时,应能在屏幕上显示程序运行结果。 三、实验环境 在Turbo PROLOG或Visual Prolog集成环境下调试运行简单的PROLOG程序。 四、实验内容 建造一个小型专家系统(如分类、诊断、预测等类型),具体应用领域由学生自选,具体系统名称由学生自定。 五、实验步骤 1、专家系统: 1.1建造一个完整的专家系统设计需完成的内容: 1.用户界面:可采用菜单方式或问答方式。

2.知识库(规则库):存放产生式规则,库中的规则可以增删。 3.数据库:用来存放用户回答的问题、已知事实、推理得到的中 间事实。 4.推理机:如何运用知识库中的规则进行问题的推理控制,建议 用正向推理。 5.知识库中的规则可以随意增减。 1.2推理策略 推理策略包括:正向(数据驱动),反向(目标驱动),双向 2、动物分类实验规则集 (1)若某动物有奶,则它是哺乳动物。 (2)若某动物有毛发,则它是哺乳动物。 (3)若某动物有羽毛,则它是鸟。 (4)若某动物会飞且生蛋,则它是鸟。 (5)若某动物是哺乳动物且有爪且有犬齿且目盯前方,则它是食肉动物。(6)若某动物是哺乳动物且吃肉,则它是食肉动物。 (7)若某动物是哺乳动物且有蹄,则它是有蹄动物。 (8)若某动物是有蹄动物且反刍食物,则它是偶蹄动物。 (9)若某动物是食肉动物且黄褐色且有黑色条纹,则它是老虎。 (10)若某动物是食肉动物且黄褐色且有黑色斑点,则它是猎豹。 (11)若某动物是有蹄动物且长腿且长脖子且黄褐色且有暗斑点,则它是长颈鹿。 (12)若某动物是有蹄动物且白色且有黑色条纹,则它是斑马。 (13)若某动物是鸟且不会飞且长腿且长脖子且黑白色,则它是驼鸟。

专家控制系统

第三章 专家控制系统 3.1 专家系统概述 1.专家及专家系统的定义 专家指的是那些对解决专门问题非常熟悉的人们,他们的这种专门技术通常源于丰富的经验以及他们处理问题的详细专业知识。 定义 3.1专家系统主要指的是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家才能处理好的复杂问题。简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。 专家系统的基本功能取决于它所含有的知识,因此,有时也把专家系统称为基于知识的系统(knowledge-based system)。 3.1.1 专家系统的特点及优点 1.专家系统的特点 与常规的计算机程序系统比较,专家系统具有下列特点: (1)启发性 专家系统要解决的问题,其结构往往是不合理的,其问题求解(problem-solving)知识不仅包括理论知识和常识,而且包括专家本人的启发知识。 (2)透明性 专家系统能够解释本身的推理过程和回答用户提出的问题,以便让用户了解推理过程,增大对专家系统的信任感。 (3) 灵活性 专家系统的灵活性是指它的扩展和丰富知识库的能力,以及改善非编程状态下的系统性能,即自学习能力。 (4)符号操作。与常规程序进行数据处理和数字计算不同,专家系统强调符号处理和符号操作(运算),使用符号表示知识,用符号集合表示问题的概念。一个符号是一串程序设计,并可用于表示现实世界中的概念。 (5)不确定性推理。领域专家求解问题的方法大多数是经验性的;经验知识一般用于表示不精确性并存在一定概率的问题。此外,所提供的有关问题的信息往往是不确定的。专家系统能够综合应用模糊和不确定的信息与知识,进行推理。 2.专家系统的优点 (1) 专家系统能够高效率、准确、周到、迅速和不知疲倦地进行工作。 (2) 专家系统解决实际问题时不受周围环境的影响,也不可能遗漏和忘记。 (3) 可以使专家的专长不受时间和空间的限制,以便推广珍贵和稀缺的专家知识与经验。 (4) 专家系统能促进各领域的发展,它使各领域专家的专业知识和经验得到总结和精炼,能够广泛有力地传播专家的知识、经验和能力。 (5) 专家系统能汇集多领域专家的知识和经验以及他们协作解决重大问题的能力,它拥有更渊博的知识、更丰富的经验和更强的工作能力。 (6) 军事专家系统的水平是一个国家国防现代化的重要标志之一。 (7) 专家系统的研制和应用,具有巨大的经济效益和社会效益。 (8) 研究专家系统能够促进整个科学技术的发展。专家系统对人工智能各个领域的发展起了很大的促进作用,并将对科技、经济、国防、教育、社会和人民生活产生极其深远的影响。 3.1.2 专家系统的结构与类型 1. 专家系统的结构 专家系统的结构是指专家系统各组成部分的构造方法和组织形式。系统结构选择恰当与否,是与专家系统的适用性和有效性密切相关的,选择什么结构最为恰当,要根据系统的应用环境和所执行任务的特点确定。例如,MYCIN系统的任务是疾病诊断与解释,其问题的特点是

浅谈专家系统应用与发展

浅谈专家系统应用与发展 摘要:专家系统作为人工智能应用研究的课题之一在各个领域得到广泛应用,但也存在一些突出问题限制了其进一步的发展。本文就专家系统的应用领域和研究热点及其存在问题作了讨论,并提出了新型专家系统的一些特点,指出发展新型专家系统是很有必要的。 关键字:专家系统,知识获取,数据挖掘,多Angent Application and Prospect of Expert System Abstract:Expert system is one of the research subjects of the application of AI(artificial intelligence),and widely uesd in many fields,but some predominant problems confined its development.This article discussed the application areas and research hotspots of expert system,and brought up some characteristics of new style expert system,finally pointed that it’s necessary for us to develop new style expert system. Key words:expert system; knowledge acquisition; data mining; multi-agent system 1专家系统概述 1.1 专家系统的起源与含义 专家系统(expert system)是人工智能领域应用研究最活跃和最广泛的课题之一。第一个专家系统是在1956年由Allen Newell、Herbert Simon及J. C. Shaw 所发展。其后,许多专家系统也纷纷随之建立,但在前期多半是属于研究性质的雏形系统。1970年代之后,人工智能与专家系统专用的程序语言及软件开发工具逐渐开始发展,而各种知识表示法及算法也被广泛地研究,使得专家系统的建构与发展方式产生了不小的改变。在1980年代后期开始,专家系统便能够逐渐脱离实验室的研究而广泛应用于各行业中[1,2]。 专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题[1]。 1.2 专家系统的结构 专家系统的基本结构如图1所示,其中箭头方向为数据流动的方向。专家系统通常由人机交互界面、知识库、推理机、解释器、综合数据库、知识获取等6个部分构成。

专家系统简介

Analysis of the expert system and the technical problem of unemployment Wu Mingming Hubei University of Education,Wuhan,China Abstract:in twenty-first Century, a large number of unemployment of our generation is an indisputable fact. The cause that causes unemployment said Fungous, seems to have a reason. In this paper, the unique angle of view, from the aspects of innovation on the expert system as the representative of the Internet technology, the science and technology, especially the expert system of the explosive development of the technology of the continuing rise in unemployment. Keywords: expert system, technology business, Internet technology. 专家系统和技术性失业问题浅析 吴明明 湖北第二师范学院计算机学院,武汉,中国 摘要:21世纪,我们这一代人的大量失业已是不争的事实。导致失业的原因各说风云,似乎都有道理。本文以独特的视角,从以专家系统为代表的互联网技术的不断革新方面来说,得到了科学技术尤其是专家系统的爆炸性的发展导致了技术性失业的不断增加的事实。 关键词:专家系统,技术性事业,互联网技术。 引言 随着专家系统(Expert System,简称ES)的深度发展,越来越多的工作可以被计算机技术取代。或许在一定时间之内无法完全取代人类从事的所有工作,但是计算机技术已经体现出了取代人类从事的某些工作的巨大的爆发力。换而言之,在企业生产规模不变的情况下(保守估计),所能提供的岗位已经大为缩减。随之而来导致的是大批量的人员失业,技术性失业已经渐渐进入人们的视线。 1、专家系统 1.1专家系统简介 专家系统(Expert System),顾名思义,是一种在特定领域内具有专家水平解决问题能力的智能程序系统。它应用人工智能技术和计算机技术,根据已存储的专家级的知识、经验等同过推理得出更好更适合的解决问题的方法。模拟专家的思维,解决特定方向的问题,它属于人工智能的一个分支。

机床整体控制专家系统及智能柔性驱动编程方案

机床整体控制专家系统及智能柔性驱动编程方 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

Adaptive fuzzy logic controller for DC–DC converters Expert Systems with Applications This paper introduces a complete design method to construct an adaptive fuzzy logic controller (AFLC) for DC–DC converter. In a conventional fuzzy logic controller (FLC), knowledge on the system supplied by an expert is required for developing membership functions (parameters) and control rules. The proposed AFLC, on the other hand, do not required expert for making parameters and control rules. Instead, parameters and rules are generated using a model data file, which contains summary of input–output pairs. The FLC use Mamdani type fuzzy logic controllers for the defuzzification strategy and inference operators. The proposed controller is designed and verified by digital computer simulation and then implemented for buck, boost and buck–boost converters by using an 8-bit microcontroller. Article Outline 1. Introduction 2. Basic design of adaptive fuzzy logic controller 3. Adaptation algorithm for the fuzzy logic controller 4. Computer simulation of the AFLC 5. Implementation of the AFLC with microcontroller 6. Conclusion Commissioning of textor CC, the new TEXTOR control system and first operating experiences Fusion Engineering and Design The old TEXTOR control systems have successfully been updated. The machine control has replaced by textor CC, a solution based on the software package WinCC produced by Siemens. WinCC, and therefore textor CC, can be easily integrated with the already available Siemens S5/S7 hardware components. This new system has the advantage that it is based on industrial soft- and hardware , the lifetime of the control system is extended and the maintenance effort is reduced. The installation and commissioning of the new control system was done in parallel to TEXTOR operation. During this time each function was tested and compared with the actual TEXTOR data. All functionality of the former control system was step-by-step replaced. Special attention was given to the visualization, data and error logging. The machine control timing system has been replaced by an in house development in partnership with Siemens. It consists of transmitters and receivers based on PROFIBUS modules

XXX知识库专家系统

知识库专家系统 一、产品聚焦:知识创造未来 1、助力于汇集群体智慧 2、助力于提高知识收集参与热情 3、助力于提高知识点实用化水平 4、助力于降低培训成本,提升服务效率 5、助力于为各种服务渠道机器人提供支撑 二、产品简介 该产品采用一流的体系架构,先进的检索技术,深度融合电力行业的专业知识应用,以使用者便捷的应用为导向,形成知识从收集、分类、推荐、共享、检索、更新、删除全生命周期的知识管理体系。是95598座席人员、业务人员、管理人员工作不可或缺的工具,是相关人员培训和学习的得力帮手,是智能机器人的后台支撑。 三、产品特点 ■信息全面、与营销业务无缝融合 信息覆盖供电企业的各个领域,专业全面,实现与营销业务应用系统数据集成与业务协作,充分实现数据共享与工作协同。 ■技术先进、使用便捷 采用B/A/S多层分布式体系结构和Lucene全文检索引擎技术,提供先进的搜索算法,创建高效的企业级海量数据搜索引擎。 ■地图式知识管理、智能化知识推理 支持使用者自行设定板块知识结构地图或者不同岗位设置知识岗位地图,可自定义知识推理模型,实现知识应用智能化。 ■强大的知识分类,高速的知识共享交流 依托深厚的电力营销业务行业应用背景,合理进行知识分类,贴近使用者的思维习惯,形成知识收集、知识更新、知识推荐、知识共享、知识交流于一体的知识管理体系,支持多种文档格式相同的展现方式。 ■流程化、规范化、制度化管理 采用流程化的知识管理流程,规范化的知识结构设计,创新的积分激励策略,形成一套知识收集覆盖面广而又精准高效、知识分类科学合理、知识应用方便快捷的制度化知识管理体系。 四、应用效果

说明:通过知识门户,根据知识分类、知识关键字全文检索快速搜索定位知识;快速获取热点知识,最新知识;可对知识进行评价和回复,可提出知识诉求。 说明:通过统一全文检索浏览界面,按关键字对知识进行全文检索,并按知识更新先后顺序、知识热点先后顺序排序展示。 五、产品功能

AIS海上安全新筹码通用版

安全管理编号:YTO-FS-PD883 AIS海上安全新筹码通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

AIS海上安全新筹码通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 如何防止海上船舶碰撞事故,一直是人们关注的研究课题。近年来,几个国际组织,特别是国际海事组织(IMO)、国际航标协会(LALA)和国际电信联盟(ITU)共同研究已斩获新果,那就是船舶自动识别系统(简称AIS)。随着互联网数字技术、无线电/卫星技术的发展,这项新的通信技术日臻成熟 雾里看花的通信导航 现有的导航、通信设备在船舶避碰应用中存在着诸多局限性。 具有50多年历史的船舶导航雷达、约30年历史的ARPA在船舶避碰应用中起到重要作用,但雷达工作易受气象、海况和地形的影响,难以确保检测信息的可靠性,基于雷达目标信息源的ARPA及各种“避碰专家系统”存在误跟踪和丢失率高、精度与分辨率不高等局限性。 目前船舶间通信依靠VHF无线电话。该方式系人工操作、效率低、频道也拥挤,有时还存在语言障碍等原因,因此不能自动获得相遇船舶识别信息,不能及时沟通以便

机床整体控制专家系统及智能柔性驱动编程方案

Adaptive fuzzy logic controller for DC–DC converters Expert Systems with Applications This paper introduces a complete design method to construct an adaptive fuzzy logic controller (AFLC) for DC–DC converter. In a conventional fuzzy logic controller (FLC), knowledge on the system supplied by an expert is required for developing membership functions (parameters) and control rules. The proposed AFLC, on the other hand, do not required expert for making parameters and control rules. Instead, parameters and rules are generated using a model data file, which contains summary of input–output pairs. The FLC use Mamdani type fuzzy logic controllers for the defuzzification strategy and inference operators. The proposed controller is designed and verified by digital computer simulation and then implemented for buck, boost and buck–boost converters by using an 8-bit microcontroller. Article Outline 1. Introduction 2. Basic design of adaptive fuzzy logic controller 3. Adaptation algorithm for the fuzzy logic controller 4. Computer simulation of the AFLC 5. Implementation of the AFLC with microcontroller 6. Conclusion Commissioning of textor CC, the new TEXTOR control system and first operating experiences Fusion Engineering and Design The old TEXTOR control systems have successfully been updated. The machine control has replaced by textor CC, a solution based on the software package WinCC produced by Siemens. WinCC, and therefore textor CC, can be easily integrated with the already available Siemens S5/S7 hardware components. This new system has the advantage that it is based on industrial soft- and hardware , the lifetime of the control system is extended and the maintenance effort is reduced. The installation and commissioning of the new control system was done in parallel to TEXTOR operation. During this time each function was tested and compared with the actual TEXTOR data. All functionality of the former control system was step-by-step replaced. Special attention was given to the visualization, data and error logging. The machine control timing system has been replaced by an in house development in partnership with Siemens. It consists of transmitters and receivers based on PROFIBUS modules

相关文档