文档库 最新最全的文档下载
当前位置:文档库 › 不等式的均值定理

不等式的均值定理

不等式的均值定理
不等式的均值定理

高二数学 必修五 NO 使用时间: 班级: 组别:

课题:均值不等式一学案

1.掌握均值定理的内容,特别是等号成立的条件;

2.理解均值定理的内容及几何意义,会用均值定理去解实际简单的最值问题。

1.不等式的对称性用字母可以表示为 .

2.不等式的传递性用字母可以表示为____________________. 3.不等式的加减法则是指不等式两边都加上(或减去)同一个数(或整式)不等号方向不变,用字母可以表示为 ;由此性质和传递性可以得到两个同向不等式可以相加,用字母可以表示为 . 4.不等式的乘法法则是指不等式两边都乘以同一个不为零的正数,不等号方向不变用字母可以表示为 ;同时乘以同一个不为零的负数,不等号方向改变,用字母可以表示为 ;由此性质和传递性可以得到两个同向同正的不等式具有可乘性,用字母可以表示为 。

5.乘方、开方法则要注意性质仅针对于正数而言,若底数(或被开方数)为负数时,需先

变形。如:a

均值定理 如果,,R b a ∈那么

ab b a ≥+2

。 当且仅当b a =时,等号成立。

证明:

算术平均数:

几何平均数:

均值定理可以表述为:

【思考与讨论】

均值不等式与不等式ab b a 222≥+的关系如何?请对此进行讨论。

下面我们给出均值不等式的一个几何直观解释,以加深同学们对均值不等式的理解。 我们可以令正实数b a ,为两条线段的长,用几何作图的方法,作出长度为

2

b a +和ab 的两条线段,然后比较这两条线段的长。

具体作图如下:

⑴作线段b a AB +=,使;,b DB a AD ==

⑵以AB 为直径作半圆O;

⑶过D 点作CD ⊥AB 于D ,交半圆于点C ; ⑷连接AC,BC,OC,则2

b a CO +=

。 例1已知,0>ab 求证:2≥+b a a b ,并推导出式中等号成立的条件。

例2(1)一个矩形的面积为1002

m 。问这个矩形的长和宽各为多少时,矩形的周长最短?最短周长是多少?

(2)已知矩形的周长为36m 。问这个矩形的长和宽各为多少时,它的面积最大?最大面积是多少?

由例2的求解过程,可以总结出以下规律:

例3求函数())0(322>-+-=x x

x x x f 的最大值,以及此时x 的值。

巩固检测

1、若a 、b 为正数且a+b=4,则ab 的最大值是________.

2、已知x>1.5,则函数y =2x+3

24-x 的最小值是_________.

高二数学 必修五 NO 使用时间: 班级: 组别:

课题:均值不等式二学案

1.掌握均值定理的内容,特别是等号成立的条件;

2.进一步理解均值定理的内容及几何意义,灵活运用均值定理去解决实际简单的最值问题。

⒈正数a 、b 的算术平均数为 ;几何平均数为 .

⒉均值不等式是 。其中前者是 ,后者是 .如何给出几何解释?

⒊在均值不等式中a 、b 既可以表示数,又可以表示代数式,但都必须保证 ;另外等号成立的条件是 .

⒋试根据均值不等式写出下列变形形式,并注明所需条件)

(1)a 2+b 2 ( ) (2)2b a ( ) (3)a b +b a ( ) (4)x +x

1 (x>0) (5)x +x 1 (x<0) (6)ab ≤ ( )

⒌在用均值不等式求最大值和最小值时,必须注意a+b 或ab 是否为 值,并且还需要注意等号是否成立.

6.⑴函数f(x)=x(2-x)的最大值是 ;此时x 的值为___________________;. ⑵函数f(x)=2x(2-x)的最大值是 ;此时x 的值为___________________; ⑶函数f(x)=x(2-2x)的最大值是 ;此时x 的值为___________________; ⑷函数f(x)=x(2+x)的最小值是 ;此时x 的值为___________________。

例⒈已知a 、b 、c ∈(0,+∞),且a+b+c=1,求证

a 1 +

b 1+c

1≥9.

例⒉(1)已知x<45,求函数y=4x -2+5

41-x 的最大值. (2)已知x>0,y>0,且+x 1y

9=1,求x +y 的最小值。 (3)已知a 、b 为常数,求函数y=(x-a)2+(x-b)2的最小值。

一.选择题:

⒈下列命题正确的是( )

A.a 2+1>2a B.│x+x 1│≥2 C.ab

b a +≤2 D.sinx+x sin 4最小值 ⒉以下各命题(1)x 2+112+x 的最小值是1;(2)1222++x x 最小值是2;(3)若a>0,b>0,a+b=1则(a+a 1)(b+b

1)的最小值是4,其中正确的个数是( ) A.0 B.1 C.2 D.3 ⒊设a>0,b>0则不成立的不等式为( ) A.a b +b

a ≥2 B.a 2+

b 2≥2ab C.a b 2+b a 2≥a +b D.b a 11+≥2+b

a +2 ⒋设a 、

b ∈R +,若a+b=2,则b

a 11+的最小值等于( ) A.1 B.2 C.3 D.4

⒌已知a ≥b>0,下列不等式错误的是( )

A.a 2+b 2

≥2ab B.222b a a +≥ C.b a ab ab +≤2 D.112--+≥b a ab

1.

2

b a +;ab 2.2b a +≥ab ;算术平均数2b a +;几何平均数ab ;圆中的相交弦定理的推论(略)。 3.a ,b ∈R +;a=b

4.⑴≥2ab (a,b ∈R )⑵≥ab ( a ,b ∈R +)⑶≥2(a 、b 同号)或≤-2(a 、b 异号) ⑷≥2⑸≤-2⑹≤(

2b a +)2(a,b ∈R ); 5.定。

6.⑴1,1;⑵2,1;⑶

21,2

1;⑷-1,-1。 【典例解析】 例1.解析:原式=(

a 1 +

b 1+

c 1)(a+b+c )=3+(b a a b +)+(c a a c +)+(b

c c b +)≥3+2+2+2=9当且仅当a=b=c=31时取等号。 例⒉解析:

(1)∵x<

45 ∴4x-5<0 ∴y=4x -2+541-x =(4x-5)+541-x +3≤-2+3=1当且仅当4x-5=5

41-x 时即4x-5=-1,x =1时等号成立,∴当x =1时,取最大值是1 (2)解法一、原式=(x +y )(+x 1y 9)=y x x y 9++10≥6+10=16当且仅当x

y =y x 9时等号成立,又+x 1y

9=1∴x=4,y=12时,取得最小值16。 解法二、由+x 1y 9=1得(x-1)(y-9)=9为定值,又依题意可知x>1,y>9∴当且仅当x-1=y-9=3时即x=4,y=12时,取最小值16。

(3)解法一、转化为二次函数求最值问题(略)

解法二、∵222n m +≥(2)2

n m +∴y=(x-a)2+(x-b)2=y=(x-a)2+(b-x)2≥2[2)()(x b a x -+-]2=2)(2b a -,当且仅当x-a=b-x 即x=2

b a +时,等号成立。∴当x=2

b a +时取得最小值2)(2b a -。

一元二次不等式及其解法 例1解不等式:

(1);0322>+-x x (2)0322<+-x x 。

例2解不等式0412>--x x 。

例3解不等式0442>++x x 。

例4解不等式03422>-+-x x 。

例5求函数()()

23223log 32x x x x x f -++-+=的定义域。

均值不等式习题大全

均值不等式题型汇总 杨社锋 均值不等式是每年高考必考内容,它以形式灵活多变而备受出题人的青睐,下面我们来细数近几年来均值不等式在高考试题中的应用。 类型一:证明题 1. 设*,,1,a b R a b ∈+=求证:1 125()()4 a b a b ++≥ 2. 设,,(0,),a b c ∈+∞)a b c ≥++ 3. 设,,(0,),a b c ∈+∞求证:222 b c a a b c a b c ++≥++ 4. 设,,(0,),a b c ∈+∞求证:222 a b c ab bc ac ++≥++ 5. 已知实数,,x y z 满足:222 1x y z ++=,求xy yz +得最大值。 6. 已知正实数,,a b c ,且1abc =9≥ 7. (2010辽宁)已知,,a b c 均为正实数,证明:22221 11()a b c a b c +++++≥,并确定,,a b c 为何值时,等号成立。 类型二:求最值: 利用均值不等式求最值是近几年高考中考查频率最高的题型之一。使用均值不等式的核心在于配凑,配凑的精髓在于使得均值不等式取等号的条件成立。 1. 设11,(0,)1x y x y ∈+∞+=且,求x y +的最小值。 2. 设,(0,)1x y x y ∈+∞+=且,求 112x y +的最小值。 3. 已知,a b 为正实数,且1a b +=求1ab ab +的最小值。 4. 求函数11(01)1y x x x =+<<-的最小值。

变式:求函数291(0)122 y x x x =+<<-的最小值。 5. 设,(0,)x y ∈+∞,35x y xy +=,求34x y +的最小值。 6. 设,(0,)x y ∈+∞,6x y xy ++=求x y +的最小值。 7. 设,(0,)x y ∈+∞,6x y xy ++=求xy 的最大值。 8. (2010浙江高考)设,x y 为实数,若22 41x y xy ++=,求2x y +的最大值。 9. 求函数y = 的最大值。 变式:y = 10. 设0x >求函数21x x y x ++=的最小值。 11. 设设1x >-求函数211 x x y x ++=+的最小值。 12. (2010山东高考)若任意0x >,231 x a x x ≤++恒成立,求a 的取值范围. 13. 求函数22233(1)22 x x y x x x -+=>-+的最大值。 类型三、应用题 1.(2009湖北)围建一个面积为2 360m 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需要维修),其它三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45/m 元,新墙的造价为180/m 元,设利用旧墙的长度为x (单位:m )。 (1)将y 表示为x 的函数(y 表示总费用)。 (2)试确定x ,使修建此矩形场地围墙的总费用最少。并求出最小总费用。 2.(2008广东)某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房。经测算,如果将楼房建为x 层(10x ≥),则每平方米的平均建筑费用为56048x +(单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,

利用均值不等式证明不等式

1,利用均值不等式证明不等式 (1)均值不等式:设12,,...,n a a a 是n 个正实数,记 12111n n n H a a a = ++???+ n G = 12 n n a a a A n ++???= n Q = 它们分别称为n 个正数的调和平均数,几何平均数,算术平均数,平方平均数。有如下关系:n n n n H G A Q ≤≤≤.等号成立的充要条件是12n a a a ==???=。 先证n n A G ≥ 证法一: .n n A G ≥用数学归纳法证明: 20,n n n n n A G A G =-=≥≥当时,成立。 1.k k k k A G ≥≥假设:n=k 2时成立,即有: 11111 111k k k k k k k k k k k k k k k k A A A G G G A G ++++++++≥?≥n=k+1时:只需证: 12n a a a ≤≤≤L 不妨设:0< 1 1 11 1 1111 1= 11 k k k k k k i i i i k i i i i k a a a a A k k k k +++++====+?? ?? ?? ? ? ? ? ? ?=+-++ ? ? ? ? ? ??? ???? ∑∑∑∑1 101 1 11111 1 k k k k k k i i i i i i i i k k a a a a C C k k k k ++====++?????? ? ? ? ? ? ?≥+-+ ? ? ? ? ? ?? ? ?? ?? ∑∑∑∑ 1111 111(1)(11).1k k k k k k i i i i k i i i i k k k a a a a k k a A a k k k k +====++??? ??? ? ? ? ? ? ?=+-+-==+ ? ? ? ? ? ??? ???? ∑∑∑∑ 111 11.1k k k k k k k k k A G a n k A G +++++∴≥==+所以对时亦成立。原不等式成立。 . n n A G ≥证法二:用反向数学归纳法证明:

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

数学苏教版必修5基本不等式(教案)

基本不等式(一) 教学目标: 1. 学会推导并掌握均值不等式定理; 2. 能够简单应用定理证明不等式并解决一些简单的实际问题。 教学重点:均值不等式定理的证明及应用。 教学难点:等号成立的条件及解题中的转化技巧。 教学过程: 重要不等式:如果a 、b ∈R ,那么a 2+b 2 ≥2ab (当且仅当a =b 时取“=”号) 证明:a 2+b 2-2ab =(a -b )2 当a ≠b 时,(a -b )2>0,当a =b 时,(a -b )2=0 所以,(a -b )2≥0 即a 2+b 2 ≥2ab 由上面的结论,我们又可得到 定理:如果a ,b 是正数,那么 a +b 2 ≥ab (当且仅当a =b 时取“=”号) 证明:∵(a )2+(b )2≥2ab 4a +b ≥2ab 即 a +b 2 ≥ab 显然,当且仅当a =b 时,a +b 2 =ab 说明:1)我们称a +b 2 为a ,b 的算术平均数,称ab 为a ,b 的几何平均数,因而, 此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2)a 2+b 2≥2ab 和a +b 2 ≥ab 成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数. 3)“当且仅当”的含义是充要条件. 4)数列意义 问:a ,b ∈R -? 例题讲解: 例1 已知x ,y 都是正数,求证: (1)如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P ; (2)如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值14 S 2 证明:因为x ,y 都是正数,所以 x +y 2 ≥xy (1)积xy 为定值P 时,有x +y 2 ≥P ∴x +y ≥2P 上式当x =y 时,取“=”号,因此,当x =y 时,和x +y 有最小值2P . (2)和x +y 为定值S 时,有xy ≤S 2 ∴xy ≤ 14 S 2 上式当x=y 时取“=”号,因此,当x=y 时,积xy 有最大值14 S 2.

均值不等式常考题型

均值不等式及其应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42) 45 x x --不是常数,所以对42x -要进行拆、凑项,

多次运用基本不等式错解例析

多次运用基本不等式错解例析 在《不等式》的学习中,我们结识了一个重要的不等式定理,即基本不等式(又叫均值定理),这个定理在解题中应用十分广泛,运用基本不等式时除了要注意 “一正、二定、三相等” 的条件以外,当多次运用基本不等式时,如果忽视了取等号的条件也一样会功败垂成,前功尽弃. 例1.设x ∈(0,π),则函数f(x)=sinx+x sin 4的最小值是( ) A .4 B. 5 C.3 D.6 【典型错误】因为x ∈(0,π),所以sinx>0, x sin 4>0, f(x)=sinx+ x sin 4≥2x x sin 4sin ? =4 因此f(x)的最小值是4.故选A. 【错因分析】忽略了均值不等式a+b ≥2ab (a>O,b>0)中等号成立的条件:当且仅当a=b 时等号成立.事实上,sinx= x sin 4不可能成立,因为它成立的条件是sinx =±2,这不可能. 【正确解答1】f(x)=sinx+x sin 4=sinx+ x sin 1+ x sin 3,因为sinx+ x sin 1≥2, 当且仅当sinx=1,即x=2 π时等号成立.又 x sin 3 ≥3,当且仅当sinx=1,即x= 2 π时等号成立.所以 f(x)=sinx+ x sin 4≥2+3=5,f(x)的最小值是5. 故选B. 【正确解答2】令sinx=t,因为x ∈(0,π),所以03)的最小值. 【典型错误】f(x)=x 2 +33233 )3(233 33 2 2 4 2 2 4 2 2 4 ≥+=+-? -≥+-+ -=-x x x x x x x x x ,因此函数 f(x)的最小值为3.

高考均值不等式经典例题

高考均值不等式经典例题 1.已知正数,,a b c 满足2 15b ab bc ca +++=,则58310a b c +++的最小值为 。 2.设M 是ABC V 内一点,且30AB AC A =∠=?u u u r u u u r g ,定义()(,,)f M m n p =,其中,,m n p 分别是 ,,MBC MCA MAB V V V 的面积,若1()(,,)2 f M x y =,则14x y +的最小值为 . 3.已知实数1,12 m n >>,则224211n m m n +--的最小值为 。 4.设22110,21025() a b c a ac c ab a a b >>>++-+-的最小值为 。 5.设,,a b c R ∈,且222 ,2222a b a b a b c a b c ++++=++=,则c 的最大值为 。 6.已知ABC V 中,142, 10sin sin a b A B +=+=,则ABC V 的外接圆半径R 的最大值为 。 7.已知112,,339 a b ab ≥≥=,则a b +的最大值为 。 8. ,,a b c 均为正数,且222412a ab ac bc +++=,则a b c ++的最小值为 。 9. ,,,()4a b c R a a b c bc +∈+++=-2a b c ++的最小值为 。 10. 函数()f x =的最小值为 。 11.已知0,0,228x y x y xy >>++=,则2x y +的最小值为 。 12.若*3()k k N ≥∈,则(1)log k k +与(1)log k k -的大小: 。 13.设正数,,x y z 满足22340x xy y z -+-=,则当xy z 取最大值时,212x y z +-的最大值为 。 14.若平面向量,a b r r 满足23a b -≤r r ,则a b ?r r 的最小值为 。 15. 的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 。 16.设{}n a 是等比数列, 公比q =n S 为{}n a 的前n 项和,记*21 17()n n n n S S T n N a +-=∈,设0n T 为数列{}n T 的最大项,则0n = 。

(word完整版)高中数学基本不等式及其应用教案

基本不等式及其应用教案 教学目的 (1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式. (2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 教学过程 一、引入新课 师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么? 生:求差比较法,即 师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法. 如果a、b∈R,那么(a-b)2属于什么数集?为什么? 生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈ R+∪{0}. 师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法. 二、推导公式

1.奠基 师:如果a、b∈R,那么有 (a-b)2≥0. ① 把①左边展开,得 a2-2ab+b2≥0, ∴a2+b2≥2ab. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号). 以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索. 2.探索 师:公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有 a2+b2≥2ab; b2+c2≥2bc;

均值不等式【高考题】

应用一、求最值 直接求 例1、若x ,y 是正数,则22)21 ()21(x y y x +++的最小值是【 】 A .3 B .27 C .4 D .2 9 例2、设y x b a b a b a R y x y x 11,32,3,1,1,,+=+==>>∈则若的最大值为【 】 A. 2 B. 23 C. 1 D. 21 练习1.若0x >,则2 x x +的最小值为 . 练习2.设,x y 为正数, 则14 ()()x y x y ++的最小值为【 】 A.6 B. 9 C. 12 D. 15 练习3.若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】 A.2 B .3 C .6 D .9 练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨. 练习5.求下列函数的值域: (1)2 2 213x x y + = (2)x x y 1 += 练习6.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则 2 ()a b cd +的最小值是【 】 A.0 B.4 C.2 D.1 例3、已知0,0,01,a b c a b c >>>++=且则111 (1)(1)(1)a b c ---最小值为【 】 A. 5 B. 6 C. 7 D. 8 凑系数 例4、若x y ∈+R ,,且14=+y x ,则x y ?的最大值是 . 练习1.已知,x y R +∈,且满足 134 x y +=,则xy 的最大值为 . 练习2. 当40<-+ =x x x x f 在x a =处取最小值,则a =【 】 A.21+ B .31+ C .3 D .4 练习1.已知5 4 x <,求函数14245y x x =-+-的最大值. 练习2.函数 1 (3)3 x x x +>-的最小值为【 】 A. 2 B. 3 C. 4 D. 5 练习3.函数2 32(0)x x x +>的最小值为【 】 A.39 32 B. 3942 C. 39 52 D. 39 2

均值不等式公式完全总结归纳(非常实用)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2 (22 2b a b a +≤+(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值 例1:求下列函数的值域 (1)y=3x 2+1 2x 2(2)y=x+ 1 x

解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由 知, ,利用均值不等式求最值,必须和为定值或积为 定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当 ,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

常用均值不等式及证明证明

常用均值不等式及证明证明 这四种平均数满足Qn An Gn H ≤≤≤n + ∈R n a a a 21、、、Λ,当且仅当n a a a 21===Λ时取“=”号 仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2) 由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b ,有ab 2b a 22 ≥+ (当且仅当a=b 时取“=”号), ab 20b ,a 22>> (4)对实数a,b ,有 ()()b a b b a --a ≥ (5)对非负实数a,b ,有 02a 22≥≥+ab b

(8)对实数a,b,c ,有 ac bc ab c b a 222++≥++ (10)对实数a,b,c ,有 3 3 a abc c b ≥++ 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、 柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设A ≥0,B ≥0,则()()B n n nA A B A 1-n +≥+ 注:引理的正确性较明显,条件A ≥0,B ≥0可以弱化为A ≥0,A+B ≥0 当n=2时易证; 假设当n=k 时命题成立,即 那么当n=k+1时,不妨设 1 a +k 是 1 21a ,,a ,a +k Λ中最大者,则 1211k ka +++++≥k a a a Λ 设 k a a a +++=Λ21s 用归纳假设 下面介绍个好理解的方法 琴生不等式法 琴生不等式:上凸函数()n x x x x f ,,,,21Λ是函数()x f 在区间(a,b) 内的任意n 个点,

均值不等式求最值的常用技巧及习题

利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x + ≥ (当且仅当1x =时取“=” );若0x <,则1 2x x +≤- (当且仅当 _____________时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”) 2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当_________时取“=” ) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时, 可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R + ∈,且满足 134 x y +=,则xy 的最大值为 ________。 解:因为x >0,y>0 ,所以 34x y +≥=当且仅当34x y =,即x=6,y=8时取等 号) 1, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11 x y +的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=16 2 1211211==≥+∴xy y x y x 当且仅当x=y 时等号成立 技巧二:配凑项求 例2:已知5 4x < ,求函数14245 y x x =-+-的最大值。

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

不等式选讲大题及答案

选修4-5 :不等式选讲 不等式选讲考点问题解答题:利用基本不等式等主要不等式和绝对值不等式定理,求解或证明有关不等式, 包括求已知不等式的解集;根据已知条件列出并求解有关参数的不等式;通过证明有关不等式,解决与不等式有关的问题。 1. ( 2013 全国I 24 .)已知函数f(x) |2x 1| |2x a|, g(x) x 3。 (i)当a 2时,求不等式f(x) g(x)的解集; a 1 (n)设a 1,且当x [ 2,2>时,f(x) g(x),求a的取值范围。 2. (2014 全国1 24 )若a 0,b 1 1 0,且丄丄 ,ab a b (I )求a3b3的最小值; (II )是否存在a,b,使得2a 3b 6 ?并说明理由 3. (2015全国1 2 4.)已知函数f x x 1 2 x a ,a 0 (I )当a 1时求不等式f x 1的解集; (II )若f x 图像与x轴围成的三角形面积大于6,求a的取值范围

4. (2013全国II 24 .)设均为正数,且, 证明:(i);(n) 1 |X a |(a 0) 5. (2014 全国II 24.)设函数f(x) |X | a (1)证明:f(x) 2 ; (2)若f (3) 5,求a的取值范围 6. ( 2015 全国II 24. )设均为正数,且. 证明:(I )若,则; (ll )是的充要条件

1 2x 2 x 3,则 y x 2 - x 1, 2 3x 6,x 1. 其图像如图所示 从图像可知,当且仅当 x (0,2)时,y<0,所以原不等式的解集是 x 0 x 2 a 1 (II )当 x , f (x) 1 a.不等式 f (x) W g(x)化为 1+a w x+3. 2 2 所以x > a-2对x 二丄都成立,故 a a 4 2 ,即a ,所以a 的范围 2 2 2 3 3 __ 1 1 2.解:(I )由,ab ,得 ab 2 , 且当a b .. 2时等号成立. a b '一 ab 故 a 3 b 3 2 a 3b 3 4、、2 ,且当 a b .2 时等号成立. 所以a 3 b 3的最小值为412 .……5分 (II )由(I )知,2a 3b 2.6 . ab 4,3. 由于4 .3 6,从而不存在a,b ,使得2a 3b 6. ……10分 3. x 1 2a, x 1 (n)由题设可得, f (x) 3x 1 2a, 1 x a , x 1 2a, x a 所以函数f (x)的图像与x 轴围成的三角形的三个顶点分别为 2a 1 2 A( ,0) , B(2a 1,0), C(a,a+1),所以△ ABC 的面积为三(a 1)2. 1 ?解: (1 )当 a 2时,不等式 f (x)

分式不等式放缩裂项证明

放缩法的常见技巧 (1)舍掉(或加进)一些项(2)在分式中放大或缩小分子或分母。(3)应用基本不等式放缩(例如均值不等式)。(4)应用函数的单调性进行放缩(5)根据题目条件进行放缩。(6)构造等比数列进行放缩。(7)构造裂项条件进行放缩。(8)利用函数切线、割线逼近进行放缩。 使用放缩法的注意事项 (1)放缩的方向要一致。(2)放与缩要适度。 (3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。所以对放缩法,只需要了解,不宜深入。 先介绍工具 柯西不等式(可以通过向量表示形式记住即摸摸大于向量乘积) 均值不等式 调和平均数≤几何平均数≤算术平均数≤平方平均数 绝对值三角不等式 定理1:|a|-|b|≤|a+b|≤|a|+|b|? 推论1:|a1+a2+a3|≤|a1|+|a2|+|a3|? 此性质可推广为|a1+a2+…+an|≤|a1|+|a2|+…+|an|. 推论2:|a|-|b|≤|a-b|≤|a|+|b|? 定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立. 常用放缩思想

这几个务必牢记 不常见不常用的不等式 这几个一般用不到,放的太大了,知道有印象就好了下面就是常用思路了,主要就是裂项部分

二项平方和 f(x)=(a1x-b1)^2+(a2x-b2)^2+……(anx-bn)^2 由f(x)≥0可得△小于等于0

1.分式不等式中的典范,典范中的典范,放缩、裂项、去等,步步精彩 解析: 步步经典,用笔化化就能明白思想,换元或许更直观,即令 t=1/(x+2) 第一步意义--开不了方的,开方,并且可取等号 第二步意义--开不了方的,开方,裂项,并且可取等号 个人认为这俩个放缩,很犀利,没见过,看似难实则简单, 看似简单实则难 2.构造+三角形★★★★ 平面内三点A、B、C,连接三点,令AB=c, AC=b,BC=a,求 解析: 构造,主要就是构造,b/c就是很 明显的提示。 三角形中两边之和大于第三边,两 边之差小于第三边。 构造★★★★

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

相关文档
相关文档 最新文档