文档库 最新最全的文档下载
当前位置:文档库 › 高分子化学复习解析

高分子化学复习解析

高分子化学复习解析
高分子化学复习解析

1.高分子也叫高分子化合物,是指分子量很高并由共价键连接的一类化合物。

2.在大分子链中出现的以单体结构为基础的原子团称为结构单元。

3.合成高分子的低分子原料称为单体。

4.与单体的分子相比,原子种类和各种原子的个数完全相同的结构单元又可称

为单体单元。

5.多分散性:高分子(除少数天然高分子如蛋白质、DNA等外)不是由单一分

子量的化合物所组成即使是一种“纯粹”的高分子,也是由化学组成相同、分子量不等、结构不同的同系聚合物的混合物所组成。这种高分子的分子量不均一(即分子量大小不一、参差不齐)的特性,就称为分子量的多分散性。

6.塑料是在玻璃态下使用的高分子材料。在一定温度、压力下可塑制成型,在

常温下能保持其形状不变。

7.塑料是以树脂为主要成分,加入各种添加剂。树脂是塑料的主要成分,对塑

料性能起决定性作用。

8.按树脂受热时行为可分为热塑性塑料和热固性塑料。按使用范围可分为通用

塑料、工程塑料和特种塑料。

9.热固性塑料是在树脂中加入固化剂压制成型而形成的体形聚合物。

10.高分子的化学反应分为三大类

①“ n不变”:聚合物侧基和(或)端基的化学反应,分子主链不发生变化

②n变大:交联、扩链、接枝、嵌段

③n减小:降解(光降解、热降解),解聚。

11.高分子的侧基或端基发生改变,反应前后聚合度不变,该种聚合物的化学反应

称为聚合度相似转变(官能团转变)。

12.纤维素的改性:纤维素由葡萄糖单元组成,每一个结构单元上有三个羟基,它

们是反应性基团,在适当的条件下可以发生反应。

⑴纤维素硝化

纤维素经浓硝酸和浓硫酸处理制成硝化纤维素,其含氮量为12.5%~13.6%称为高氮硝化纤维,含氮量为13%可用作无烟火药,含氮量为10%~12.5%的称为低氮硝化纤维; 含氮量为11%用来制作赛璐珞塑料,含氮量为12%用作涂料和照相底片。所有的硝化纤维素都易燃,除用作火药外,已被醋酸纤维素所代替。

⑵醋酸纤维素的制备

纤维素与醋酸和醋酸酐混合液作用在浓硫酸存在下可以制备醋酸纤维素。

一醋酸纤维素强度大、透明,可用做录音带、电影胶卷、眼镜架、电器零部件等。

二醋酸纤维素和三醋酸纤维素:人造丝

13.聚乙烯醇的合成:

⑴以醋酸乙烯为单体经自由基溶液聚合制备PVAC

⑵ PVAC经醇解制备PVA

14.降解:高分子在储存、加工和使用过程中,分子链在机械力、热、高能辐射、

超声波或化学反应等的作用下,高分子的链段断裂成较小聚合度产物的反应过程。

15.老化:聚合物在加工、贮存及使用过程中,物理化学性质和力学性能发生不

可逆的坏变现象称为老化。

聚合物降解与老化是两个不同的概念。除了聚合物降解可引起聚合物老化外,一些物理因素也会引起聚合物的老化。

16.热降解:聚合物在隔绝空气和辐射的情况下,单纯由热引起的聚合物的降解

反应。

17.热降解的三种方式:

⑴无规降解

聚合物在热的作用下,大分子链发生任意断裂,分子量迅速下降,形成低聚体,但单体收率很低(一般小于3%),这种热降解称为无规降解。利用聚合物的热降解可制备低聚体。如将废聚乙烯、聚丙烯塑料薄膜热降解,可制柴油、煤油和汽油等。

聚乙烯、聚丙烯、聚丁二烯等容易发生无规降解

聚乙烯无规降解的结果变为C9~C13烃类,可做柴油、煤油和汽油等。

(2) 解聚

聚合物在热的作用下发生热降解,但降解反应是从链的末端开始,降解结果变为单体,单体收率可达90%-100%,这种热降解叫解聚。

典型代表:聚甲基丙烯酸甲酯解聚反应

主链带有季碳原子的高分子易发生解聚,如PMMA、聚α-甲基苯乙烯、聚异丁烯;

(3)取代基的脱除

聚氯乙烯和聚偏二氯乙烯加热时易着色,起初变黄,然后变棕,最后变为暗棕或黑色,同时有氯化氢放出。

18.机械降解:高分子在机械力和超声波作用下,都可能使大分子断链而降解。

19.天然橡胶的塑炼是典型的机械降解的例子。天然橡胶经过塑炼加工后,分子

量降低,塑性增加,加工性能变好。

20.聚乳酸可作外科缝合线,由于它能在生物体内水解为乳酸被生物体吸收,对生

物体无害,并参与生物体内的新陈代谢而排出体外,所以伤口愈合后不必拆线。

21.高分子的结构——组成高分子的不同尺度的结构单元在空间的排布状态,包

括高分子的链结构和高分子聚集态结构。

①高分子链结构是指单个分子的结构和形态,又分为近程结构和远程结构。

近程结构:单体单元的化学组成和构型。

远程结构:单个高分子在空间中所存在的各种形状-构象。

②高分子聚集态结构是指高分子链之间的几何排列和堆砌状态。包括晶态

结构、非晶态结构、取向态结构、液晶态结构以及织态结构。

22.近程结构是反映高分子各种特性的最主要结构层次,它直接影响高分子的熔

点、密度、溶解性、粘度、粘附性等许多性能。正因为这些性能与高分子链的结构单元化学组成及构型的密切联系,各种聚合物才得以显示出它们特征的千差万别。

23.构型:指分子中由化学键所固定的原子或原子团在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。高分子链的构型包括几何异构和旋光异构。

24.构造:分子链的构造指的是不考虑化学键内旋转的情况下大分子链的各种形状。包括线型,支化和交联。

25.构象:是指分子中的原子或原子团由于C-C单键内旋转而形成的空间排布(位置、形态)。

(即C-C单键内旋转产生每种排布就是一种构象,所以高分子链有无穷多个构象)。由于热运动,分子的构象在时刻改变着,因此高分子链的构象是统计性的。

26.单间内旋转是导致链成蜷曲构象的根本原因。内旋转越自由,蜷曲的趋势越大。

27. 构型与构象的区别:

①定义不同

构型:指分子中由化学键所固定的原子或原子团在空间的几何排列

构象:是指分子中的原子或原子团由于C-C单键内旋转而形成的空间排布(位置、形态)。

②特点:构型是稳定的,要改变构型必须通过化学键的断裂或重组。构象是通过单键的内旋转实现的(热运动),是不稳定的,具有统计性。由统计规律知道,大分子链蜷曲的几率最大,呈伸直链构象的几率最小。

28. 柔顺性:高分子链能够改变其构象的性质。

29. 链段:一个单键内旋转牵连着若干个结构单元一起运动,则这若干个结构单元组成的能够独立运动的单元叫做一个链段(50~100)。

30. 影响柔性的因素

非键合原子间相互作用越小,内旋转阻力越小。单键内旋转的越容易或构象数目越多链

段越短,高分子链越柔顺。

﹤1﹥主链的结构

①若主链全由C-C单键组成,内旋转容易,链柔顺性好。柔性顺序:Si-O﹥C -N﹥C-O﹥C-C(键长、键角)(举例)

②主链含有芳杂环时,内旋转难,链柔性差。

③主链中含有孤立C=C双键时,链柔顺性好,聚丁二烯等橡胶。但含有C=C-C =C及-Ph-Ph-Ph的链柔顺性差,是刚性链。

﹤2﹥取代基的结构

①侧基的极性越大,极性基团数目越多,相互作用越强,单键内旋转越困难,分子链柔顺性越差。如:

柔顺性:聚乙烯 > 氯化聚乙烯 >聚氯乙烯

②非极性侧基的体积越大,内旋转位阻越大,柔顺性越差;如:

柔顺性:聚乙烯 >聚丙烯> 聚苯乙烯

③链段之间是否存在氢键,能形成氢键的,高分子柔性差一些.

聚酯聚酰胺聚氨酯

④分子链中取代基的对称分布柔顺性大于不对称分布,如聚偏二氯乙烯>聚二氯乙烯。

<3>高分子链的长短.

链越长(分子量有一定限度),柔性越大。如橡胶分子量大, 柔性好;

﹤5﹥支化和交联

支链长,则阻碍链的内旋转,柔顺性下降交联结构,当交联度不大时(含硫2-3%的橡胶)对链的柔顺性影响不大,但是交联度达到一定程度(如含硫

30%以上)则大大影响链的柔顺性。

﹤4﹥分子间作用力

分子间作用力增大,则柔顺性减小。

﹤6﹥分子链的规整性

分子结构规整,结晶能力强,则柔顺性差。

﹤7﹥外界因素的影响

a. 温度的影响:温度越高,高分子链柔性越好

b. 与外力的作用有关

慢:外力增加,链的柔性增加

快:外力增加,链的柔性降低

31.分子链的柔顺性和高分子材料的柔顺性不能混为一谈,它们在大多数情况下一致,有时却不一致。但是当分子链排列堆砌形成聚集态时,由于分子结构非常规整,形成了结晶。一旦形成结晶,链柔性就表现不出来,高分子表现刚性。比如聚乙烯和聚甲醛,它们都具有很好的柔性,但这两种高分子都是塑料,聚甲醛还是刚性较大的工程塑料。所以在判断高分子材料的刚柔性时,必须同时考虑分子链的柔性、分子链间的相互作用以及聚集态结构。

32.内聚能:把1mol的液体或固体分子移到其分子引力范围之外所需要的能量。内聚能密度:单位体积的内聚能。

CED越大,分子间作用力越大;

CED越小,分子间作用力越小。

不同种类的高分子其内聚能密度相差很大:

当CED<290J/m3,非极性聚合物分子间主要是色散力,较弱;再加上分子链的柔顺好,使这些材料易于变形具有弹性--橡胶

当CED>420J/m3,分子链上含有强的极性基团或者形成氢键,因此分子间作用力大,机械强度好,耐热性好,再加上分子链结构规整,易于结晶取向--纤维当CED在290~420J/m3,分子间作用力适中--塑料。

33.高分子再结晶过程中可以形成相差极大的晶体,主要有单晶、球晶、纤维晶、串晶、树枝状晶、伸直链晶体。也可分类为单晶、多晶、非晶、准晶。

34.球晶:当高分子从浓溶液中析出或从熔体中冷却结晶时,在不存在应力或流动的情况下,形成外观为球体的结晶形态。

a. 生成条件:①高分子浓溶液中析出;②熔体冷却,不存在应力或流动力

b. 外观:圆球形,直径在5~10微米之间;由偏光显微镜观察——黑十字消光图案

c. 生长过程:

①成核:由一个多层片晶形成球晶的晶核。

②片晶生长:片晶逐渐向外生长并不断分叉形成捆束状形态。

③形成球晶:捆束状形态进一步发展,最后填满空间形成球状晶体。

35.控制球晶大小的方法:

①将熔体急速冷却(得到小球晶),缓慢冷却得到较大球晶;

②共聚破坏链均一和规整性——小球晶;

③外加成核剂——小(微球晶)。

36.链结构与结晶能力的关系(影响因素):

1)链的对称性升高,结晶能力升高

对称性高,所以极易结晶(任何苛刻条件均可,例如在液氮中急冷也能结晶)但PE氯化得到结晶能力几乎丧尽,对称性破坏了。

2)链的空间立构规整性上升,结晶能力也提高

A.有规立构的都可以结晶:全同PP;全同(间同)PMMA;全同PS;全顺式;全反式1,4聚丁二烯。

B.无规立构PP、无规立构PMMA、无规立构PS均为典型的非结晶高聚物(例外的是无规立构的PVAc水解的聚乙烯醇可以结晶)。

3)分子间作用力使结晶能力上升(分子间力增大,使分子变得刚硬,不利于链规则排列,同时使分子敛集紧密,两种作用的结果还是利于结晶)。例如:尼龙,聚乙烯醇都有较大结晶度。

4)链的几何形状

支化越多,结晶下降(因为支化的分子链不规整,难以结晶);交联越多,结晶也下降(因为交联的分子链不规整,难以结晶)

5)高分子的相对分子质量

对同一聚合物而言,在相同的温度下,相对分子质量越低,结晶进行得越快。相对分子质量低的部分其结晶性大于相对分子质量高的部分。为了得到同样的结晶度,高相对分子质量的高聚物比低相对分子质量的需要更长时间的热处理或退火处理以助其结晶。

6)链柔性较好的高分子有利于结晶,例如聚乙烯;但太好反而不能结晶。例如聚二甲基硅氧烷。

37.同质多晶:同一种高分子在不同的条件下结晶,会得到不同晶型的晶体。

38.取向:在某种外力作用下,线性高分子链或者其他结构单元沿着外力作用方向择优排列的过程。

39. 取向态和结晶态的异同

相同:都与高分子有序性相关。

相异:取向态是一维或二维有序,结晶态是三维有序;

取向不稳定,结晶稳定。

40.共混的目的:①为了改善和提高高分子的物理性能(如机械强度、耐热性、

加工流动性等)②共混后可获得纯组分没有的综合性能,使材料增加新的特性,满足一些特殊使用要求。

41.非晶态高分子的温度-形变曲线:对一个非晶高分子试样施加一个恒定的应力,然后以一定的升温速率对该试样进行加热,并观察随温度升高试样形状和尺寸的变化。

三种力学状态:玻璃态、高弹态、粘流态

两种转变:玻璃化转变:玻璃态?高弹态;高弹态向粘流态的转变

42. 从分子运动机理说明无定形聚合物的三种力学状态和两种转变:

玻璃态:

温度较低(T《200K),分子运动的能量很低,不能克服单键内旋转的位垒,链段被冻结,只有小运动单元(侧基,链节,支链)能运动,因此此时受外力时,链段运动被冻结,只能使链的键长键角发生微小的改变。宏观表现:受力后,形变很小,形变与所受的力大小成正比,当外力除去后,形变立刻恢复,这种力学性质叫虎克型弹性,又称普弹性。非晶高聚物处于普弹性的状态叫玻璃态(质硬无弹性)。

高弹态:

T增加,虽然整个分子的移动不可能,但是当T=Tg 时,分子热运动的能量足以克服内旋转的位垒,链段开始运动,可以通过单键的内旋转改变构象,甚至可以使部分链段产生滑移,聚合物进入了高弹态。当聚合物受到拉伸力时,分子链通过单键的内旋转和链段运动改变构象从蜷曲状态到伸展状态(宏观上表现为很大的形变),当外力除去时,又回复到原来状态(宏观上表现为弹性回缩),这种受力后形变很大而且又回复的力学性质为高弹性,它是非晶高聚物处在高弹态下特有的力学特征。

粘流态:

温度继续升高,整个分子链通过链段的协同运动而发生相对位移,高聚物在外力

作用下会发生粘性流动,呈现粘弹性,它是整个分子链发生滑移的宏观表现。是不可逆的变形(外力去掉后形变不能恢复)。

43.不论何种高分子,凡是自由体积占高分子总体积的2.5%时,高分子就要发生玻璃化转变。或者说,高分子在发生玻璃化转变时,其自由体积分数都等于0.025.

44. 影响聚合物玻璃化温度的因素:凡是影响高分子链柔性的因素都会影响Tg。

45.调节玻璃化转变温度的方法:

①增塑:主要目的是为了降低高分子的Tg温度和加工温度,因为加入增塑剂后可以使分子链之间的相互作用力减弱。增塑剂对Tg的影响比共聚来的更有效。

②共聚

46.玻璃化转变温度的作用:

①从工艺上:Tg 是非晶态热塑性塑料使用的上限温度,Tb是塑料的使用下限温度。Tg是橡胶的使用下限温度,上限温度是T?

②从学科上:Tg是衡量聚合物链柔性高低的表征温度。Tg越小,链的柔性越好总之,Tg是聚合物的特征温度之一,可作为表征高聚物的指标。

47.结晶熔融过程与熔点:

物质从结晶状态转变为熔融态的过程称为熔融。

通常把结晶高分子完全熔融时所对应的温度作为它的熔点Tm,从开始熔融到熔融完成的温度范围称为熔限。

48.黏流温度:高弹态与黏流态之间的转变温度称为黏流温度,用T f表示。有些高分子无黏流温度。

49.熔体流动中的弹性效应

①法向应力效应②挤出膨胀效应③不稳定流动和熔体破裂

50.力学松弛:聚合物的力学性质随时间变化的现象,叫力学松弛。

51.蠕变:在一定的温度和较小的恒定应力(拉力,扭力或压力等)作用下,材

料的形变随时间的增长而逐渐增加的现象。

52.应力松弛:在恒定的温度和形变不变的情况下,聚合物内部应力随着时间的增长而逐渐衰减的现象。

53.出现应力松弛现象的原因:

在外力作用下,高分子链不得不顺着外力方向被迫舒展,因而会产生内部应力与外力相抗衡。但是随着时间的延长,链段可以通过热运动使大分子链之间产生相对滑移,滑移后的大分子由于存在自发恢复构象的趋势,大分子逐渐恢复到卷曲的原状,内应力逐渐消失,与之相平衡的外力也逐渐减小到零。

54.滞后现象:聚合物在交变应力的作用下,形变落后于应力变化的现象。

55.非晶态高分子材料的应力-应变曲线

εy:屈服伸长率;εb:断裂伸长率

56.橡胶高弹性的本质是熵弹性:橡胶弹性是由熵变引起的,在外力作用下,橡胶分子链由卷曲状态变为伸展状态,熵减小,当外力移去后,由于热运动,分子链自发地趋向熵增大的状态,分子链由伸展再回复卷曲状态,因而形变可逆。

09高分子化学期末考试试卷答案

1.高分子,又称(聚合物),一个大分子往往由许多简单的(结构单元)通过(共价键)重复键接而成。 2.(玻璃化温度)和(熔点)是评价聚合物耐热性的重要指标。 3.(缩聚反应)是缩合聚合反应的简称,是指带有官能团的单体经许多次的重复缩合反应而逐步形成聚合物的过程,在机理上属于(逐步聚合),参加反应的有机化合物含有(两个)以上官能团。 4.缩聚反应按缩聚产物的分子结构分类分为(线型)缩聚反应和(体型)缩聚反应。 一、名词解释(1分×20=20分) 1.阻聚剂:具有阻聚作用的物质称为~ 23 2.笼闭效应:聚合体系中引发剂浓度很低,引发剂分子处于在单体或溶剂的包围中,就像关在“笼子”里一样,笼子内的引发剂分解成的初级自由基必须扩散并冲出“笼子”后,才能引发单体聚合。 3. 引发剂效率:引发聚合的部分引发剂占引发剂分解或消耗总量的分率。28 4.自动加速效应(autoacceleration effect):p40 又称凝胶化效应。在自由基聚合反应中,由于聚合体系黏度增大而使活性链自由基之间碰撞机会减少,难于发生双基终止,导致自由基浓度增加,此时单体仍然能够与活性链发生链增长反应,从而使聚合速率自动加快的现象。 5.半衰期:引发剂分解至起始浓度一半时所需要的时间。27 三、简答题(5分×3=15分) 1. 根据预聚物性质与结构不同预聚物分为那几种? 根据预聚物性质与结构不同分为:无规预聚物和结构预聚物。 2.反应程度与转化率是否为同一概念? 反应程度与转化率根本不同。 转化率:参加反应的单体量占起始单体量的分数。是指已经参加反应的单体的数目。 反应程度:是参加反应的官能团数占起始官能团数的分数,用P表示。反应程度可以对任何一种参加反应的官能团而言是指已经反应的官能团的数目。 3.自由基聚合反应转化率-时间曲线特征 诱导期:初级自由基为阻聚杂质所终止,无聚合物形成,聚合速率零。若严格取除杂质,可消除诱导期。 初期:单体开始正常聚合,转化率在5%~10%以下(研究聚合时)或10%~20%(工业上)以下阶段称初期; 此时转化率与时间近似呈线性关系,聚合恒速进行。 中期:转化率达10%~20%以后,聚合速率逐渐增加,出现自动加速现象,直至转化率达50%~70%,聚合速率才逐渐减慢。 后期: 自动加速现象出现后聚合速率逐渐减慢,直至结束,转化率可达90%~100%。 四、问答题(15分×3=45分) 1.自由基聚合与缩聚反应的特征比较 自由基聚合: 1)由基元反应组成,各步反应的活化能不同。引发最慢。 2)存在活性种。聚合在单体和活性种之间进行。 3)转化率随时间增长,分子量与时间无关。 4)少量阻聚剂可使聚合终止。 线形缩聚: 1)聚合发生在官能团之间,无基元反应,各步反应活化能相同。 2)单体及任何聚体间均可反应,无活性种。 3)聚合初期转化率即达很高,官能团反应程度和分子量随时间逐步增大。 4)反应过程存在平衡。无阻聚反应。 2.常用的逐步聚合方法有几种?各自的主要特点是什么? 熔融缩聚: 优点:生产工艺过程简单,生产成本较低。可连续法生产直接纺丝。聚合设备的生产能力高。 缺点:反应温度高,要求单体和缩聚物在反应温度下不分解,单体配比要求严格;反应物料粘度高,小分子不易脱除。局部过热可能产生副反应,对聚合设备密封性要求高。 适用范围:广泛用于大品种缩聚物,如聚酯、聚酰胺的生产。 溶液缩聚: 优点:溶剂存在下可降低反应温度,避免单体和产物分解,反应平稳易控制。 可与产生的小分子共沸或与之反应而脱除。聚合物溶液可直接用作产品 缺点:溶剂可能有毒,易燃,提高了成本。增加了缩聚物分离、精制、溶剂回收等工序。

高分子化学课后习题答案

第一章绪论 思考题 1. 举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。 在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。 聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。 聚合度是衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平 X表示。均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以n 2. 举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。 答:合成高分子多半是由许多结构单元重复键接而成的聚合物。聚合物(polymer)可以看作是高分子(macromolecule)的同义词,也曾使用large or big molecule的术语。 从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。 根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。多数场合,聚合物就代表高聚物,不再标明“高”字。 齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。低聚物的含义更广泛一些。 3. 写出聚氯乙烯、聚苯乙烯、涤纶、尼龙-66、聚丁二烯和天然橡胶的结构式(重复单元)。选择其常用分子量,计算聚合度。 聚合物结构式(重复单元) 聚氯乙烯-[-CH2CHCl-]- n 聚苯乙烯-[-CH2CH(C6H5)-]n 涤纶-[-OCH2CH2O?OCC6H4CO-]n 尼龙66(聚酰胺-66)-[-NH(CH2)6NH?CO(CH2)4CO-]n 聚丁二烯-[-CH2CH=CHCH2 -]n 天然橡胶-[CH2CH=C(CH3)CH2-]n 聚合物分子量/万结构单元分子 DP=n 特征 量/万

高分子化学期末试题

高分子化学期末试题 一、一、填空题 1、Lewis酸通常作为-------型聚合的引发剂,Lewis碱可作为-------型聚合的引发剂。 二组份Ziegler-Natta催化剂是由-------组成的主催化剂和由------组成的共催化剂组成。 2、自由基聚合的特征是-------、-------、-------;阴离子聚合的特征是-------、-------、-------; 阳离子聚合的特征是-------、-------、-------、-------。 3、引发剂引发自由基聚合初期的聚合速率方程是-------。欲提高自由基聚合的聚合物 的分子量,可采用-------(提高或降低)聚合温度、-------(提高或降低)引发剂浓度的方法。 4、用动力学方程推倒自由基二元共聚组成方程时做了5个假定。它们是-------、-------、 -------、-------、-------。 5、单体的相对活性习惯上用-------判定,自由基的相对活性用-------判定。在用Q、e 值判断共聚行为时,Q值代表-------,e值代表-------;若两单体的Q、e值均接近,则趋向于-------共聚;若Q值相差大,则-------;若e值相差大,则-------。Q-e方程的最大不足是-------。 6、从竞聚率看,理想共聚的典型特征为-------。某对单体共聚,r1=0.3,r2=0.1,该共 聚属-------共聚,画出共聚组成曲线-------;若起始f10=0.5,所形成的共聚物的瞬间组成为F10,反应到t时刻,单体组成为f1,共聚物瞬间组成为F1,则f1-------f10(大于或小于),F1-------F10(大于或小于)。 7、从热力学角度看,三、四元环状单体聚合的主要推动力是-------,而十二元以上环 状单体的聚合能力比环烷烃的聚合能力--------(大或小);从动力学角度看,杂环单体的聚合能力比环烷烃的聚合能力-------(大或小)。 8、线形缩聚的主要实施方法有-------、-------、-------、-------四种方法,其中-------聚合 方法必须采用高活性单体。 9、按参加反应的单体种类,可将逐步聚合分成-------、-------和-------;按反应热力学 特征可将逐步聚合分成-------和-------。 10、体型缩聚的预聚物可分为-------和-------两类,属于前者的例子有-------和--------, 属于后者的例子有-------和-------。 11、顺丁橡胶采用-------交联,二元乙丙橡胶采用-------交联。PMMA热降解的主 要产物是,PVC受热时发生--------。 12、邻苯二甲酸酐与甘油按下列分子摩尔比例反应,用Carothers方法计算凝胶点。 ①邻苯二甲酸酐:甘油=3.00:2.00②邻苯二甲酸酐:甘油=3.00:1.96。 二、二、完成下列反应式和合成聚合物的反应式 1、聚丙烯酰胺的合成 2、IIR的合成 3、聚甲醛的合成 4、PET的合成 5、HIPS的合成 6、苯乙烯阳离子交换树脂的合成 7、维尼纶的合成 8、 9、 H2C C H 2

高分子化学第六章答案

第五章离子聚合 2.将1.0×10-3mol萘钠溶于四氢呋喃中,然后迅速加入2.0mol的苯乙烯,溶液的总体积为1L。假如单体立即均匀混合,发现2000秒钟内已有一半单体聚合,计算在聚合了2000秒和4000秒时的聚合度。 解:无终止的阴离子聚合速率为R p=k p[M-][M] 以萘钠为引发剂时,由于聚合开始前,引发剂就以定量地离解成活性中心 ∴[M-]=[C]=1.0×10-3mol/L 将R p式改写为-d[M]/dt=k p[C][M] 积分得ln([M]0/[M])=k p[C]t 已知t1=2000秒时,[M]0/[M]1=2,代入上面积分式: ln2=k p×2000 ∴k p[C]=ln2/2000 设当t2=4000秒时,剩余单体浓度为[M]2 ln([M]0/[M]2)=k p[C]t2=ln2/2000×4000=1.386 ∴[M]2= [M]0/4 则反应掉的单体浓度为[M]0-[M]0/4=3[M]0/4 根据阴离子聚合的聚合度公式x n=n[M]/[C] (双阴离子n=2) [C]为引发剂浓度 ∵聚合到2000秒时,单体转化率为50%,则反应掉的单体浓度为50%[M]0 ∴= x n×50%[M]0/[C]=2×50%×2.0/(1.0×10-3)=2000 n 已求得聚合到4000秒时,反应掉的单体浓度为3[M]0/4 ∴= x n×(3[M]0/4)/[C]=2×(3/4)×2.0/(1.0×10-3)=3000 n

4.异丁烯在四氢呋喃中用SnCl 4-H 2O 引发聚合。发现聚合速率R p ∝[SnCl 4][H 2O][异丁烯]2。起始生成的聚合物的数均分子量为20000。1.00g 聚合物含3.0×10-5mol 的OH 基,不含氯。写出该聚合的引发、增长、终止反应方程式。推导聚合速率和聚合度的表达式。指出推导过程中用了何种假定。什么情况下聚合速率是水或SnCl 4的零级、单体的一级反应? 解:根据题意,终止是活性中心与反离子碎片结合。 ① 引发:SnCl 4+H 2 O H (SnCl 4OH) H (SnCl 4OH)+CH 2C CH 3 3 k i CH 3 C CH 3 3 (SnCl 4OH) 增长: CH 3 C CH 3 CH 3 (SnCl 4OH)+CH 2C CH 3CH 3 p CH 2C CH 3 CH 3 C CH 3 CH 3 CH 3 (SnCl 4OH) +M CH 2 C CH 3 CH 3 C CH 3CH 2CH 3 C CH 3 CH 3 CH 3 (SnCl 4OH)n 终止: CH 2C CH 3 3 C CH 3CH 23 C CH 3 CH 3 3 (SnCl 4OH)n t CH 2C CH 3 3 C CH 3CH 23 C CH 3 CH 3 3 OH+SnCl 4n ② 各步反应速率方程为 R i =k i [H +(SnCl 4OH)-][CH 2=C(CH 3)2]=k 络k i [SnCl 4][H 2O][CH 2=C(CH 3)2] (k 络=[H +(SnCl 4OH)-]/[SnCl 4][H 2O]) R p =k p [HM +(SnCl 4OH)-][CH 2=C(CH 3)2]

《高分子化学》习题与答案

1. 说明下列名词和术语: (1)单体,聚合物,高分子,高聚物 (2)碳链聚合物,杂链聚合物,元素有机聚合物,无机高分子 (3)主链,侧链,侧基,端基 (4)结构单元,单体单元,重复单元,链节 (5)聚合度,相对分子质量,相对分子质量分布 (6)连锁聚合,逐步聚合,加聚反应,缩聚反应 (7)加聚物,缩聚物,低聚物 2.和低分子化合物比较,高分子化合物有什么特征? 3. 从时间~转化率、相对分子质量~转化率关系讨论连锁聚合和逐步聚合间的相互关系和差别。 4. 举例说明链式聚合和加聚反应、逐步聚合和缩聚反应间的关系和区别。 5. 各举三例说明下列聚合物 (1)天然无机高分子,天然有机高分子,生物高分子。 (2)碳链聚合物,杂链聚合物。 (3)塑料,橡胶,化学纤维,功能高分子。 6. 写出下列单体的聚合反应式和单体、聚合物的名称 (1) CH2=CHF (2) CH2=CH(CH3)2 CH3 | (3) CH2=C | COO CH3 (4) HO-( CH2)5-COOH (5) CH2CH2CH2O |__________| 7. 写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合? (1) -[- CH2- CH-]n- | COO CH3 (2) -[- CH2- CH-]n- | OCOCH3 (3) -[- CH2- C = CH- CH2-]n- | CH3 (4) -[-NH(CH2)6NHCO(CH2)4CO-]n- (5) -[-NH(CH2)5CO-]n- 8. 写出合成下列聚合物的单体和反应式: (1) 聚苯乙烯 (2) 聚丙烯 (3) 聚四氟乙烯 (4) 丁苯橡胶 (5) 顺丁橡胶

高分子化学期末考试题

绪论 一、选择题 1、美国科学家艾伦?黑格、艾伦?马克迪尔米德以及日本 科学家白川英树由于在____领域的开创性贡献,荣获 2000年的诺贝尔化学奖。 A、纳米材料 B、配位聚合 C、基团转移聚合 D、导 电聚合物 2、高分子的概念是20世纪二十年代由_______首先提出的。 A、 Carothers B、Staudinger C、Flory 4、尼龙-610的单体为______。 A、癸二酸; B、己二胺 C、己二酸 D、癸二胺 5、有机玻璃、尼龙-6 、电木、Teflon分别是______。 A、酚醛树脂; B、聚四氟乙烯 C、聚甲基丙烯酸甲酯 D、聚己内酰胺 二、填空题 1、大多数加聚反应属于_____________聚合机理。 2、聚合物按大分子主链的化学组成可分_________、 _________、_________。 3、塑料按其受热行为的不同可分为塑料和塑料。 三、写出下列高分子的重复单元的结构式 PE、PS、PVC、尼龙—66,涤纶 GAGGAGAGGAFFFFAFAF

四、求下列混合物的数均聚合度、质均聚合度好分子量分布指数 组分1:质量分数=0.6,分子量=1x104 组分2:质量分数=0.4,分子量=1x105 第二章逐步聚合 一、选择题 1、当m为_________时,进行缩聚反应易于环 化。 A、5; B、6; C、3和4; D、2 2、在低转化率时就能获得高分子量聚合物的方法是___。 A、熔融缩聚; B、固相缩聚; C、界面缩聚; D、溶液缩聚 GAGGAGAGGAFFFFAFAF

3、缩聚反应中,所有单体都是活性中心,其动力学特点是__。 A、单体慢慢消失,产物分子量逐步增大; B、单体逐步消失,产物分子量很快增大; C、单体很快消失,产物分子量逐步增大; 4、在己二酸和己二醇缩聚反应中加入0.4%的对甲苯磺酸起 到的作用为 _____。 A、提高聚合速率; B、控制分子量; C、链转移剂; 5、合成线型酚醛预聚物的催化剂应选用 _______。 A、过氧化氢; B、草酸; C、正丁基锂; D、氢氧化钙 第三章自由基聚合 一、选择题 1、苯乙烯在除溶剂种类外其它条件均相同的情况下分别在下列四种溶剂中进行自由基聚合,则在__ ______中得到的聚合物的分子量最小。 A、乙苯; B、苯; C、异丙苯; D、甲苯 2、生产聚氯乙烯时,决定产物分子量的因素是 __________。 GAGGAGAGGAFFFFAFAF

高分子化学潘祖仁版课后习题答案

第一章 绪论 计算题 1.求下列混合物的数均分子量、质均分子量和分子量分布指数。 =10g ,分子量 =30 000 ; b 、组分 B:质量=5g ,分子量 =70 000 解:数均分子量 n i M i g/M j ) 质均分子量 m ,M i M w w i M i m i 10 30000 5 70000 1 100000 46876 10 5 1 分子量分布指数 M w / M n =46876/38576 = 第2章 缩聚与逐步聚合 计算题 2.羟基酸HO-(CH) 4-COOH t 行线形缩聚,测得产物的质均分子量为 18,400 g/mol -1,试计算:a.羧基已经 醌化的百分比 b. 数均聚合度 c. 结构单元数X n 解:已知 M w 18400, M 0 100 根据X W 匹和 X W 1一p 得:p=,故已酯化羧基百分数为% M 0 1 P M w 1 P,M n 9251 M n M n 9251 X n 92.51 M 0 100 a 、组分A :质量 c 、组分C:质量 =1g ,分子量 =100 000 m i 10 5 1 10/30000 5/70000 1/100000 38576

8.等摩尔的乙二醇和对苯二甲酸在280C下封管内进行缩聚,平衡常数K=4,求最终X n。另在排除副产物水的条件下缩聚,欲得X n 100,问体系中残留水分有多少? 1 . 解: X n K 1 3 1 p n w4* 10 4mol /L 9.等摩尔二元醇和二元酸缩聚,另加醋酸% p=或时聚酯的聚合度多少? 解:假设二元醇与二元酸的摩尔数各为1mol,则醋酸的摩尔数为。N a=2mol,NL=2mol,N b 0.015mol N b 2N b 2 2* 0.015 0.985 当p=时, 1 r 1 r 2rp 1 0.985 1 0.985 2* 0.985* 0.995 79.88 当p=时, X n 1 r 1 r 2rp 1 0.985 1 0.985 2* 0.985* 0.999 116.98 14题 18.制备醇酸树脂的配方为季戊四醇、邻苯二甲酸酐、丙三羧酸[C3H(COOH3],问能否不产生凝胶而反

高分子化学期末考试试卷

高分子化学期末参考试题 1.高分子,又称(聚合物),一个大分子往往由许多简单的(结构单元)通过(共价键)重复键接而成。 2.(玻璃化温度)和(熔点)是评价聚合物耐热性的重要指标。 3.(缩聚反应)是缩合聚合反应的简称,是指带有官能团的单体经 许多次的重复缩合反应而逐步形成聚合物的过程,在机理上属于(逐步聚合),参加反应的有机化合物含有(两个)以上官能团。 4.缩聚反应按缩聚产物的分子结构分类分为(线型)缩聚反应和(体型)缩聚反应。 5.自由基聚合反应转化率-时间曲线特征 诱导期:初级自由基为阻聚杂质所终止,无聚合物形成,聚合速率零。 若严格取除杂质,可消除诱导期。 初期:单体开始正常聚合,转化率在5%~10%以下(研究聚合时)或10%~20%(工业上)以下阶段称初期;此时转化率与时间 近似呈线性关系,聚合恒速进行。 中期:转化率达10%~20%以后,聚合速率逐渐增加,出现自动加速现象,直至转化率达50%~70%,聚合速率才逐渐减慢。 后期: 自动加速现象出现后聚合速率逐渐减慢,直至结束,转化率可达90%~100%。 6.自由基聚合与缩聚反应的特征比较 自由基聚合: 1)由基元反应组成,各步反应的活化能不同。引发最慢。 2)存在活性种。聚合在单体和活性种之间进行。

3)转化率随时间增长,分子量与时间无关。 4)少量阻聚剂可使聚合终止。 线形缩聚: 1)聚合发生在官能团之间,无基元反应,各步反应活化能相同。2)单体及任何聚体间均可反应,无活性种。 3)聚合初期转化率即达很高,官能团反应程度和分子量随时间逐步增大。 4)反应过程存在平衡。无阻聚反应。 7.常用的逐步聚合方法有几种?各自的主要特点是什么? 熔融缩聚:优点:生产工艺过程简单,生产成本较低。可连续法生产直接纺丝。聚合设备的生产能力高。 缺点:反应温度高,要求单体和缩聚物在反应温度下不分解,单体配比要求严格;反应物料粘度高,小分子不易脱除。局部过热可能产生副反应,对聚合设备密封性要求高。 适用范围:广泛用于大品种缩聚物,如聚酯、聚酰胺的生产。 溶液缩聚: 优点:溶剂存在下可降低反应温度,避免单体和产物分解,反应平稳易控制。 可与产生的小分子共沸或与之反应而脱除。聚合物溶液可直接用作产品 缺点:溶剂可能有毒,易燃,提高了成本。增加了缩聚物分离、精制、溶剂回收等工序。

高分子化学习题答案

一.名词解释 异构化聚合:指在链增长反应过程中常常发生原子或原子团的重排过程的反应。 活性聚合物:在适当条件下,不发生连转移或链终止反应,而使增长的活性链反应直至单体完全消耗尽仍保持活性的聚合物 化学计量聚合:指链引发速率在阴离子聚合反应中严格控制条件,以得到接近单分散的聚合物为目的的聚合反应。 遥爪聚合物:又称热塑性橡胶。一类常温下显示橡胶弹性、高温下又能塑化成型的合成材料,是一类兼具橡胶和热塑性塑 料特性的强韧性聚合物。按照交联键的性质可分为: 物理交联型如玻璃化微区、氢键及结晶微区作交联点 的聚合物和共聚物、共混物等;化学交联型如含离子 键交联和离子簇微区的离聚体,共混物经动态硫化交 联的TPE,含热可逆性共价键交联的TPE等。若按高 分子链结构可分为:嵌段共聚物、接枝共聚物、含离 子键共聚物和硫化交联共混物等。 ①(telechelic polymer)又称“远螯聚合物”。分子链两端带有反应性官 能团的低聚物。因其分子中的活性基团犹如两只爪子遥遥地占据了链的两端,故名。 ②遥爪聚合物是一种分子两端带有反应性官能团的液体聚合物,可用 作液体橡胶、涂料、粘合剂、密封胶等,最后通过活性端基的相互作用,扩链或交联成高分子量的聚合物。【遥爪聚合物】(telechelicpolymer)又称“远

螯聚合物”。分子链两商带有反革命应性官能团的低聚物。因其分子中的活性基团犹如两只爪子遥遥地占据了链的两端,故名。其分子量不高,呈液状,在加工时可采用浇铸或注模工艺,最后通过活性端基的交联或链的伸长成为高分子量聚合物。 热塑弹性体:指在常温下显示橡胶弹性,在高温下能够塑化成型的高分子材料。其产品既具备传统交联硫化橡胶的高弹性、耐老化、耐油性各项优异性能,同时又具备普通塑料加工方更、加工方式广的特点。热塑性弹性体是指常温下具有橡胶的弹性,高温下具有可塑化成型的一类弹性体。 二.讨论水对离子聚合的影响 三.写出制备含端羧基、端羟基。端氨基的遥爪聚合物的反应式

高分子化学期末重点试题及答案

1、使自由基聚合反应速率最快的聚合方式是(C )。 A.热引发聚合 B.光聚合 C.光敏聚合 D. 热聚合 答案( C ) 2、在自由基聚合反应中,链自由基的( D )是过氧类引发剂引发剂效率降低 的主要原因 A.屏蔽效应 B.自加速效应 C.共轭效应 D.诱导效应 3、MMA(Q=0.74)与( C )最容易发生共聚 A. St(1.00 ) B. VC(0.044 ) C. AN ( 0.6 ) D. B( 2.39) 4、异戊二烯配位聚合理论上可制得( 6 )种立体规整聚合物。 A. 6 B. 4 C. 5 D.3 1、丁二烯配位聚合可制得(B )种立体规整聚合物。 A. 6 B. 4 C. 5 D.3 5、是阻聚剂并可用于测定引发反应速率的是( B ) A.对苯二酚 B.DPPH C.AIBN D.双酚A 3、丁二烯(e=-1.05)与(D )最容易发生交替共聚 A.苯乙烯(-0.8) B.氯乙烯(0.20) C.丙烯腈(0.6) D.马来酸酐(2.25) 4、不需要引发剂的聚合方法是(D )。 A.热引发聚合 B.光聚合 C.光敏聚合 D. 热聚合 5、常用于保护单体的试剂是( D ) A. BPO B.FeCl3 C.AIBN D. 对苯二酚 1、某一聚合反应,单体转化率随反应时间的延长而增加。它属于(连锁)聚合 反应。 2、BPO在高分子合成中是(引发剂)剂,对苯二酚加在单体中用作(阻聚剂)。 3、氧在低温时是(阻聚剂 )、在高温时是(引发剂)。 4、常用的逐步聚合反应方法有(熔融)缩聚、( 溶液) 缩聚、(界面 ) 缩聚。 5、链转移剂能使聚合物的分子量(降低 ) 7、梯形结构聚合物有较高的(热 )稳定性。 8、聚乙烯、聚苯乙烯、聚氯乙烯和聚丙烯的结构分别是(-[CH2CH2]n- )、(-[CH2CH(C6H5)]n- )、(-[CH2CHCl]n- )和(-[CH2CHCH3]n- )。 9、腈纶的化学名称是(聚丙烯腈)。 10、聚合方法分为(两)大类,大多数乙烯基单体发生(连锁)

(完整版)(含答案)高分子化学练习题

高分子化学练习题 一、名词解释 1、重复单元在聚合物的大分子链上重复出现的、组成相同的最小基本单元。 2、结构单元高分子中多次重复的且可以表明合成所用单体种类的化学结构。 3、线型缩聚2官能度单体或2-2体系的单体进行缩聚反应,聚合过程中,分子链线形增长,最终获得线型聚合物的缩聚反应。 4、体型缩聚有官能度大于2的单体参与的缩聚反应,聚合过程中,先产生支链,再交联成体型结构,这类聚合过程称为体型缩聚。 5、半衰期物质分解至起始浓度(计时起点浓度)一半时所需的时间。 6、自动加速现象聚合中期随着聚合的进行,聚合速率逐渐增加,出现自动加速现象,自动加速现象主要是体系粘度增加所引起的。 7、竞聚率是均聚和共聚链增长速率常数之比,r 1=k11/k12,r 2 = k22/k21,竞聚 率用来直观地表征两种单体的共聚倾向。 8、悬浮聚合悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体,水、油溶性引发剂、分散剂四部分组成。 9、乳液聚合是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。 10、接枝共聚物聚合物主链只由某一种结构单元组成,而支链则由其它单元组成。 二、选择题 1、聚酰胺反应的平衡常数为400,在密闭体系中最终能够达到的反应程度为(B ) A. 0 .94 B. 0.95 C. 0.96 D. 0.97 2、在线型缩聚反应中,成环反应是副反应,其中最易形成的环状化合物是(B ) A. 3,4元环 B. 5,6元环 C. 7元环 D. 8-11元环 3、所有缩聚反应所共的是( A ) A. 逐步特性 B. 通过活性中心实现链增长 C. 引发率很快 C. 快终止 4、关于线型缩聚,下列哪个说法不正确?( B )

高分子化学卢江名词解释期末必考

名词解释 1.高分子或称聚合物分子或大分子由许多重复单元通过共价键有规律地连接而成的分子,具有高的分子量. 2.高分子化合物或称聚合物: 由许多单个高分子(聚合物分子)组成的物质。 3.重复单元由实际上或概念上是相应的小分子衍生而来 4.链原子:构成高分子主链骨架的单个原子 5.结构单元构成高分子主链结构组成的单个原子或原子团,可包含一个或多个链单元。 6.重复结构单元:重复组成高分子分子结构的最小的结构单元 7.单体单元:高分子分子结构中由单个单体分子衍生而来的最大的结构单元 8.聚合度(Degree of Polymerization,DP):单个聚合物分子中所含单体单元的数目。 9.末端基团(End Groups):高分子链的末端结构单元 10.加聚反应是指聚合产物分子的单体单元的组成与相应的单体分子相同的聚合反应 11.缩聚反应是指聚合产物分子的单体单元组成比相应单体分子少若干原子的聚合反应,在聚合反应过程中伴随有水、醇等小分子副产物生成 12.均聚物如果聚合物分子结构中只有一种重复结构单元、并且该重复结构单元可以只由一种(事实上的、隐含的或假想的)单体衍生而来,则该聚合物为均聚物,否则为共聚物。 13.逐步聚合反应是指在聚合反应过程中,聚合物分子是由体系中的单体分子以及所有聚合度不同的中间产物分子之间通过缩合或加成反应生成的,聚合反应可在单体分子以及任何中间产物分子之间进行。 14.链式聚合反应是指在聚合反应过程中,单体分子之间不能发生聚合反应,聚合反应只能发生在单体分子和聚合反应活性中心之间,单体和聚合反应活性中心反应后生成聚合度更大的新的活性中心,如此反复生成聚合物分子。第二章逐步聚合反应 15.单体功能度(f ) 逐步聚合反应的单体分子要求至少含有两个以上的功能基或反应点,单体分子所含的参与聚合反应的功能基或反应点的数目叫单体功能度(f ) 16.反应程度P = 已反应的A(或B)功能基数/ 起始的A(或B)功能基数,反应过程中功能基的转化程度17.凝胶化现象在交联逐步聚合反应过程中,随着聚合反应的进行,体系粘度突然增大,失去流动性,反应及搅拌所产生的气泡无法从体系中逸出,可看到凝胶或不溶性聚合物明显生成的实验现象。 18.凝胶点出现凝胶化现象时的反应程度叫做凝胶点,以p c表示。 19.预聚物含有反应性功能基,在适宜条件下可进一步发生聚合反应的低聚物称为预聚物 20.固化由预聚体反应生成交联高分子的过程常称为固化。 21.无规预聚物中未反应功能基在分子链上无规分布,通常由交联型逐步聚合反应在P

高分子化学习题与答案

《高分子化学》习题与答案 第一章绪论习题 1. 说明下列名词和术语: (1)单体,聚合物,高分子,高聚物 (2)碳链聚合物,杂链聚合物,元素有机聚合物,无机高分子 (3)主链,侧链,侧基,端基 (4)结构单元,单体单元,重复单元,链节 (5)聚合度,相对分子质量,相对分子质量分布 (6)连锁聚合,逐步聚合,加聚反应,缩聚反应 (7)加聚物,缩聚物,低聚物 2.与低分子化合物比较,高分子化合物有什么特征? 3. 从时间~转化率、相对分子质量~转化率关系讨论连锁聚合与逐步聚合间的相互关系与差别。 4. 举例说明链式聚合与加聚反应、逐步聚合与缩聚反应间的关系与区别。 5. 各举三例说明下列聚合物 (1)天然无机高分子,天然有机高分子,生物高分子。 (2)碳链聚合物,杂链聚合物。 (3)塑料,橡胶,化学纤维,功能高分子。 6. 写出下列单体的聚合反应式和单体、聚合物的名称 (1) CH2=CHF (2) CH2=CH(CH3)2 CH3 | (3) CH2=C | COO CH3 (4) HO-( CH2)5-COOH (5) CH2CH2CH2O |__________| 7. 写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合? (1) -[- CH2- CH-]n- | COO CH3 (2) -[- CH2- CH-]n- | OCOCH3 (3) -[- CH2- C = CH- CH2-]n- | CH3 (4) -[-NH(CH2)6NHCO(CH2)4CO-]n- (5) -[-NH(CH2)5CO-]n- 8. 写出合成下列聚合物的单体和反应式: (1) 聚苯乙烯 (2) 聚丙烯

(完整版)南开大学高分子化学期末考试2004_答案

高分子化学期末考试试卷2005 姓名 学号 一、填空题(20) 1. 连锁聚合反应中, 聚合与解聚达到平衡时的温度 称之为聚合极限温度,它 是 单体浓度 的函数,计算公式为 ] ln[0 M R S H Tc +??= 。 2. 等摩尔投料时,外加酸催化聚酯化反应的速率方程是 2][COOH K dt =, 它适用的转化率范围是 0~98.8% 。 3. 自由基聚合引发剂有热分解型、氧化还原型和低温游离基型。热分解型引发剂典型的是 有机过氧类 、 无机过氧类 和 偶氮双腈类 ,典型的实例分别是 过氧化苯甲酰 、 过二硫酸钾 和 偶氮二异丁腈 ,氧化还原型和低温游离基型的实例为 H 2O 2+Fe 2+ 和 AgC 2H 5 。 4. 不可逆缩聚的特征是 在整个缩聚反应过程中聚合物不被缩聚反应的低分子产物所降解 、 也不发生其它的交换降解反应 。 5. 共聚物组成微分方程说明共聚物的组成与 单体的竟聚率和单体的浓度 有关,而与 引发和终止速率 无关,它适用于 所有连锁型 共聚反应。 6. 熔融缩聚指的是 反应温度高于单体和缩聚物的熔点,反应体系处于熔融状态下进行的缩聚反应 ,界面缩聚指的是 两种单体分别溶解在两种互不相容的溶剂中,聚合反应只在两相溶液的界面上进行的缩聚反应 。 7. 引发剂分解一半所需的时间 称为引发剂分解的半衰期。如果已知k d ,半衰期可以由公式 d k t 693 .02/1= 进行计算,比较同一温度下不同引发剂的半衰期就可以比较 引发剂活性的大小 。 8. 乳液聚合时,乳化剂浓度增加,聚合速率 增大 ,分子量 增大 ;引发剂浓度增加使聚合速率 增大 ,分子量 变小 。 9. 阴离子聚合的引发方式主要有 负离子加成引发 、 电子转移引发 和

高分子化学习题以及答案【武汉工程大】

一、填空题 1.尼龙66的重复单元是。 2.聚丙烯的立体异构包括、和无规立构。 3.过氧化苯甲酰可作为的聚合的引发剂。 4.自由基聚合中双基终止包括终止和偶合终止。 5.聚氯乙烯的自由基聚合过程中控制聚合度的方法是。 6.苯醌可以作为聚合以及聚合的阻聚剂。 7.竞聚率是指。 8.邻苯二甲酸和甘油的摩尔比为1.50 : 0.98,缩聚体系的平均官能度为;邻苯二甲酸酐与等物质量的甘油缩聚,体系的平均官能度为(精确到小数点后2位)。 9.聚合物的化学反应中,交联和支化反应会使分子量而聚合物的热降解会使分子量。 10.1953年德国K.Ziegler以为引发剂在比较温和的条件下制得了少支链的高结晶度的聚乙烯。 11.己内酰胺以NaOH作引发剂制备尼龙-6 的聚合机理是。 二、选择题 1.一对单体共聚时,r1=1,r2=1,其共聚行为是()? A、理想共聚; B、交替共聚; C、恒比点共聚; D、非理想共 聚。 2.两对单体可以共聚的是()。 A、Q和e值相近; B、Q值相近而e值相差大; C、Q值和e值均相差大; D、Q值相差大而e值相近。 3.能采用阳离子、阴离子与自由基聚合的单体是()? A、MMA; B、St; C、异丁烯; D、丙烯腈。 4.在高分子合成中,容易制得有实用价值的嵌段共聚物的是()? A、配位阴离子聚合; B、阴离子活性聚合; C、自由基共聚合; D、阳离子聚合。 5.乳液聚合的第二个阶段结束的标志是()? A、胶束的消失; B、单体液滴的消失; C、聚合速度的增加; D、乳胶粒的形成。 6.自由基聚合实施方法中,使聚合物分子量和聚合速率同时提高,可 采用()聚合方法? A、乳液聚合; B、悬浮聚合; C、溶液聚合; D、本体聚合。 7.在缩聚反应的实施方法中对于单体官能团配比等物质量和单体纯 度要求不是很严格的缩聚是()。 A、熔融缩聚; B、溶液缩聚; C、界面缩聚; D、固相缩聚。 8.合成高分子量的聚丙烯可以使用以下()催化剂? A、H2O+SnCl4; B、NaOH; C、TiCl3+AlEt3; D、偶氮二异丁腈。 9.阳离子聚合的特点可以用以下哪种方式来描述()? A、慢引发,快增长,速终止; B、快引发,快增长,易转移,难终止; C 快引发,慢增长,无转移,无终止;D、慢引发,快增长,易转移,难终止; 10.下面哪种组合可以制备无支链高分子线形缩聚物()

高分子化学重点课后习题解答讲解学习

1. 图1 相对分子质量~转化率关系 1.链式聚合 2.活性聚合 3.逐步聚合 对链式聚合,存在活性中心,活性中心的特点一是在反应过程中不断生成,二是高活性,可使高分子链是瞬间形成,因此在不同转化率下分离所得聚合物的相对分子质量相差不大,延长反应时间只是为了提高转化率。 对逐步聚合,是官能团间反应,由于大部分单体很快聚合成二聚体、三聚体等低聚物,短期内可达到很高转化率,但因官能团活性低,故需延长反应时间来提高相对分子质量。 对活性聚合,活性中心同时形成,且无链转移和链终止,故随反应进行,相对分子质量和转化率均线性提高。 2.连锁聚合与逐步聚合的单体有何相同与不同? 连锁聚合单体的主要反应部位是单体上所含不饱合结构(双键或叁键),在聚合过程中不饱合键打开,相互连接形成大分子链。需要有活性中心启动聚合反应,为此多需用引发剂,反应活化能低,反应速率快,相对分子质量高。 逐步聚合单体的主要反应部位是单体上所带可相互反应的官能团,在聚合过程中官能团相互反应连接在一起,形成大分子链。不需活性中心启动反应,但反应活化能高,为此多需用催化剂,反应速率慢,受平衡影响大,相对分子质量低。 3. 凝胶点:出现凝胶化时的反应程度。(逐步聚合概念) 凝胶化:体形逐步聚合的交联反应到一定程度时,体系粘度变得很大,难以流动,反应及搅拌产生的气泡无法从体系中溢出,出现凝胶或不溶性聚合物明显生成的实验现象。(逐步聚合概念) 凝胶效应:自由基聚合中随反应进行体系粘度加大,妨碍了大分子链自由基的扩散运动,降低了两个链自由基相遇的几率,导致链终止反应速率常数随粘度的不断增加而逐步下降;另一方面,体系粘度的增加对小分子单体扩散的影响并不大,链增长反应速率常数基本不变,因而出现了自动加速现象。这种因体系粘度增加引起的自动加速又称凝胶效应。(自由基聚合概念) 4.为什么在缩聚反应中不用转化率而用反应程度描述反应过程? 在逐步聚合中,带不同官能团的任何两分子都能相互反应,无特定的活性种,因此,在缩聚早期单体很快消失,转变成二聚体、三聚体等低聚物,单体的转化率很高。而相对分子质量却很低。因此在逐步聚合反应中,转化率无甚意义。 随着逐步聚合反应的进行,官能团数目不断减少,生成物的相对分子质量逐渐增加。因此把参加反应的官能团的数目与起始官能团的数目的比值称为反应程度,记做p。反应程度是描述逐步聚合反应进程的重要参数 5.在离子聚合反应过程中,能否出现自动加速现象?为什么? ①阴离子聚合,体系粘度同样随反应进行而加大,但没有双基终止,因此不会出现与自由基聚合相同因素导致的自动加速现象。另一方面,阴离子活性聚合的活化能可以简单地等于增长活化能。由实验测得活化能是小的正值,因此聚合速率随温度升高而略有增加,但并不敏感。因此在实际中会出现由于体系粘度加大,

高分子化学期末考试题

江南大学考涤纶聚酯属于 ( ) 考试形式开卷()、闭卷(√),在选项上打(√) 开课教研室材料命题教师倪才华命题时间2008.12. 使用学期 1 共 6 页,第 1 页教研室主任审核签字 .

1. 分子量分布指数 为提高聚甲醛的热稳定性,可以采取的两个措施是什么?简述理由。

第 3 页

第 4 页 5. 解释笼蔽效应和诱导分解,它们对引发效率有什么影响? 四、写出下列聚合反应,并指出其机理。〖每小题2分,共10分〗 1. 3,3′-二(氯亚甲基)丁氧环的开环聚合; 2. 尼龙-66的制备; 3. 聚乙烯醇与甲醛的反应; 4. 有机玻璃的制备; 5. 环氧树脂的制备。 试 卷 专 用 纸

第 5 页 江南大学考五、写出下列聚合反应的机理。〖每小题10分,共 20 分】 1.四氢呋喃中用SnCl 4 + H 2 O引发异丁烯聚合,写出引发,增长,终止的基元反应。 2. 写出用AIBN 引发甲基丙烯酸丁酯聚合的各基元反应。 六、计算题。【每小题10分,共30分】 1. 邻苯二甲酸酐(1.5摩尔)、乙二醇(1.35摩尔)、甘油(0.1摩尔)混合体系进行缩聚。试求 a. p=0.98时的 n X b. n X= 500时的p

第 6 页 第 6 页江南大学考 2. 甲基丙烯酸甲酯由引发剂引发进行自由基聚合,终止后每一大分子含有1.50个引发剂残基,假设无链转移发生,试计算歧化终止与偶合终止的相对数量。 3. 在搅拌下依次向装有四氢呋喃的反应釜中加入0.2mol n-BuLi和20kg苯乙烯。当单体聚合了一半时,向体系中加入1.8g H2O,然后继续反应。假如用水终止的和继续增长的聚苯乙烯的分子量分布指数均是1,试计算 (1)被水终止的聚合物的数均分子量; (2)继续增长所得聚合物的数均分子量; (3)整个体系所得聚合物的数均分子量及其分子量分布指数。

高分子化学习题及答案

一、填空题 1、链式聚合较缩聚反应速率更快。 13、链式聚合较缩聚反应速率更快。 14、自由基聚合机理,即由单体分子转变为大分子的微观历程,由链引发、链增长、链终止、链转移等基元反应串、并联而成。 15、经典乳液聚合的基本配方由单体、水、水溶性引发剂和水溶性乳化剂四组分构成。 16、聚氯乙烯的结构单元,又称单元单体、重复单体、链节。 17、自由聚合的方法有本体聚合、溶液聚合、悬浮聚合和乳液聚合。 18、引发剂反应一般属于一级反应,即分解速率R d与引发剂浓度[I]一次方成正比。 11、氯乙烯的竞聚率r1 = 1.68,醋酸乙烯酯的竞聚率r2 =0.23,下列哪一个描述更符 合其共聚行为类型___C___。 A、F2-f2组成曲线位于恒比对角线上方,与另一对角线成对称状态 B、F2-f2组成曲线位于恒比对角线上方,但与另一对角线并不对称 C、F2-f2组成曲线位于恒比对角线下方,但与另一对角线并不对称 D、F2-f2组成曲线位于恒比对角线下方,与另一对角线成对称状态 12、合成锦纶-66所用的两种单体分别是___C___。 A、丁二醇和对苯二甲酸 B、己二醇和己二酸 C、己二胺和己二酸 D、己二胺和对苯二甲酸 13、溶液聚合所得聚合物分子量低是因为___A___。 A、单体浓度低及易向溶剂链转移双重结果 B、反应体系散热慢 C、已向单体发生链转移

D、引发剂受笼蔽效应效率低 14、以丙烯酸甲酯和氯乙烯进行自由基共聚反应,测得丙烯酸甲酯的竞聚率为4, 而氯乙烯的竞聚率为0.06,当单体中氯乙烯:丙烯酸甲酯的质量比=99:1时,才能合成氯乙烯含量为52 %的共聚物,问欲合成氯乙烯含量为52 %的共聚物,共聚过程如何控制才能获得组成比较均一的共聚物____A__。 A、必须陆续补加丙烯酸甲酯 B、控制转化率,一次投料即可 C、必须陆续补加氯乙烯 D、先补加氯乙烯,再补加丙烯酸甲酯 15、下述哪个单体较不适用于经典乳液聚合制备聚合物乳液___C___。 A、苯乙烯 B、甲基丙烯酸甲酯 C、丙烯酰胺 D、丙烯酸丁酯 6、高分子化学:研究高分子化合物合成和化学反应的一门科学 7、诱导效应:反应开始时阻聚剂会阻碍引发剂的引发,致反应初期无单体引发及 链增长,故在阻聚剂消耗完毕前单体转化率为零,称这一段无转化率的时段为诱导期 8、引发效率:引发效率:用于引发聚合的引发剂占引发剂分解或消耗总量的百分率 为引发效率 4 简答题 1、以甲基丙烯酸甲酯与丙烯酸丁酯为原料进行乳液聚合时,发现当起始单体含量较高时反应过程中会产生“凝胶”,请问其形成机理。 2、苯乙烯、甲基丙烯酸甲酯等乙烯基单体久置,为什么会出现絮状物? 3、结合悬浮聚合的理论,说明在苯乙烯悬浮聚合配方中各组分的作用。

相关文档
相关文档 最新文档