文档库 最新最全的文档下载
当前位置:文档库 › rs485通信协议介绍

rs485通信协议介绍

附录:RS485串行通讯协议

1 主要性能

本变频器通过内置的RS485标准接口,能与个人计算机、PLC 或同系列的变频器等连接,进行主从式、异步半双工串行通信。其主要性能参见下表: 项目 规范

适用机型 ALPHA3000系列变频器

物理级

EIA RS485 传输线 屏蔽双绞线

配线最长长度 500米

连接台数 主机一台,从机31台

传输速度

19200bps,9600bps,4800bps,2400bps,1200bps,600bps,300bps 数据交换方式 异步串行、半双工

传送协议 点对点或广播

字长 11位

停止位长度 1位

帧长 14字节固定 奇偶校验 奇校验 出错检查方式 异或校验

2硬件连接 2.1硬件联接如下图:

图 1 多

台变 频器 用主 机控 制连 接示 意图

图中的MASTER (主机)是ALPHA3000变频器、PC 机或可编程控制器(PLC ),图中的SLAVE (从机,在虚线框内)是变频器。变频器做为主机,只要将从机的RS485端子和主机的RS485同名端子相联接即可;如果用PC 机或PLC 做为主机,则要在主机和总线之间增加一个RS485的转接器。RS458串行总线接口最多可连接31台变频器做从机,每一个从机变频器都有一个唯一的号码(ID ),主机依靠ID 来识别每一台从机。

2.2 RS485转换器

RS485转换器采用DB9/DB9外形,带孔的

一端为RS232,带针的一端为RS485。转换器

外带接线转换头把RS485端的DB9接线转换为

螺丝接线柱,便于通讯线缆的安装和拆卸。接

线转换头上“A+”为485收/发正端,“ B-”

为485收/发负端,“GND”为485地线。

RS485接口组成半双工网络,一般只需二根连线,为获得良好的抗噪声干扰性和较长的传输距离,建议采用屏蔽双绞线传输。

3通讯协议

3.1概述

3.1.1通讯方式

采用USS协议。主机和从机之间用轮询的方式来进行通讯。由主机启动每一次通信,主机向从机变频器发送任务报文,从机接到主机的任务命令后返回响应报文并执行相应动作。除了发送响应报文外,从机只能处于接收状态。主机为变频器时,由功能号D033设置最大从机ID号。从机必须是从1开始,连续编号到D033设定的值。当主机为PC机或PLC时可以通过建立轮询表来改变查询顺序和查询周期,轮询表可以只包含部分从机,任意顺序,可以出现重复的号码。

主机的每一次查询都是以一个报文(帧)的数据传送给从机,所有的从机都能接收数据,从机如果检测到报文中的ID和本机的ID相同,则对报文的数据做出处理,并在规定的时间内发送响应报文给主机。如果检测到报文中的ID和本机的ID不同,则不处理报文,保持原工作状态。

3.1.2 控制方式说明:

在本机键盘或者端子控制时(功能A001设为0、1、2),通讯只能查看参数,所有的写入操作都被忽略。

通讯控制不能修改功能A001、A005、C001、D028、D032、D033的值。

在通讯控制方式时,本机键盘只可以修改功能A001、A005、C001、D022、D028、D032、D033的值,其中,对于功能D028的修改只有重新上电

开机才能生效。其它功能参数只能查看。

在通讯控制方式时,本机端子的使用参考特殊命令G05说明。

3.2数据格式

3.2.1报文格式

主机和从机之间的一次通信数据称为一个报文或一帧。

主机发给从机的命令或控制数据包称为任务报文。

从机对主机的响应数据包称为响应报文。

响应延时时间定义为当从机收到主机给本机的任务报文后,必须做出响应的时间,包含了从机对于主机命令的处理时间和响应报文的起始间隔。本系统响应延时时间为4个字节传送时间,但最小要大于20ms。不同的波特率下可能有不同的时间。

起始间隔定义为总线上任意两个报文的之间的时间间隔,也就是前一个报文结束到下一个报文开始的时间。报文的起始字节(STX)为十六进制的02H,而数据中也可能出现02H,因此,STX必须有一个起始间隔才能和数据有所区别,本系统采用2字节传送时间,不同的波特率下有不同的时间。

如图3:

图3 通信过程

一个报文由起始字、帧长、地址、命令编码、索引、参数、控制字或状态字、设定值或实际值和校验和组成,共14个字节,其结构如下图。

任务报文格式(Master→Slave):

响应报文格式(Slave→Master):

3.2.2区域格式说明

3.2.2.1 STX

STX区域是一个单字节ASCII码,值为02H,表示一个报文开始。

3.2.2.2 LGE

LGE是一个单字节区域,表示报文LGE区域后的所有字节数,固定为OCH。

3.2.2.3 ADR

ADR是一个单字节区域,表示从站变频器的地址,取值范围1~31。bit7、6未用,bit5为广播位,bit4:0为变频器的地址。如果bit5=1,则忽略BIT4:0

的内容,报文同时发送给所有变频器,从机不发送响应报文。如果bit5=0,则本机ID 和bit4:0值相等的从机响应报文内容并执行相应动作。

3.2.2.4 PKE

PKE 是一个16位的区域,用来控制变频器功能参数操作。

bit15:12位是控制功能位,bit11位保留,总为0。控制位功能列表如下: 参数数据 B15 B14 B13 B12描述

0 0 0 0 无任务,不作读取或更改参数的动作 0 0 0 1 读取从机编码地址指定的参数数据

0 0 1 0 更改从机编码地址指定的参数数据,在从机

掉电后不保存

主机命令码 1 1 1 0 更改从机编码地址指定的参数数据,并存储

至EEPROM 中

0 0 0 0 无任务响应:从机响应主机无任务命令信息0 0 0 1 任务完成:从机响应主机命令码任务

从机响应码 0 1 1 1 任务未能完成,VAL 返回错误码,原因以错误

代码形式回传。

PKE 的bit10:0是变频器的功能代码,也就是主机对从机要操作的功能代码。这部分的编码又分为两部分:bit8:10为功能类别号,bit0:7是功能号和运行状态编号。bit10:8的编码定义如下:

B10 B9 B8 类 别

B10 B9 B8 类 别 0 0 0 运行状态监视

0 0 1 A 组 0 1 0 B 组

0 1 1 C 组 1 0 0 D 组

1 0 1 E 组 1 1 0 F 组 1 1 1 G 组(特殊命令)运行状态监视编号:(bit7:0的值)

值 00H 01H 02H 03H 04H 05H 06H 07H 状态说明 设定频率 输出频率 输出电流 输出电压 过载指示 节能指示 PID 给定 PID 反馈 G 组为特殊命令,没有对应的变频器功能。有如下特殊命令:

G01:读取模拟输入端子VS 的值,不可写。结果在响应报文的VAL 域中,为带一位小数的百分数。

G02:读取模拟输入端子IS 的值,不可写。格式同命令G01。

G03:读取键盘电位器的值,不可写。格式同命令G01。

G04:读取Y 端子的状态,不可写。响应报文的VAL 域和各个Y 端子的对应如表(“1”有效)。

位 15:03 02 01 00

端子0 Y3 Y2 Y1

G05:X端子和PFA、PFB端子的值,可以根据控制码来对端子进行读写。如果功能C001设为0或者1,G05只可读出端子状态。当A001=3、4且C001=2、3,写操作时,VAL的值要和本机的端子当前状态做逻辑或操作之后,才形成最后的端子状态,以完成端子的控制功能。而对于PFA和PFB端子,如果设定不是脉冲输入方式,则与X端子具有同样的操作。VAL的数据位和端子的对应关系如下表(“1”有效):

位15:1009 08 0706050403020100

端子 0 PFB PFA X8X7X6X5X4X3X2X1

3.2.2.5 IND

IND是一个双字节(16位)区域,不使用,在此设为0。

3.2.2.6 VAL

VAL是一个双字节(16位)区域,该域对于任务报文而言,是主机对从机的相应功能号参数新的设定值(读操作时这个域无效)。对于响应报文,则是从机相应功能号的当前设定值。两种报文的功能号都由报文中的PKE域来指定。参数的值用整数形式表示,如果参数最小单位是有小数的部分,则将相应的小数部分应乘以一个系数(如:最小单位为0.01,则要乘以100。等等)。再将所得数转换为十六进制数就成为VAL的值。要特别说的是:对于功能D016~D020的值的要先加上一个偏移值100以后再做以上运算。VAL值的具体计算见范例。

若命令未完成,VAL中返回错误代码,代码见下表:

错误号错误类型错误号错误类型

0 无效功能号 5 数据类型错误

1 运行中参数不可改 6 只读参数

2 参数值溢出 7 参数保护

3 索引值错误 >8 保留

4 保留

3.2.2.7 STW和ZSW

STW控制字是一个16位的域,用来控制变频器的动作,ZSW状态字是一个16位域,用于返回变频器当前的运行状态。STW和ZSW各位含义参看下表:

位STW值及含义ZSW值及含义

0 1:减速停车

0:没有意义1:初始化完成0:初始化中

1 1:自由停车

0:没有意义1:准备就绪,可以接受运行命令0:没有做好运行的准备工作

2 1:直流制动停车1:正在运行中

0:没有意义0:处于停机状态

3 1:允许运行

0:不允许运行1:变频器发生故障

0:变频器没有发生故障

4,5 保留,总为0 保留,总为0 6 1:设定值(HSW)有效

0:设定值(HSW)无效

保留,总为0

7 1:故障复位

0:没有意义1:报警0:未报警

8 1:正向点动

0:没有意义

保留,总为1

9 1:反向点动

0:没有意义1:远程通信控制,0:本地控制

10 1:控制字有效

0:控制字无效1:设定值到达,输出频率等于设定频率0:设定值未到,在减速或加速中。

11 1:正向运行

0:没有意义1:正转

0:没有意义

12 1:反向运行

0:没有意义1:反转

0:没有意义

13~15 保留,总为0保留,总为0

3.2.2.8 HSW和HIW

HSW是变频器的输出频率设定值,HIW是从机的实际频率输出值,都是双字节。值的计算方法和VAL的计算方法一致。

当D022=2时,HSW是变频器的PID反馈值,一位小数的百分数。

3.2.2.9 BCC

BCC是一个单字节的区域,用做报文校验。其值为该区域以前的所有字节异或和(XOR),如果变频器收到一个带有错误结果的报文,它会将其放弃并拒绝发出应答。

3.2.3 单字节数据格式

每个字节都是标准的异步报文格式:包括1位起始位,8位数据位,1位停止位,1位校验位,采用奇检验,见下图:

3.2.4故障处理

变频器做主机时,如果主机在连续3次轮询中都没有收到从机的响应报文,则认为从机出现通信故障,主机通过Y端子输出报警信号(当Y端子设定为通信故障报警输出时),主机对通讯错误的处理方式由主机的功能D030、D031的

设置来决定,如果主机要停机,则以广播的形式向系统的所有从机发出停机命令,主机显示“EL”,能正常通信的从机接到命令以后立即按命令中设定的停机方式停机。

PC或PLC做主机的可以任意设定轮询次数。而对于PC机或PLC做为主机的系统,可以在主机的程序中做出相应的处理。

如果从机在1秒时间以内没有收到任何报文(包括主机对其他从机的命令),则认为通信系统出现故障,此从机将自动按照本机对D030、D031功能的设置来做出工作状态的变化。

如果从机发生故障停机(如过流),系统的工作状态决定于主机。变频器做主机时,将停止整个系统的工作。PC或PLC做主机的时候由程序来决定。

4 应用范例:

要使变频器在串行通信控制方式下正常工作,除了进行基本参数设置外,还需用键盘对串行通信的相关参数进行设置,这样才能实现上位机的远程监控功能。(表中的设定值可以更改,此表仅举例说明)

参数设定值功能说明

A0013选择运行控制方式为串口通讯

A0027选择频率设定方式为串口通讯

D028 6设置波特率与主站一致

D029 3ID号码,变频器地址,本机编号为3

D030 0 当出现通信故障时,延时D31设定的时间后停机

D031 0 通信故障发生后立即停机。

D032 1 本机在系统中是从机

范例1:启动03号机按设定频率35.60Hz正转运行。频率置于HSW域中,值为35.60*100=(3560)10=(DE8)16,控制字STW为(0000110001001000)2=(C48)16;从机响应报文中状态字ZSW为(0000001100000011)2=(303)16。

BCC

顺序 STX LGE ADR PKE IND VAL STW/ZSW HSW/HIW

任务报文02 0C 03 00 00 00 C48 DE8AC

响应报文02 0C 03 00 00 00 303 000 0D 范例2:要求以35.60Hz正转的03号机自由停止运行,控制字STW为(0000010000000110)2=(406)16;状态字ZSW为(0000111100000111)2=(F07)16。

顺序 STX LGE ADR PKE IND VAL STW/ZSW HSW/HIW

BCC

任务报文02 0C 03 00 00 00 406 000F

响应报文02 0C 03 00 00 00 F07 DE8 E0

范例3:读取03号机的数字频率设定A005,控制字STW无效,状态字ZSW 为(0000110100000111)2=(D07)16。

顺序STX LGE ADR PKE IND VAL STW/ZSW HSW/HIW BCC

任务报文02 0C 03 110500 00 00 0019

响应报文02 0C 03 110500 DE8 D07 DE8 13 范例4:查询03号机状态,返回故障。控制字STW无效,状态字ZSW为(0000001110001001)2=(389)16。

LGE ADR PKE IND VAL STW/ZSW HSW/HIW BCC

顺序 STX

任务报文02 0C 03 00 00 00 00 000D

响应报文02 0C 03 00 00 00 389 00 87 范例5:故障复位并启动。控制字为STW(0000110011001000)2=(CC8)16,状态字ZSW为(0000001110001001)2=(389)16。

LGE ADR PKE IND VAL STW/ZSW HSW/HIW BCC

顺序 STX

任务报文02 0C 03 00 00 00 CC8 DE82C

响应报文02 0C 03 00 00 00 389 00 87 范例6:设置运行中的3号机功能D016(最小模拟量输入对应PID给定)为–45.8,首先是加一个偏置:-45.8 + 100 = 54.2,再将54.2化为整数并化为十六进制数,就成为VAL的值:54.2*10 = (542)10 = (21E)16,控制字无效,状态字为(0000111100000111)2=(F07)16。

顺序STX LGE ADR PKE IND VAL STW/ZSW HSW/HIW BCC

任务报文02 0C 03 E41000 21E 00 00E5

响应报文02 0C 03 141000 21E F07 DE8 F8

宇电AI501 RS485通讯协议说明

AIBUS通讯协议说明(V7.0) AIBUS是厦门宇电自动化科技有限公司为AI系列显示控制仪表开发的通讯协议,能用简单的指令实现强大的功能,并提供比其它常用协议(如MODBUS)更快的速率(相同波特率下快3-10倍),适合组建较大规模系统。AIBUS采用了16位的求和校正码,通讯可靠,支持4800、9600、19200等多种波特率,在19200波特率下,上位机访问一台AI-7/8系列高性能仪表的平均时间仅20mS,访问AI-5系列仪表的平均时间为50mS。仪表允许在一个RS485通讯接口上连接多达80台仪表(为保证通讯可靠,仪表数量大于60台时需要加一个RS485中继器)。AI系列仪表可以用PC、触摸屏及PLC作为上位机,其软件资源丰富,发展速度极快。基与PC的上位机软件广泛采用WINDOWS作为操作环境,不仅操作直观方便,而且功能强大。最新的工业平板触摸屏式PC的应用,更为工业自动化带来新的界面。这使得AIDCS系统价格大大低于传统DCS系统,而性能及可靠性也具备比传统DCS系统更优越的潜力,V7.X版本AI-7/8系列仪表允许连续写参数,写给定值或输出值,可利用上位机将仪表组成复杂调节系统。 一、接口规格 AI系列仪表使用异步串行通讯接口,接口电平符合RS232C或RS485标准中的规定。数据格式为1个起始位,8位数据,无校验位,1个或2个停止位。通讯传输数据的波特率可调为4800~19200 bit/S,通常用9600 bit/S,单一通讯口所连接仪表数量大于40台或需要更快刷新率时,推荐用19200bit/S,当通讯距离很长或通讯不可靠常中断时,可选4800bit/S。AI仪表采用多机通讯协议,采用RS485通讯接口,则可将1~80台的仪表同时连接在一个通讯接口上。 RS485通讯接口通讯距离长达1KM以上(部分实际应用已达3-4KM),只需两根线就能使多台AI仪表与计算机进行通讯,优于RS232通讯接口。为使用普通个人计算机PC能作上位机,可使用RS232/RS485或USB/RS485型通讯接口转换器,将计算机上的RS232通讯口或USB口转为RS485通讯口。宇电为此专门开发了新型RS232/RS485及USB/RS485转换器,具备体积小、无需初始化而可适应任何软件、无需外接电源、有一定抗雷击能力等优点。 按RS485接口的规定,RS485通讯接口可在一条通讯线路上连接最多32台仪表或计算机。需要联接更多的仪表时,需要中继器,也可选择采用75LBC184或MAX487等芯片的通讯接口。目前生产的AI仪表通讯接口模块通常采用75LBC184,这种芯片具备一定的防雷击和防静电功能,且无需中继器即可连接约60台仪表。 AI仪表的RS232及RS485通讯接口采用光电隔离技术将通讯接口与仪表的其他部分线路隔离,当通讯线路上的某台仪表损坏或故障时,并不会对其它仪表产生影响。同样当仪表的通讯部分损坏或主机发生故障时,仪表仍能正常进行测量及控制,并可通过仪表键盘对仪表进行操作,工作可靠性很高。16位校验码的正确性是简单奇偶校验的30000倍,基本能保证数据可靠性。并且同一网络上有其他公司也采用主从方式通讯的产品时,如PLC、变频器等,多数情况下AI系列仪表都不会受其它公司产品通讯干扰,不会产生采集数据混乱或无法通讯的问题。但是AI仪表协议并不能保证其它公司产品能否正常工作,所以除非万不得已,不应将AI仪表与其它产品混在一个RS485通讯总线上,而应分别使用不同的总线。 二、通讯指令 AI仪表采用16进制数据格式来表示各种指令代码及数据。AI仪表软件通讯指令经过优化设计,标准的通讯指令只有两条,一条为读指令,一条为写指令,两条指令使得上位机软件编写容易,不过却能100%完整地对仪表进行操作;标准读和写指令分别如下: 读:地址代号+52H(82)+要读的参数代号+0+0+校验码 写:地址代号+43H(67)+要写的参数代号+写入数低字节+写入数高字节+校验码 地址代号:为了在一个通讯接口上连接多台AI仪表,需要给每台AI仪表编一个互不相同的通讯地址。有效的地址为0~80(部分型号为0~100),所以一条通讯线路上最多可连接81台AI仪表,仪表的通讯地址由参数Addr决定。仪表内部采用两个重复的128~208(16进制为80H~D0H)之间数值来表示地址代号,由于大于128的数较少用到(如ASC方式的协议通常只用0-127之间的数),因此可降低因数据与地址重复造成冲突的可能性。

rs485总线通讯协议

竭诚为您提供优质文档/双击可除 rs485总线通讯协议 篇一:Rs485通讯协议说明 摘要:阐述了Rs-485总线规范,描述了影响Rs-485总线通信速率和通信可靠性的三个因素,同时提出了相应的解决方法并讨论了总线负载能力和传输距离之间的具体关系。 关键词:Rs-485现场总线信号衰减信号反射 当前自动控制系统中常用的网络,如现场总线can、profibus、inteRbus-s以及aRcnet的物理层都是基于 Rs-485的总线进行总结和研究。 一、eiaRs-485标准 在自动化领域,随着分布式控制系统的发展,迫切需要一种总线能适合远距离的数字通信。在Rs-422标准的基础上,eia研究出了一种支持多节点、远距离和接收高灵敏度的Rs-485总线标准。 Rs-485标准采有用平衡式发送,差分式接收的数据收发器来驱动总线,具体规格要求: 接收器的输入电阻Rin≥12kΩ 驱动器能输出±7V的共模电压

输入端的电容≤50pF 在节点数为32个,配置了120Ω的终端电阻的情况下,驱动器至少还能输出电压1.5V(终端电阻的大小与所用双绞线的参数有关) 接收器的输入灵敏度为200mV(即(V+)-(V-)≥0.2V,表示信号“0”;(V+)-(V-)≤-0.2V,表示信号“1”)因为Rs-485的远距离、多节点(32个)以及传输线成本低的特性,使得eiaRs-485成为工业应用中数据传输的首选标准。 二、影响Rs-485总线通讯速度和通信可靠性的三个因素 1、在通信电缆中的信号反射 在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。 阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射,如图1所示。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻,如图2所示。

RS485仪表通讯协议

目录 1.引言 (1) 1.1仪表通讯及命令 (1) 1.2仪表基本构成与通讯命令的关系 (2) 2.接线 (3) 2.1RS232接口的仪表与计算机的接线 (3) 2.2RS485接口的仪表与计算机的接线 (4) 2.3关于JR485转换器 (4) 3.通讯接口要素 (5) 4.仪表的版本号 (6) 5.校验核 (7) 6.一般仪表命令集详解 (8) 6.0关于命令集 (8) 6.1读版本号命令 (10) 6.2读主测量值命令 (10) 6.3读其它测量值命令 (11) 6.4读模拟量输出值及开关量输入输出状态命令 (12) 6.5输出模拟量命令 (13) 6.6输出开关量命令 (14)

6.7读仪表参数符号命令 (15) 6.8读仪表参数命令 (16) 6.9设置仪表参数命令 (16) 7.巡检仪通讯命令集 (18) 7.0关于命令集 (18) 7.1读测量值命令 (19) 7.2读报警状态命令 (20) 7.3读参数命令 (21) 7.4设置参数命令 (22) 7.5参数地址表 (23) 8.测试软件 (25) 8.0关于测试软件 (25) 8.1DOS环境测试 (25) 8.2W INDOWS 环境下测试 (26) 9.故障诊断及应用笔记 (29) 9.1故障诊断流程图 (29) 9.2应用笔记 (30) 附录1 通讯中使用的ASCⅡ码表 (31) 附录2 XS系列仪表通讯协议的解释与补充 (32)

1.引言 1.1 仪表通讯及命令 仪表能连接到所有的计算机并与之通讯,采用RS232或RS485传输标准。仪表与计算机之间的往来通讯都以ASCⅡ码实现,意味着计算机能以任何高级语言编程。 仪表的命令集由数条指令组成,完成计算机从仪表读取测量值、报警状态、控制值、参数值,向仪表输出模拟量、数字量,以及对仪表的参数设置。与通过仪表面板设置参数一样,通过计算机对仪表的参数设置被存入EEPROM存贮器,在掉电情况下也能保存这些参数。 为避免通讯冲突,所有的操作均受计算机控制。当仪表不进行发送时,都处于侦听方式。计算机按规定地址向某一仪表发出一个命令,然后等待一段时间,等候仪表回答。如果没收到回答,则超时中止,将控制转回计算机。 由于仪表的特性不同,我们将仪表的通讯命令集分为3类: 第1类:一般仪表 包括除巡检仪和无纸记录仪外的全部仪表。 命令详解见第6章 第2类:巡检仪表 命令详解见第7章 第3类:无纸记录仪 通讯规程见《无纸记录仪用户手册》

RS485主从式多机通讯协议

RS485主从式多机通讯协议 一、数据传输协议 此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一控制器请求访问其它设备的过程,如何回应来自其它设备的请求,以及怎样侦测错误并记录。它制定了消息域格局和内容的公共格式。 此协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成反馈信息按本协议发出。 1、数据在网络上转输 控制器通信使用主—从技术,即仅一设备(主设备)能初始化传输(查询)。其它设备(从设备)根据主设备查询提供的数据作出相应反应。 主设备可单独和从设备通信,也能以广播方式和所有从设备通信。如果单独通信,从设备返回一消息作为回应,如果是以广播方式查询的,则从设备不作任何回应。协议建立了主设备查询的格式:设备(或广播)地址、功能代码、所有要发送的数据、一错误检测域。 从设备回应消息也由协议构成,包括确认要行动的域、任何要返回的数据、和一错误检测域。如果在消息接收过程中发生一错误(无相应的功能码),或从设备不能执行其命令,从设备将建立一错误消息并把它作为回应发送出去。 2、在对等类型网络上转输 在对等网络上,控制器使用对等技术通信,故任何控制都能初始和其它控制器的通信。这样在单独的通信过程中,控制器既可作为主设备也可作为从设备。 在消息位,本协议仍提供了主—从原则,尽管网络通信方法是“对等”。如果一控制器发送一消息,它只是作为主设备,并期望从设备得到回应。同样,当控制器接收到一消息,它将建立一从设备回应格式并返回给发送的控制器。 3、查询—回应周期 (1)查询 查询消息中的功能代码告之被选中的从设备要执行何种功能。数据段包含了从设备要执行功能的任何附加信息。错误检测域为从设备提供了一种验证消息内容是否正确的方法。 (2)回应 如果从设备产生一正常的回应,在回应消息中的功能代码是在查询消息中的功能代码的回应。数据段包括了从设备收集的数据。如果有错误发生,功能代码将被修改以用于指出回应消息是错误的,同时数据段包含了描述此错误信息的代码。错误检测域允许主设备确认消息内容是否可用。 二、传输方式 控制器能设置传输模式为RS485串行传输,通信参数为9600,n,8,1。在配置每个控制器的时候,在一个网络上的所有设备都必须选择相同的串口参数。 地址功能代码数据数量数据1 ...….数据n CRC字节 每个字节的位 · 1个起始位 · 8个数据位,最小的有效位先发送 · 1个停止位 错误检测域 · CRC(循环冗余码校验) 三、消息帧

什么是RS485通信接口

什么是RS485通信接口 通信概述 通信设备从早期的邮件,电报,电话,传真,传呼机,手机,电脑,一路发展下来,而且随着科技的发展,世界必将由一个网络组成,所以,在未来开发的设备中,也必然要求大部分的设备都带有通信的功能。 设备与设备之间互相通信,就要有一座桥梁把二者连接起来,那就是传输通路与通信协议。传输通路由传输介质与传输接口组成,传输介质可分为有线和无线传输介质两大类。 有线传输介质在数据传输中只作为传输介质,而非信号载体。计算机网络中流行使用的有线传输介质为:铜线和玻璃纤维。 铜线具有便宜,安装容易的特点,在现在工业应用中普遍应用,在应用中主要有两种基本的铜线类型:双绞线和同轴电缆。双绞线可减小流过电流所辐射的能量,也可防止来自其他通信线路上信号的干扰,对于一些要求比较高的项目上,还需要给双绞线加上屏蔽层;同轴电缆由一对同轴导线组成。同轴电缆频带宽,损耗小,具有比双绞线更强的抗干扰能力和更好的传输性能。按阻抗值不同,同轴电缆可分为基带和宽带两种,同轴电缆是目前局域网与有线电视网中普遍采用的比较理想的传输介质。 所谓玻璃纤维介质,就是指现在所流行的光纤传输,他的两边有一个激光发生器与一个激光接收器,组成一整套通信线路,由于光纤传输距离远,因此现很多在工程都是采用“光端机+光纤”的模式。 结合我在工程中经常应用的通信模式,与“南方的老树51CPLD开发板”上具有的RS232通信、RS485通信两种,详细讲解下这两种通信方式的应用。 什么是RS232接口 首先介绍下什么是RS232接口,什么是RS485接口。

RS232接口是1970年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。它的全名是“数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准”该标准规定采用一个25个脚的DB25连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定。DB25的串口一般只用到的管脚只有2(RXD)、3(TXD)、7(GND)这三个,随着设备的不断改进,现在DB25针很少看到了,代替他的是DB9的接口,DB9所用到的管脚比DB25有所变化,是2(RXD)、3(TXD)、5(GND)这三个。因此现在都把RS232接口叫做DB9。 元器件常识:市场上把公头的接插件叫做DRXX,母头的叫DBXX,比如我们电脑上的串口,在市场上叫做DR9,不是DB9,很多人都误叫做DB9,实际上的DB9是两个把两个DR9互相连接在一起的接口。 在文章中,我把所有的串口设备接口都统一叫做RS232接口。 三、什么是RS485接口 由于RS232接口标准出现较早,难免有不足之处,主要有以下四点: (1)接口的信号电平值较高,易损坏接口电路的芯片,又因为与TTL 电平不兼容故需使用电平转换电路方能与TTL电路连接。 (2)传输速率较低,在异步传输时,波特率为20Kbps;因此在“南方的老树51CPLD开发板”中,综合程序波特率只能采用19200,也是这个原因。 (3)接口使用一根信号线和一根信号返回线而构成共地的传输形式,这种共地传输容易产生共模干扰,所以抗噪声干扰性弱。 (4)传输距离有限,最大传输距离标准值为50英尺,实际上也只能用在50米左右。 针对RS232接口的不足,于是就不断出现了一些新的接口标准,RS-485就是其中之一,它具有以下特点:

RS485协议简介及MAX485芯片介绍

RS-485协议简介及MAX485芯片介绍 1 RS-485协议简介及MAX485芯片介绍 由于RS-232的种种缺点,新的串行通讯接口标准RS-449被制定出来,与之相对应的是RS-485的电气标准。RS -485是美国电气工业联合会(EIA)制定的利用平衡双绞线作传输线的多点通讯标准。它采用差分信号进行传输;最大传输距离可以达到1.2 km;最大可连接32个驱动器和收发器;接收器最小灵敏度可达±200 mV;最大传输速率可达2.5 Mb /s。由此可见,RS-485协议正是针对远距离、高灵敏度、多点通讯制定的标准。 MAX485接口芯片是Maxim公司的一种RS-485芯片。 采用单一电源+5 V工作,额定电流为300 μA,采用半双工通讯方式。它完成将TTL电平转换为RS-485电平的功能。其引脚结构图如图1所示。从图中可以看出,MAX485芯片的结构和引脚都非常简单,内部含有一个驱动器和接收器。RO和DI端分别为接收器的输出和驱动器的输入端,与单片机连接时只需分别与单片机的RXD和TXD相连即可;/RE和DE端分别为接收和发送的使能端,当/RE为逻辑0时,器件处于接收状态;当DE为逻辑1时,器件处于发送状态,因为MAX 485工作在半双工状态,所以只需用单片机的一个管脚控制这两个引脚即可;A端和B端分别为接收和发送的差分信号端,当A引脚的电平高于B时,代表发送的数据为1;当A的电平低于B端时,代表发送的数据为0。在与单片机连接时接线非常简单。只需要一个信号控制MAX485的接收和发送即可。同时将A和B端之间加匹配电阻,一般可选100Ω的电阻。 2用PC机实现与8031单片机的多点通讯 用8031单片机实现与PC机之间的通讯时,必须使用电平转换接口芯片,因为单片机输出的是TTL电平,必须经过电平转换才能和PC机的一致。本文中采用的是RS-485协议,所以单片机需要采用RS-485接口;而在PC机侧使用的是RS-232与RS-485的电平转换接口。在本文中采用的是武汉新特电子公司的电平转换接口,该接口使用简便、无需外加电源、数据传输速率最高可达10 Mb/s,而且不用任何软件初始化和修改。另外实现多点通讯还需要了解器件的驱动能力,当器件的驱动能力足够大时,我们就可以根据需要加入所需要的节点。 本文中所举的例子就是利用一台PC控制64块单片机的工作,采用多点通讯形式。通过发送控制字和工作方式字给相应的单片机,使其进行相应的操作。单片机在接收到数据后,进行数据的采集工作,等到PC机再发指令,将采集到的数据反馈给PC机,PC机对数据进行分析和计算。 PC机的程序可以采用Windows下任何一种面向对象的高级语言来编写,它比在DOS下的利用串口中断的方式进行更加简便,应用程序将控制权交向串口的驱动程序,接收和发送的中断完全由串口驱动程序来控制,减轻了编写过程中的很多麻烦。本程序中选用的是Delphi的串口通讯控件Spcomm来实现。参数的设置可以自动完成。单片机采用中断工作

RS485通讯协议

RS485 通讯协议 RS-232与RS-422之间转换原理和接法 通常我们对于视频服务器、录像机、切换台等直接播出、切换控制主要使用串口进行,主要使用到RS-232、RS-422与RS-485三种接口控制。下面就串口的接口标准以及使用和外部插件和电缆进行探讨。 RS-232、RS-422与RS-485标准只对接口的电气特性做出规定,而不涉及接插件、电缆或协议,在此基础上用户可以建立自己的高层通信协议。例如:视频服务器都带有多个RS422串行通讯接口,每个接口均可通过RS422通讯线由外部计算机控制实现记录与播放。视频服务器除提供各种控制硬件接口外,还提供协议接口,如RS422接口除支持RS422的Profile 协议外,还支持Louth、Odetics、BVW等通过RS422控制的协议。 RS-232、RS-422与RS-485都是串行数据接口标准,都是由电子工业协会(EIA)制订并发布的,RS-232在1962年发布。RS-422由RS-232发展而来,为改进RS-232通信距离短、速率低的缺点,RS-422定义了一种平衡通信接口,将传输速率提高到10Mbps,传输距离延长到4000英尺(速率低于100Kbps时),并允许在一条平衡总线上连接最多10个接收器。RS-422是一种单机发送、多机接收的单向、平衡传输规范,被命名为TIA/EIA-422-A标准。为扩展应用范围,EIA又于1983年在RS-422基础上制定了RS-485标准,增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和突保护特性,扩展了总线共模范围,后命名为TIA/EIA485-A标准。 1. RS-232串行接口标准 目前RS-232是PC机与通信工业中应用最广泛的一种串行接口。RS-232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。RS-232采取不平衡传输方式,即所谓单端通讯。收、发端的数据信号是相对于信号地。典型的RS-232信号在正负电平之间摆动,在发送数据时,发送端驱动器输出正电平在+5~+15V,负电平在5~-15V电平。当无数据传输时,线上为TTL,从开始传送数据到结束,线上电平从TTL电平到RS-232电平再返回 TTL电平。接收器典型的工作电平在+3~+12V与-3~-12V。由于发送电平与接收电平的差仅为2V至3V左右,所以其共模抑制能力差,再加上双绞线上的分布电容,其传送距离最大为约15米,最高速率为20Kbps。RS-232是为点对点(即只用一对收、发设备)通讯而设计的,其驱动器负载为3kΩ~7kΩ。所以RS-232适合本地设备之间的通信。 2. RS-422与RS-485串行接口标准 (1)平衡传输 RS-422、RS-485与RS-232不一样,数据信号采用差分传输方式,也称作平衡传输,它使用一对双绞线,将其中一线定义为A,另一线定义为B。通常情况下,发送驱动器A、B之间的正电平在+2~+6V,是一个逻辑状态,负电平在-2V~6V,是另一个逻辑状态。另有一个信号地C,在RS-485中还有一“使能”端,而在RS-422中这是可用可不用的。“使能”端是用于控制发送驱动器与传输线的切断与连接。当“使能”端起作用时,发送驱动器处于高阻状态,称作“第三态”,即它是有别于逻辑“1”与“0”的第三态。 (2)RS-422电气规定 由于接收器采用高输入阻抗和发送驱动器比RS232更强的驱动能力,故允许在相同传输线上连接多个接收节点,最多可接10个节点。即一个主设备(Master),其余为从设备(Salve),从设备之间不能通信,所以RS-422支持点对多的双向通信。RS-422四线接口由于采用单独的发送和接收通道,因此不必控制数据方向,各装置之间任何必须的信号交换均可以按软件方式(XON/XOFF握手)或硬件方式(一对单独的双绞线)实现。RS-422的最大传输距离为

RS485通讯几种常见问题

485通讯常见问题 1.MAX488/MAX490在点对点通信中工作很正常,为何在点对多点通信时无法正常通信? 由于MAX488/MAX490没有发送使能控制,因而其输出无法处于高阻态,当多个输出被连接在一起时(即点对多点通信时),差分输出信号线被多个发送器驱动(通常为TXD=1对应的电平状态);当某个节点开始通信,且发送TXD=0对应的差分电平时,A,B两线上将形成很大的短路电流,若长时间工作,则接口芯片将损坏;而这种情况不会在点对点通信中发生,且不会出现在点对多点通信中的处于点的一方,这也是象MAX488/MAX490以及其它一些没有发送使能控制的接口的适用范围。以上是造成这个问题的原因,当然,类似情况也会出现在那些带使能控制而软件没有编程控制使能的接口芯片中。 2.RS-485/RS-422接口为何在停止通信时接收器仍有数据输出? 由于RS-485/RS-422在发送数据完成后,要求所有的发送使能控制信号关闭且保持接收使能有效,此时,总线驱动器进入高阻状态且接收器能够监测总线上是否有新的通信数据。但是由于此时总线处于无源驱动状态(若总线有终端匹配电阻时,A和B线的差分电平为0,接收器的输出不确定,且对AB线上的差分信号的变化很敏感;若无终端匹配,则总线处于高阻态,接收器的输出不确定),容易受到外界的噪声干扰。当噪声电压超过输入信号门限时(典型值±200mV),接收器将输出数据,导致对应的UART接收无效的数据,使紧接着的正常通讯出错;另外一种情况可能发生在打开/关闭发送使能控制的瞬间,使接收器输出信号,也会导致UART错误地接收。 解决方法: 1)在通讯总线上采用同相输入端上拉(A线)、反相输入端下拉(B线)的方法对总线进行钳位,保证接收器输出为固定的“1”电平; 2)采用内置防故障模式的MAX308x系列的接口产品替换该接口电路; 3)通过软件方式消除,即在通信数据包内增加2-5个起始同步字节,只有在满足同步头后才开始真正的数据通讯。 3.采用RS-485/RS422接口通讯时,在什么条件下需要采用终端匹配?电阻值如何确定?如何配置终端匹配电阻?

RS485通信协议

串行数据通信的协议从RS-232到千兆位以太网,虽然每种协议都有特定的应用领域,但任何情况下我们都必须考虑成本和物理层(PHY)性能。 本文主要介绍RS-485协议及该协议所适合的应用。同时给出了根据电缆长度、系统设计以及元件选择来优化数据速率的方法。 传输协议 什么是RS-485?Profibus又是什么?与其它串行协议相比,它们的性能如何?适用于哪些应用?为了回答这些问题,我们对RS-485 物理层(PHY)、RS-232和RS-422的特性、功能进行了总体比较[1](本文中的RS表示ANSIEIA/TIA标准)。 RS-232是一个最初用于调制解调器、打印机及其它PC外设的通讯标准,提供单端20kbps的波特率,后来速率提高至1Mbps。RS-232的其它技术指标包括:标称±5V发送电平、±3V接收电平(间隔/符号)、2V共模抑制、2200pF最大电缆负载电容、300最大驱动器输出电阻、3k最小接收器(负载)阻抗、100英尺(典型值)最大电缆长度。RS-232只用于点对点通信系统,不能用于多点通信系统,所有RS-232系统都必须遵从这些限制。 RS-422是单向、全双工通信协议,适合嘈杂的工业环境。RS-422规范允许单个驱动器与多个接收器通信,数据信号采用差分传输方式,速率最高可达50Mbps。接收器共模范围为±7V,驱动器输出电阻最大值为100,接收器输入阻抗可低至4k。 RS-485标准 RS-485是双向、半双工通信协议,允许多个驱动器和接收器挂接在总线上,其中每个驱动器都能够脱离总线。该规范满足所有RS-422的要求,而且比RS-422稳定性更强。具有更高的接收器输入阻抗和更宽的共模范围(-7V至+12V)。 接收器输入灵敏度为±200mV,这就意味着若要识别符号或间隔状态,接收端电压必须高于+200mV或低于-200mV。最小接收器输入阻抗为12k,驱动器输出电压为±1.5V(最小值)、±5V(最大值)。 驱动器能够驱动32个单位负载,即允许总线上并联32个12k的接收器。对于输入阻抗更高的接收器,一条总线上允许连接的单位负载数也较高。RS-485接收器可随意组合,连接至同一总线,但要保证这些电路的实际并联阻抗不高于32个单位负载(375)。 采用典型的24AWG双绞线时,驱动器负载阻抗的最大值为54,即32个单位负载并联2个120终端匹配电阻。RS-485已经成为POS、工业以及电信应用中的最佳选择。较宽的共模范围可实现长电缆、嘈杂环境(如工厂车间)下的数据传输。更高的接收器输入阻抗还允许总线上挂接更多器件。

ZNJC2 RS485通讯 modbus 协议

_ MODBUS 通讯协议说明 1. 通讯相关的参数 2.通讯说明 2.1 数据格式说明 控制器采用RS-485总线,协议符合ModBus 规约,数据格式有标准MODBUS-RTU 、 非标准MODBUS-RTU(16进制)和ASC(ASC Ⅱ码)3种格式。 数据传输均采用8位数据位、1位停止位、无奇偶校验位。波特率可设为2400、4800、9600和19200 bit/s 。 通讯传送分为独立的信息头,和发送的编码数据。以下的通讯传送方式定义与RTU 通讯规约相兼容: 2.2 非标准MODBUS-RTU(16进制)数据格式详细说明 下面以RTU(16进制)数据格式进行详细说明,ASC Ⅱ码数据格式只是把16进制代码 转换成ASC Ⅱ码字符。 地址码:这个字节表明由用户设定地址码的从机将接收由主机发送来的信息。并且每个从机都有具有唯一的地址码,并且响应回送均以各自的地址码开始。主机发送的地址码表明将发送到的从机地址,而从机发送的地址码表明回送的从机地址。 功能码:通讯传送的第二个字节。ModBus 通讯规约定义功能号为01H 到7FH 。本控制器利用其中的一部分功能码。作为主机请求发送,通过功能码告诉从机执行什么动作。作为从机响应,从机发送的功能码与从主机发送来的功能码一样,并表明从机已响应主机进行操作。如果从机发送的功能码的

最高位 (比如功能码大于7FH),则表明从机没有响应操作或发送出错。 数据区:数据区是根据不同的功能码而不同。 CRC码:二字节的错误检测码。 当通讯命令发送至仪器时,符合相应地址码的设备接通讯命令,并除去地址码,读取信息,如果没有出错,则执行相应的任务;然后把执行结果返送给发送者。返送的信息中包括地址码、执行动作的功能码、执行动作后结果的数据以及错误校验码。如果出错就不发送任何信息。 2.2.2 信息帧格式: (1)地址码: 地址码是信息帧的第一字节(8位),从1到255。这个字节表明由用户设置地址的从机将接收由主机发送来的信息。每个从机都必须有唯一的地址码,并且只有符合地址码的 从机才能响应回送。当从机回送信息时,相当的地址码表明该信息来自于何处。 (2)功能码: 主机发送的功能码告诉从机执行什么任务。表2列出的功能码都有具体的含义及操作。 (3 数据区包含需要从机执行什么动作或由从机采集的返送信息。这些信息可以是数值、参考地址等等。例如,功能码告诉从机读取寄存器的值,则数据区必需包含要读取寄存器 的起始地址及读取长度。对于不同的从机,地址和数据信息都不相同。 (4)错误校验码: 主机或从机可用校验码进行判别接收信息是否出错。有时,由于电子噪声或其它一些干扰,信息在传输过程中会发生细微的变化,错误校验码保证了主机或从机对在传送过程 中出错的信息不起作用。这样增加了系统的安全和效率。错误校验采用CRC-16校验方法。 注: 信息帧的格式都基本相同:地址码、功能码、数据区和错误校验码。 2.2.3 错误校验 参与冗余循环码(CRC)计算的包括:地址码、功能码、数据区的字节。 冗余循环码包含2个字节,即16位二进制。CRC码由发送设备计算,放置于发送信息的尾部。接收信息的设备再重新计算接收到信息的 CRC码,比较计算得到的CRC码是否与接收到的相符,如果两者不相符,则表明出错。 CRC码的计算方法是,先预置16位寄存器全为1。再逐步把每8位数据信息进行处理。在进行CRC码计算时只用8位数据位,起始位及停止位,如有奇偶校验位的话也包括奇偶校验位,都不参与CRC码计算。 在计算CRC码时,8位数据与寄存器的数据相异或,得到的结果向低位移一字节,用0填补最高位。再检查最低位,如果最低位为1,把寄存器的内容与预置数相异或,如果最低位为0,不进行异或运算。 这个过程一直重复8次。第8次移位后,下一个8位再与现在寄存器的内容相异或,这个过程与以上一样重复8次。当所有的数据信息处理完后,最后寄存器的内容即为CRC码值。 计算CRC码的步骤为: (1).预置16位寄存器为十六进制FFFF(即全为1)。称此寄存器为CRC寄存器; (2).把第一个8位数据与16位CRC寄存器的低位相异或,把结果放于CRC寄存器; (3).把寄存器的内容右移一位(朝低位),用0填补最高位,检查最低位(注意:这时的最低位指移位前 的最低位,不是移位后的最低位); (4).如果最低位为0:重复第3步(再次移位)

RS485通信网络功能

RS-485通信网络功能 一 RS485接口 RS485采用差分信号负逻辑,+2V~+6V表示“0”,- 6V~- 2V表示“1”。RS485有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现很少采用,现在多采用的是两线制接线方式,这种接线方式为总线式拓朴结构在同一总线上最多可以挂接32个结点。 在RS485通信网络中一般采用的是主从通信方式,即一个主机带多个从机。很多情况下,连接RS-485通信链路时只是简单地用一对双绞线将各个接口的“A”、“B”端连接起来。而忽略了信号地的连接,这种连接方法在许多场合是能正常工作的,但却埋下了很大的隐患,这有二个原因:(1)共模干扰问题:RS-485接口采用差分方式传输信号方式,并不需要相对于某个参照点来检测信号,系统只需检测两线之间的电位差就可以了。但人们往往忽视了收发器有一定的共模电压范围,RS-485收发器共模电压范围为-7~+12V,只有满足上述条件,整个网络才能正常工作。当网络线路中共模电压超出此范围时就会影响通信的稳定可靠,甚至损坏接口。(2)EMI问题:发送驱动器输出信号中的共模部分需要一个返回通路,如没有一个低阻的返回通道(信号地),就会以辐射的形式返回源端,整个总线就会像一个巨大的天线向外辐射电磁波。 由于PC机默认的只带有RS232接口,有两种方法可以得到PC上位机的RS485电路:(1)通过RS232/RS485转换电路将PC机串口RS232信号转换成RS485信号,对于情况比较复杂的工业环境最好是选用防浪涌带隔离珊的产品。(2)通过PCI多串口卡,可以直接选用输出信号为RS485类型的扩展卡。 二RS485布网 网络拓扑一般采用终端匹配的总线型结构,不支持环形或星形网络。在构建网络时,应注意如下几点:(1)采用一条双绞线电缆作总线,将各个节点串接起来,从总线到每个节点的引出线长度应尽量短,以便使引出线中的反射信号对总线信号的影响最低。有些网络连接尽管不正确,在短距离、低速率仍可能正常工作,但随着通信距离的延长或通信速率的提高,其不良影响会越来越严重,主要原因是信号在各支路末端反射后与原信号叠加,会造成信号质量下降。(2)应注意总线特性阻抗的连续性,在阻抗不连续点就会发生信号的反射。下列几种情况易产生这种不连续性:总线的不同区段采用了不同电缆,或某一段总线上有过多收发器紧靠在一起安装,再者是过长的分支线引出到总线。总之,应该提供一条单一、连续的信号通道作为总线。在RS485组网过程中另一个需要注意的

变频器与上位机RS485通讯协议介绍讲解

变频器与上位机的通讯:浅述RS485通讯协议 引言:当上位机与变频器构成控制系统时,上位机和变频器可以通过特定的通讯协议实现数据交换,这样上位机就可以随时控制每一台变频器的工作状况,并及时做出响应。本文介绍一下一种常用的上位机和变频器通讯协议RS485通讯协议 1、概述 本文专门介绍一种变频器的RS485通讯接口,用户可通过PC/PLC实现集中监控(设定变频器参数和读取、控制变频器的工作状态),以适应特定的使用要求。 1.1协议内容 该串行通讯协议定义了串行通讯中传输的信息内容及使用格式。其中包括:主机轮询(或广播)格式:主机的编码方法,内容包括:要求动作的功能代码,传输数据和错误校验等。从机的响应也是采用相同的结构,内容包括:动作确认,返回数据和错误校验等。如果从机在接收信息时发生错误,或不能完成主机要求的动作,它将组织一个故障信息作为响应反馈给主机。 1.2应用方式: (1)变频器接入具备RS485总线的“单主多从”PC/PLC控制网。(2)变频器接入具备RS485/RS232(转换接口)的“点对点”方式的PC/PLC监控后台。 2、总线结构及协议说明 2.1总线结构

(1)接口方式 RS485(RS232可选,但需自备电平转换附件) (2) 传输方式 异步串行、半双工传输方式。在同一时刻主机和从机只能有一个发送数据,而另一个只能接收数据。数据在串行异步通讯过程中,是以报文的形式,一帧一帧发送。 (3)拓扑方式 单主站系统,最多32个站,其中一个站为主机、31个站为从机。从机地址设定范围为0~30,31(1FH)为广播通讯地址。网络中的从机地址必须是唯一的。点对点方式实际是作为单主多从拓扑方式的一个应用特例,即只有一个从机的情况。 2.2协议说明 此种变频器的通讯协议是一种串行的主从通讯协议,网络中只有一台设备(主机)能够建立协议(称为“查询/命令”)。其它设备(从机)只能通过提供数据响应主机的查询/命令,或根据主机的命令/查询做出响应的动作。主机在此处指个人计算机(PC)、工控机和可编程控制器(PLC)等,从机指的是变频器。主机既能对某个从机单独访问,又能对所有的从机发布广播消息。对于单独访问的主机查询/命令,从机都要返回一个信息(响应);对于单独访问的主机查询/命令,从机都要返回一个信息(称为响应);对于主机发出的广播信息,从机无需反馈响应给主机。 注意:和RS485通讯有关的参数的设定。

RS485通信原理

RS485通信原理 1. RS-485的电气特点:逻辑“1”以两线间的电压差为+(2—6)V表示;逻辑“0”以两线间的电压差为-(2—6)V表示。接口旌旗灯号电平比RS-232-C 降低了,就不易破坏接口电路的芯片,且该电平与TTL电平兼容,可便利与TTL 电路连接。 2. RS-485的数据最高传输速度为10Mbps 。 3. RS-485接口是采取均衡驱动器和差分接收器的组合,抗共模干才能加强,即抗噪声干扰性好。 4. RS-485接口的最大年夜传输距离标准值为4000英尺,实际上可达 3000米,别的RS-232-C接口在总线上只许可连接1个收发器,即单站才能。而RS-485接口在总线上是许可连接多达128个收发器。即具有多站才能,如许用户可以应用单一的RS-485接口便利地建立起设备收集。 因RS-485接口具有优胜的抗噪声干扰性,长的传输距离和多站才能等上述长处就使其成为首选的串行接口。因为RS485接口构成的半双工收集一般只需二根连线,所以RS485接口均采取樊篱双绞线传输。 RS485接口连接器采取DB-9的9芯插头座,与智能终端RS485接口采取DB-9(孔),与键盘连接的键盘接口RS485采取DB-9(针)。 RS485编程 串口协定只是定义了传输的电压,阻抗等,编程方法和通俗的串口编程一样RS-232与RS-422之间转换道理和接法 平日我们对于视频办事器、录像机、切换台等直接播出、切换控制重要应用串口进行,重要应用到RS-232、RS-422与RS-485三种接口控制。下面就串口的接口标准以及应用和外部插件和电缆进行商量。 RS-232、RS-422与RS-485标准只对接口的电气特点做出规定,而不涉及接插件、电缆或协定,在此基本上用户可以建立本身的高层通信协定。例如:视频办事器都带有多个RS422串行通信接口,每个接口均可经由过程RS422通信线由外部计算机控制实现记录与播放。视频办事器除供给各类控制硬件接口外,还供给协定接口,如RS422接口除支撑RS422的Profile协定外,还支撑 Louth、Odetics 、BVW等经由过程RS422控制的协定。 RS-232、RS-422与RS-485都是串行数据接口标准,都是由电子工业协会(EIA)制订并宣布的,RS-232在1962年宣布。RS-422由RS-232成长而来,为改进RS-232通信距离短、速度低的缺点,RS- 422定义了一种均衡通信接口,将传输速度进步到10Mbps,传输距离延长到4000英尺(速度低于100Kbps时),并许可在一条均衡总线上连接最多10个接收器。RS-422是一种单机发送、多机接收的单向、均衡传输规范,被定名为TIA/EIA-422-A标准。为扩大应用范围,EIA又于 1983年在RS-422基本上制订了RS-485标准,增长了多点、双向通信才能,即允很多个发送器连接到同一条总线上,同时增长了发送器的驱动才能和冲突保护特点,扩大了总线共榜样围,后定名为TIA/EIA-485-A标准。 1. S-232串行接口标准 今朝RS-232是PC机与通信工业中应用最广泛的一种串行接口。RS-232被定义为一种在低速度串行通信中增长通信距离的单端标准。RS-232采取不均衡传输方法,即所谓单端通信。收、发端的数据旌旗灯号是相对于旌旗灯号地。典范的RS-232旌旗灯号在正负电平之间摆动,在发送数据时,发送端驱动器输出

RS通讯协议简介

9.1通讯概述 本公司系列变频器向用户提供工业控制中通用的RS485通讯接口。通讯协 议采用MODBU标准通讯协议,该变频器可以作为从机与具有相同通讯接口并采用相同通讯协议的上位机(如PLC控制器、PC机)通讯,实现对变频器的集中 监控,另外用户也可以使用一台变频器作为主机,通过RS485接口连接数台本 公司的变频器作为从机。以实现变频器的多机联动。通过该通讯口也可以接远控键盘。实现用户对变频器的远程操作。 本变频器的MODBU通讯协议支持两种传送方式:RTU方式和ASCII方式,用户可以根据情况选择其中的一种方式通讯。下文是该变频器通讯协议的详细说明。 9.2通讯协议说明 9.2.1通讯组网方式 (1)变频器作为从机组网方式: 图9-1从机组网方式示意图 (2)多机联动组网方式:

9.2.2通信协议方式 该变频器在RS485网络中既可以作为主机使用,也可以作为从机使用,作为主机使用时,可以控制其它本公司变频器,实现多级联动,作为从机时,机或PLC可以作为 主机控制变频器工作。具体通讯方式如下: (1) 变频器为从机,主从式点对点通信。主机使用广播地址发送命令时,从机不应答。 (2) 变频器作为主机,使用广播地址发送命令到从机,从机不应答。 (3) 用户可以通过用键盘或串行通信方式设置变频器的本机地址、波特率、数据格式。 (4) 从机在最近一次对主机轮询的应答帧中上报当前故障信息。 9.2.3通讯接口方式 通讯为RS485接口,异步串行,半双工传输。默认通讯协议方式采用方式。 默认数据格式为:1位起始位,7位数据位,2位停止位。 默认速率为9600bps,通讯参数设置参见P3.09?P3.12功能码。 9.3 ASCII通讯协议 字符结构: 10位字符框(For ASCII ) (1 —7-2格式,无校验) 起始位 1 2 3 4 5 6 7 停止位停止位 (1 —7- 1格式,奇校验)PC ASCII 图9-2多机联动组网示意图

rs485通信协议介绍

附录:RS485串行通讯协议 1 主要性能 本变频器通过内置的RS485标准接口,能与个人计算机、PLC 或同系列的变频器等连接,进行主从式、异步半双工串行通信。其主要性能参见下表: 项目 规范 适用机型 ALPHA3000系列变频器 物理级 EIA RS485 传输线 屏蔽双绞线 配线最长长度 500米 连接台数 主机一台,从机31台 传输速度 19200bps,9600bps,4800bps,2400bps,1200bps,600bps,300bps 数据交换方式 异步串行、半双工 传送协议 点对点或广播 字长 11位 停止位长度 1位 帧长 14字节固定 奇偶校验 奇校验 出错检查方式 异或校验 2硬件连接 2.1硬件联接如下图: 图 1 多 台变 频器 用主 机控 制连 接示 意图 图中的MASTER (主机)是ALPHA3000变频器、PC 机或可编程控制器(PLC ),图中的SLAVE (从机,在虚线框内)是变频器。变频器做为主机,只要将从机的RS485端子和主机的RS485同名端子相联接即可;如果用PC 机或PLC 做为主机,则要在主机和总线之间增加一个RS485的转接器。RS458串行总线接口最多可连接31台变频器做从机,每一个从机变频器都有一个唯一的号码(ID ),主机依靠ID 来识别每一台从机。

2.2 RS485转换器 RS485转换器采用DB9/DB9外形,带孔的 一端为RS232,带针的一端为RS485。转换器 外带接线转换头把RS485端的DB9接线转换为 螺丝接线柱,便于通讯线缆的安装和拆卸。接 线转换头上“A+”为485收/发正端,“ B-” 为485收/发负端,“GND”为485地线。 RS485接口组成半双工网络,一般只需二根连线,为获得良好的抗噪声干扰性和较长的传输距离,建议采用屏蔽双绞线传输。 3通讯协议 3.1概述 3.1.1通讯方式 采用USS协议。主机和从机之间用轮询的方式来进行通讯。由主机启动每一次通信,主机向从机变频器发送任务报文,从机接到主机的任务命令后返回响应报文并执行相应动作。除了发送响应报文外,从机只能处于接收状态。主机为变频器时,由功能号D033设置最大从机ID号。从机必须是从1开始,连续编号到D033设定的值。当主机为PC机或PLC时可以通过建立轮询表来改变查询顺序和查询周期,轮询表可以只包含部分从机,任意顺序,可以出现重复的号码。 主机的每一次查询都是以一个报文(帧)的数据传送给从机,所有的从机都能接收数据,从机如果检测到报文中的ID和本机的ID相同,则对报文的数据做出处理,并在规定的时间内发送响应报文给主机。如果检测到报文中的ID和本机的ID不同,则不处理报文,保持原工作状态。 3.1.2 控制方式说明: 在本机键盘或者端子控制时(功能A001设为0、1、2),通讯只能查看参数,所有的写入操作都被忽略。 通讯控制不能修改功能A001、A005、C001、D028、D032、D033的值。 在通讯控制方式时,本机键盘只可以修改功能A001、A005、C001、D022、D028、D032、D033的值,其中,对于功能D028的修改只有重新上电 开机才能生效。其它功能参数只能查看。 在通讯控制方式时,本机端子的使用参考特殊命令G05说明。 3.2数据格式 3.2.1报文格式

相关文档