文档库 最新最全的文档下载
当前位置:文档库 › 弹塑性力学讲义全套

弹塑性力学讲义全套

弹塑性力学讲义全套
弹塑性力学讲义全套

弹塑性力学

弹塑性力学

绪论:弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。

弹塑性力学是固体力学的一个重要分支,是研究弹性和塑形物体变形规律的一门学科。它推理严谨,计算结果准确,是分析和解决许多工程技术问题的基础和依据。在弹塑性力学中,我们可以看到很多学习材料力学、结构力学等学科所熟知的参数和变量,一些解题的思路也很类似,但是我们不能等同的将弹塑性力学看成材料力学或者是结构力学来学习。材料力学和结构力学的研究对象及问题,往往也是弹塑性力学所研究的对象及问题。但是,在材料力学和结构力学中主要采用简化的初等理论可以描述的数学模型;在弹塑性力学中,则将采用较精确的数学模型。有些工程问题(例如非圆形断面柱体的扭转、孔边应力集中、深梁应力分析等问题)用材料力学和结构力学的方法求解,而在弹塑性力学中是可以解决的;有些问题虽然用材料力学和结构力学的方法可以求解,但无法给出精确可靠的理论,而弹塑性力学则可以给出用初等理论所得结果可靠性与精确度的评价。在弹塑性力学分析中,常采用如下简化假设:连续性假设、均匀各向同性、小变形假设、无初应力假设等假设。

弹塑性力学基本方程的建立需要从几何学、运动学和物理学三方面来研究。在运动学方面,主要是建立物体的平衡条件,不仅物体整体要保持平衡,而且物体内的任何局部都要处于平衡状态。反映这一规律的数学方程有两类,即运动微分方程和载荷的边界条件。以上两类方程都与材料的力学性质无关,属于普适方

程。在物理学方面,则要建立应力与应变或应力与应变增量之间的关系,这种关系常称为本构关系,它描述材料在不同环境下的力学性质。在弹塑性力学中,本构关系的研究是非常重要的。由于自然界中物质的性质是各种各样的,而且它们所处的工作环境又是不同的,因而研究物质的本构关系是一件复杂但却具有根本意义的工作。由于物体是连续的,因而在变形时各相邻小单元都是相互联系的,通过研究位移与应变之间的关系,可以得到变形的协调条件。反映变形连续规律的数学表达方式有两类,即几何方程和位移边界条件。在求解一个弹塑性力学问题时,需要给出物体的形状和物体各部分材料的本构关系和物理常数,说明物体所受的荷载以及和其他物体的连接情况,即边界条件。对于动力学问题,还要给出初始条件。求解弹塑性力学问题的数学方法,就是根据几何方程、物理方程和运动方程以及力和位移的边界条件和初始条件,解除位移、应变和应力等函数。用这种方法求解一些较为简单的问题是十分有效的。在这一领域中,有两类方法:精确解法(能满足弹塑性力学中全部方程的解)和近似解法(根据问题的性质,采用合理的简化假设从而获得近似结果)。随着计算机的发展而不断开拓的有限元数值分析方法对弹塑性力学的发展提供了极为有利的条件。它一般不受物体或构件几何形状的限制,对于各种复杂物理关系都能算出正确的结果。

塑性力学是一门很广泛的学科,理论研究很有必要,与我们现实生活息息相关。不管你走在城市中还是乡村街道,不管你走路还是开车,不管你使用电脑还是手机等等,几乎各个方面都要涉及到材料的强度、刚度和稳定性,而研究这些问题就需要使用力学知识来解决,我们就需要用到弹塑性力学的知识。它不但涉及面很广,而且内容也很丰富。你要描述一片森林,你不可能把每棵树木都涉及到,你写一条河流,不可能把每一滴水都写上,你描述一座山,不可能把每一个石头都画上,你只能挑一个方面,一个角度来描述。弹塑性力学也是这样,它是一片森林,一条河流,一座山峰,要想把它全部涉及到,你不可能把它的方方面面都涉及到,你只能挑一个角度来描写。利用塑性力学的基本理论,可以求解塑性力学问题。由于塑性力学基本方程的复杂性,一般的弹塑性力学边值问题的求解是相当困难的,但对于某些简单弹塑性问题,即未知量较少和边界条件较简单的弹塑性问题,有可能克服数学上的困难而获得解析解。下面我们只是通过一个矩形梁的例子来说明塑性力学所涉及到的一个方面。

§10—1 梁的弹塑性弯曲

1.假设和屈服条件

这里研究的梁其横截面具有两个对称轴,载荷作用于纵向对称平面内。仍采用材料力学中梁弯曲理论的一般假设:

①变形前垂直于梁轴的平面,在变形后仍保持为垂直于弯曲梁轴的平面,即平截面假设;

②不计各层间的相互挤压;

③小变形,即挠度比横截面的尺寸小得多。

④梁长比横向尺寸大得多。

根据上述假设,只考虑梁横截面上正应力σx对材料屈服的影响。因此,Tresca 和Mises屈服条件均为

σx=σs (10-1)

2.梁的纯弯曲

如图10—1 所示,研究横截面具有两个对称轴的等截面梁,设y、z为横截面的对称轴,x为梁的纵轴,xoy为弯曲平面。

图10-1 梁的纯弯曲

(1)理想弹塑性材料

纯弯曲时,随着弯矩M的增加,塑性变形由梁截面边缘对称地向内部发展,在梁的任一横截面上弹性区和塑性区是共存的。在弹性区应力按线性分布,在塑性区按σx=σ=φ(ε)分布,而在两者的交界处,正应力σ应等于屈服应力σs。对于理想弹塑性材料,在塑性区σ=φ(ε)= σs,则沿梁横截面高度,应力分布为

()()

()

???????≤≤≤≤--≤≤--=2/)

(2/h y y y y y y y y y h y s

s

s s s s

s s σσσσ (10-2)

式中ys 为横截面的中性层到弹、塑性分界面的距离。应力分布情况如图所示。

10—2

图10-2 理想弹弹性弯曲应力分布

纯弯曲时横截面上正应力应满足轴力为零的条件,即

()()0

2

/2

/=σ?

-dy y b y h h (10-3)

由于z 轴为横截面的一对称轴,则式(10—3)自动满足。否则,将由这个条件确定中性轴的位置。横截面上正应力还应满足条件:

()()M

dy y yb y h h =σ?

-2

/2

/

(10-4)

()()?

?

+=s s

y h y s

s

s

dy

y yb dy y b y y M 0

2

/222

σσ

可以简写成

p

s e s

s

S I y M σσ+=

(10-5)

式中

()?

=s

y e dy

y b y I 0

22

为弹性区对中性轴的惯性矩,

()?

=2

/2

h ys

p dy

y yb S 为塑性区

对中性轴的静矩。因此,式(10—5)确定了弯矩M 和弹性区高度ys 的关系M=M(ys)或者ys=ys(M)。

关于梁的挠度,对弹性区而言,有

ρ

εσy

E

E ==

在弹性区的边界上y=ys 处,σ=σs ,代入上式得梁轴曲率半径为

s

s

Ey σρ=

(10-6a )

考虑到梁的曲率与梁挠度v 的关系,有

2

21dx v d -

则得梁轴的挠曲线方程为

s

s

Ey dx v d σ-

=2

2 (10-6b )

现取梁的横截面是高为h,宽为b 的矩形,则有

332s

e by I =,

???? ??-=224s

p y h b S

将它们代入(10—5)式,则得出

??

????????? ??-σ=22

3414h y bh M s s

(a )

在上式中令

2h

y s =

,即得梁刚开始产生塑性变形时的弹性极限弯矩为

s

e bh M σ62

=

(b )

如果令0y s =,即表示梁截面全部进入塑性状态,此时的弯矩称为塑性极限弯矩:

s

s bh M σ=42

(c )

而有

5.1=e

s

M M

(d )

说明梁截面由开始屈服到全部屈服,还可以继续增加50%的承载能力,由此也可以看出按塑性设计可以充分发挥材料的作用。

利用式(b ),可以将式(a )改写为

????

???????? ??-=2

2/31123h y M M s e

(e )

设与Me 相应的梁的曲率半径为ρe ,此时ys=2h

,由式(10—6a )得

s s

s s e y

h Ey Eh 2/2=???? ??σ????

??σ=ρρ

(f )

将式(f )代入式(e )即得

e

e

M M 2

31-=ρ

ρ (g )

这就是纯弯梁屈服以后曲率半径ρ与弯矩M 之间的关系。而在屈服前,它们服从线性的弹性关系,即

e

e M M =ρρ (h )

由式(h )和(g )可以绘出弯矩与曲率的变化曲线,如图10—3 所示。 如果梁在达到塑性极限弯矩以后全部卸载,则在梁内存在残余应力。应用卸载

定律,可以计算此残余应力。卸载过程

中弯矩改变值为s bh σ42

,利用此值按弹性计算

即得应力改变量为

h y bh y bh I y M s s z /3121432σσσ=??? ?????

? ??=??=?卸载前的应力

σ=±σs 则残余应力为

σ*=σ-Δσ=±σs-3σsy/h

σs 前正负号:y>0时取正,y<0时取负。残余应力沿截面高度分布情况如图10-4所示。

图10-3 曲率与弯矩的关系

图10-4 残余应力分布 (2)线性强化弹塑性材料

图10-5 线性强化弹塑性材料

若梁为图10-5(a )所示的线性强化弹塑性材料,强化阶段则有

()()????????

???? ??-+

=-+==111

1s s s s E

E E εεσεεσε?σ

(|ε|≥εs )

根据平截面假设应有

s

s y y =εε

将此式代入前式,则梁内应力分布为

()

()

????

??

?

????≤≤??

???

??????? ??-+≤≤--≤≤-??

??

???????? ??-+-=2/11)

(2/1111h y y y y E E y y y y y y y h y y E E s

s s s s s s

s s

σσσσ (10-7)

如图10-5(b )所示。

将(10-7)式代入(10-4)式,则得ys 与M 的关系式

??????+????

??-+=p s p e s s I Ey E S E E I y M 1111σ

(10-8)

式中:()?

=s

y o

e dy y b y I 22

——弹性区对中性轴惯矩;

()?

=2

/2

h y p s

dy

y yb S ——整个塑性区对中性轴静矩;

()?

=2

/22

h y p s

dy

y b y I ——整个塑性区对中性轴惯矩。

如果梁横截面为b ×h 的矩形,则有

???? ??-=???? ??-==33223832;4,32s p s p s e y h b I y h b S y b I

将它们代入(10-8)式,则有

????????+???? ??-???? ??-=s s s y h E E y h E E b M 31221123141σ

(10-9)

即为矩形截面线性强化弹塑性梁M 与ys 的关系式。 3. 梁的横力弯曲

梁在横向载荷作用下的弯曲较纯弯曲复杂。采用上述的假设和屈服条件,针对纯弯曲导出的有关结果基本上仍然可用。但应注意的是横力弯曲情况下,弯矩M 不是常量,而是沿梁轴向变化的,即M=M (x )。这样,应力不仅沿截面高度变化,还沿梁轴变化,即σ=σ(y,x )。弹性区高度ys ,也沿梁轴变化,即ys=ys(x)。纯弯曲中的公式(10-3)、(10-4)应改写为

()()0

,2

/2

/=?

-h h dy y b x y σ (10-10)

()()()

x M dy y yb x y h h =?

-2

/2

/,σ

(10-11)

下面以受均布载荷作用理想弹塑性材料的矩形截面为例,进行具体

图10-6 横力弯曲

讨论。如图10-6所示,由于材料是理想弹塑性的,截面上的应力在弹性区成线性分布,在塑性区均等于σs ,即

()

()()

???????≤≤≤≤--≤≤--=2/)

(2/h y y y y y x y y y y h s

s

s s s s

s s σσσσ (i )

它使式(10-10)恒得到满足。将上式代入式(10-11)左侧,则有

()()()????

???????? ??-=???

???

?

?+==?

?

?

?

-222

/2

2

/0

2

/2

/34142,2,h y bh ydy dy y y b ydy

x y b dy y yb x y s

s

h y s s

y s

h h h s s

σσσσσ

(j )

式(10-11)的右侧即为均布载荷q 在x 截面所产生的弯矩

M (x )=()

2

2

2x l q -

(k )

式(j )应与式(k )相等,即

()

2

2222

3414

x l q h y bh s s

-=?????????????? ??-σ

(l )

经过整理,上式可以写成

1

2

22

2

=-

B

x A

y s

(10-12)

式中:

.123;232-=-=

q

q l

B q q h

A e

e

而其中的qe 为梁跨中截面开始屈服时的载荷,即梁的弹性极限载荷,可令

(l )式中的x=0和ys=2h

而得到,即

2

23l bh q s e σ=

(m )

式(10-12)表明梁中的弹、塑性区交界线是一双曲线,如图10-6(a )所示。 在梁跨中截面全部进入塑性状态时,如图10-6(b )所示,产生无限制的塑性流动,相当于在跨中安置了一个铰,称为塑性铰。塑性铰的出现,梁成为几何可变的,使梁丧失了继续承载的能力。此时对应的载荷称为塑性极限载荷。在式(l )中令x=0及ys=0,即得简支梁受均布载荷时的塑性极限载荷为

2

22l bh q s s σ=

(n )

与(m )式比较,显然有

5.1=e

s

q q

塑性铰与结构铰还存在一定的区别:塑性铰的出现是因截面上的弯矩达到了塑性极限弯矩Ms ,并由此而产生转动,即塑性铰与弯矩大小有关,而在结构铰处总有M=0,不能传递弯矩;结构铰为双向铰,即可以在两个方向上产生相对转动,而塑性铰处的转动方向必须与塑性极限弯矩的方向一致,所以塑性铰为单向铰;卸载后塑性铰消失,由于存在残余变形,结构不能恢复原状。

4. 梁的弹塑性挠度

由前面的分析可知,按塑性极限状态设计梁可以充分发挥材料的潜力。但梁是否会因变形过大而不能使用,这就需要研究梁在弹塑性阶段的变形。这时整个梁的变形受到弹性区的限制,因此塑性区的变形是处于约束变形阶段。

以理想弹塑性材料矩形截面(b ×h )

梁为例,横力弯曲时仍仅考虑弯矩引起的变形。将纯弯曲时的式(e )和(10-6b )用于横力弯曲,则有

()()()

x Ey dx v d 2h x y 31123M x M s s 2222

s e σ-

=???????

?????????? ??-=和 将后式代入前式,可以得出

()e

s M x M Eh

dx v d -?=

23122

2σ (10-13)

现在以图10-7所示悬臂梁为例,设梁处于塑性极限状态,固定端弯矩为

Ms ;x=a 截面弯矩为Me 。从而有

图10-7 梁的弹塑性挠度

l a M M a l e s 3

223===即

(1)弹塑性段挠度

在弹塑性段(a ≤x ≤l )挠曲线方程为(10-13)式,将()l

x

l x M M M x M e s e 23==代入,

则有

l 2x

323Eh

2dx v d s

2

2-

σ=

(o )

将上式积分。在梁刚开始进入塑性极限状态瞬时,仍采用固定端处挠度和转角为零的边界条件,得

()3

2232327216??? ??-σ=

νl x Eh

l x s p

(p )

(2)弹性段挠度

在弹性段(0≤x ≤a ),挠曲线方程为

()EI Px

EI x M dx v d 2

2=-

=

将上式积分,利用梁挠曲线的连续性条件,即当x=a=l 32

时的挠度和转角分别与弹塑性段x=l 32

处的挠度和转角相等。再考虑到

s

s bh M Pl σ==42

I=3

121bh

可以得出

()Eh

l

x Eh l x Ehl x v s s s

e 2

3

274022σσσ?

+-=

将x=0代入上式,即得梁处于塑性极限状态时自由端的挠度

()

Eh l v s ep 2max

2740σ?

=

(r )

当梁处于弹性极限状态,即固定端弯矩为

Mmax=Pl=Me=s bh σ62

时,其自由

端处的挠度为

()Eh

l EI Pl v s e 3232

3max

σ== (s )

将式(r )与(s )比较,可得

()

()22.29

20

max

max

==

e ep v v (t )

从这个例题可以看出,按塑性力学得到的极限挠度为弹性极限挠度的 2.22倍。

弹性力学的柱体扭转和弯曲问题属于仅在端面上受力的柱体平衡问题。按弹性力学方法得到严格满足边界条件的解是很困难的。为此,利用圣维南原理,将边界条件放松,即认为离端面足够远处的应力仅与端面上外力的合力及合力矩有关。这种放松了边界条件的问题称为圣维南问题。根据实验,圣维南假设,柱体纵向纤维之间的作用力为零。圣维南问题的解是唯一的,对大部分问题,解可以通过间接或近似方法求出。间接方法主要有两类:一类是半逆解法,即先在应力分量或位移分量中假设一部分未知函数的形式,然后将所假设的未知函数代入基本方程,由此求得另外一部分未知函数,并使全部的未知函数满足所给定的边界条件。另一类是薄膜比拟,即利用弹性薄膜同扭转和弯曲问题的相似性,通过对薄膜的研究来确定扭转和弯曲问题中的未知量。用弹性力学方法得到的结果,其精度高于材料力学中以平截面假设为基础的结果。等价命题就是两个命题的条件本质上是相同的,结论在本质上也是相同的,等价的命题只有形式上的不同。等价命题就是说两个命题可以相互证明。即如果A ,B 两个命题等价那么,把A 命题作为条件,可以证明B 命题;同时,把B 命题作为条件,也可以证得A 命题。变分法概念与寻常分析中的微分概念很为类似,但所联系的不是x 的变化,而是函数y (x )的变化。如果函数y (x )使U (y )达其极值,则U 的变分δU 变为0。几乎所有的物理和力学的基本规律都陈述为规定某一泛函的变分应该是0的“变分法原理”,由于这个原故变分法使许多重要的物理物理问题及技术问题得以解决。通过对曲梁纯弯曲等价定理的验证,间接地证明:在分析小曲率平面曲梁弯曲小变形问题时,完全可以采用截面弯曲应变的线性分布假设代替截面真实应变对此类问题进行理论解析。

通过学习弹性力学及有限元法,我取得了以下成绩,(1)理解和掌握弹力的基本理论;理解和掌握弹力的基本理论;(2)能阅读和应用弹力文献;能阅读和应用弹力文献;(3)能用弹力近似解法(变分法、差分法能用弹力近似解法(变分法、和有限单元法)解决工程实际问题;和有限单元法)解决工程实际问题;(4)为进一步学习其他固体力学分支学科打下基础。

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

武汉大学弹塑性力学简答题以及答案

弹塑性力学简答题 2002年 1什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 3两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 4虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题? 平衡微分方程和静力边界条件。不涉及物理方程。适用于塑性力学问题。 5应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量、、不是互相独立的,而是相关,否则导致位移不单值,不连续。 6什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形?加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。

卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。 中性变载:应力增量沿着加载面,即与加载面相切。应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。 7用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程?协调方程和边界条件。 8薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小? 平面内应力分量最大,最主要的是应力,横向剪应力较小,是次要的应力;z方向的挤压应力最小,是更次要的应力。 9什么是滑移线?物体内任意一点沿滑移线的方向的剪切应力是多少? 在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移线。 剪切应力是最大剪应力。 10什么是随动强化?试用单轴加载的情况加以解释? 2004 1对于各项同性线弹性材料,应用广义胡克定律说明应力与应变主轴重合? ,当某个面上的剪切应力为零时,剪应变也为零,这说明应力的主方向与应变的主方向重合。 2应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3虚位移原理等价于哪两组方程?这说明了什么?

清华大学研究生弹塑性力学讲义 5弹塑性_弹性力学的基本方程与解法

弹塑性力学 第四章 弹性力学的基本方程与解法 一、线性弹性理论适定问题的基本方程和边界条件 对于在空间占有体积域V 的线弹性体在外加恒定载荷和固定几何约束条件下引起 的小变形问题,若以, , u εσ作为求解变量,则可以建立如下偏微分方程边值问题: 几何方程 ()1,,2ij i j j i u u ε= + ()12?+?u u ε= (1a) 广义胡克定律 ij ijkl kl E σε= :E σ=ε (1b) 平衡方程 ,0ij j i f σ+= ??+=f 0σ V ?∈x (1c) 以上方程均要求在域内各点均满足。 边界条件 u u i i = ?∈x S ui (2a) n t j ji i σ= ?∈x S ti (2b)对于适定问题,即不仅要求保证解存在唯一,而且有较好的稳定性。当载荷或边界条件给定值有微小摄动时,应能保证问题解的变化也是微小的。对于边界条件的提法就有严格的要求。即要求: S S S S S ui ti ui ti U I ==? (2c) 对于各向同性材料,其广义胡克定律可具体写成 σλεδεij kk ij ij G =+2 ()tr 2G λ+I σ=εε (3a) ()11ij ij kk ij E ενσνσδ??=+??? ()()1tr E νν=????I ε1+σ?σ (3b)以上就域内方程来说,一共是对于u ,,σ ε的15个独立分量u i ij ij ,, σε的15个方程。对于边界条件来说,三维问题每点有三个边界条件,而且是在三个正交方向上每个方向有一个边界条件,这个边界条件或者给定位移、或者给定面力。这三个正交

应用弹塑性力学习题解答

应用弹塑性力学习题解答 目录 第二章习题答案 设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解求出后,可求出及,再利用关系

可求得。 最终的结果为 已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,, ,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,,

已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得 对,,代入得 对,,代入得 对,,代入得 当时,证明成立。 解 由,移项之得 证得 第三章习题答案 取为弹性常数,,是用应变不变量表示应力不变量。

解:由,可得, 由,得 物体内部的位移场由坐标的函数给出,为, ,,求点处微单元的应变张量、转动张量和转动矢量。 解:首先求出点的位移梯度张量 将它分解成对称张量和反对称张量之和 转动矢量的分量为 ,, 该点处微单元体的转动角度为 电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,,,,求该点的主应变和主方向。 解:根据式先求出剪应变。考察方向线元的线应变,将,,,,,代入其 中,可得 则主应变有 解得主应变,,。由最大主应变可得上式只有1个方程式独立的,可解得与轴的夹角为 于是有,同理,可解得与轴的夹角为。 物体内部一点的应变张量为 试求:在方向上的正应变。

弹塑性力学理论及其在工程上的应用

弹塑性力学理论及其在工程上的应用 摘要:弹塑性力学理论在工程中应用十分的广泛,是工程中分析问题的一个重要手段,本文首先是对弹塑性力学理论进行了阐述,然后讨论了它在工程上面的应用。 关键词:弹塑性力学;工程;应用 第一章 弹塑性力学的基本理论 (一)应力理论 1、 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作 用的物体用一平面A 分成A 和B 两部分(图1.1)。如 将B 部分移去,则B 对A 的作用应代之以B 部分对A 部分的作用力。这种力在B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面上点P 处取出一包括P 点在内的微小面积元素S ?,而S ?上 的内力矢量为F ?,则内力的平均集度为F ?/S ?, 如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于一定的极限σo ,即 σ=??→?S F S 0lim 2、二维应力状态与平面问题的平衡微分方程式 上节中讨论应力概念时,是从三维受力物体出发的,其中点P 是从一个三维空间中取出来约点。为简单起见,首先讨论平面问题。掌提了平面问题以后.再讨论空间问题就比较容易了。

当受载物体所受的面力和体力以及其应力都与某—个坐标轴(例如z 轴)无 关。平面问题又分为平面应力问题与平面应变问题。 (1) 平面应力问题 如果考虑如图所示物体是一个很薄的 平板,荷载只作用在板边,且平行于板面,即 xy 平面,z 方向的体力分量Z 及面力分量z F 均 为零,则板面上(2/δ±=z 处)应力分量为 0) (2=±=δσz z 0)()(22==±=±=δ δ ττz zy z zx 图2.2平面应力问题 因板的厚度很小,外荷载又沿厚度均匀分布, 所以可以近似地认为应力沿厚度均匀分布。由此, 在垂直于z 轴的任一微小面积上均有 0=z σ, 0==zy zx ττ 根据切应力互等定理,即应力张量的对称性,必然有0==xz yx ττ。因而对于平面应力状态的应力张量为 ???? ??????=00000y yx xy x ij σττσσ 如果z 方向的尺寸为有限量,仍假设0=z σ,0==zy zx ττ,且认为x σ,y σ和xy τ(yx τ)为沿厚度的平均值,则这类问题称为广义平面应力问题。 (2)平面应变问题 如果物体纵轴方向(oz 坐标方向)的尺寸很长,外荷载及体力为沿z 轴均匀分 布地作用在垂直于oz 方向,如图1.4所示的水坝是这类问题的典型例子。忽略端部效应,则因外载沿z 轴方向为一常数,因而可以认为,沿纵轴方向各点的位

清华大学研究生弹塑性力学讲义 8弹塑性_塑性力学基本方程和解法

弹塑性力学 第七章塑性力学的基本方程与解法 一、非弹性本构关系的实验基础 拿一根工程上最常用的低碳钢的试件,在拉伸试验机上就可得到如图7.1所示的应力应变曲线。图中A为比例极限,当变形状态未超过A点时材料处于线弹性状态;B为弹性极限,AB段的变形虽然还是弹性的,即卸载时能按原来的加载曲线返回,但应力应变之间不再是线性关系。C,D分别为上、下屈服极限,超过C点后材料进入塑性变形状态,卸载时不再按原来的加载曲线返回,而且当载荷完全卸除后还有残余变形。由C到D是突然发生的,由于材料屈服引起应力突然下降,而应变继续增加。由D到H是一接近水平的线段,称为塑性流动段。对同一种材料D点的测量值比较稳定,而C点受试件截面尺寸、加载速率等影响较大。如果载荷在使材料屈服之后还继续增加,则进入图中曲线右部的强化段。即虽然材料已经屈服,但只有当应力继续增加时,应变才能继续增大。在图中b点之后,试件产生颈缩现象,最后试件被拉断。如果在塑性流动段的D′点,或强化段的H′点卸载,将能观测到沿着与OA平行的直线返回,当载荷为零是到达O′点或O′′点,即产生残余变形。 图7.1 低碳钢单向拉伸应力应变曲线 有些高强度的合金钢并没有象低碳钢那样的屈服段,其单向拉伸的应力应变曲线如图7.2所示。这种情况下屈服极限规定用产生0.2%塑性应变所对应的应力来表示,σ。 记为 0.2 图7.2 高强度合金钢单向拉伸应力应变曲线

第七章 塑性力学的基本方程与解法 如果以超过屈服极限的载荷循环加载,所得试验结果则象图7.3所示。在实验中还发现,对于某些材料(图7.4),如果在加载(拉伸)屈服后完全卸载到O ′′点,然后接着反向加载(压缩),则其反向屈服点对应的应力绝对值s σ′′不仅小于s σ′,而且小于初始屈服应力的绝对值σ′。这是德国的包辛格(Bauschinger, J.)最早发现的,称为包辛格效应。 图7.3 循环加载曲线示意图 图7.4 包辛格效应 当材料进入塑性状态后,如果不是单调加载,则应力和应变之间不仅不是单值函数的关系,而且当时的应变不仅和当时的应力有关,还和整个加载的历史有关。同样,当时的应力不仅和当时的应变有关,而且也和整个变形的历史有关。这就增加了问题的复杂性。材料的特性不能简单的用应力应变关系来描述,而要用比较复杂的本构关系,即应力和整个变形历史的关系来描述。 此外,在实际工程问题中经常遇到的材料非线性问题往往不是单向应力状态,即不是一维问题。要对三维问题单靠实验来确定应力张量和应变张量之间的关系几乎是不可能的。因此,在建立非线性本构关系时,除去不能脱离实验基础之外,还必须有基本理论的指导。 二、刚塑性与弹塑性本构模型 z 简化模型 对于低碳钢一类材料,如果承载后产生的变形状态一直达到塑性流动段,为了简化起见,略去应力应变曲线中的上、下屈服极限等细节,可得到由线弹性段和塑性流动水平线段组成的简化模型,称为理想弹塑性模型(图7.5a ): s s s s E E σεεεσεσεε=≤??==>?当当 (1) 在金属成型等问题中,由于塑性流动引起的塑性应变较大,而弹性应变因相比较小而将其忽略,则又可进一步简化为只有水平线段的刚塑性模型(图7.5b ):

弹塑性力学定理和公式

应力应变关系 弹性模量 ||广义虎克定律 1.弹性模量 对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括: a 弹性模量单向拉伸或压缩时正应力与线应变之比,即 b 切变模量切应力与相应的切应变之比,即 c 体积弹性模量三向平均应力 与体积应变θ(=εx+εy+εz)之比,即 d 泊松比单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 此外还有拉梅常数λ。对于各向同性材料,这五个常数中只有两个是独立的。常用弹性常数之间的关系见表3-1 弹性常数间的关系。室温下弹性常数的典型值见表3-2 弹性常数的典型值。 2.广义虎克定律 线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。 A 各向同性材料的广义虎克定律表达式(见表3-3 广义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应力公式中的x 、y、z分别用r、θ、z和r、θ、φ代替。对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。 B 用偏量形式和体积弹性定律表示的广义虎克定律应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即 体积弹性定律 应力偏量与应变偏量关系式 在直角坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。

弹性力学基本方程及其解法 弹性力学基本方程 || 边界条件 || 按位移求解的弹性力学基本方法 || 按应力求解的弹性力学基本方程 || 平面问题的基本方程 || 基本方程的解法 || 二维和三维问题常用的应力、位移公式 1.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即 (1)3个平衡方程[式(2-1-22)],或用脚标形式简写为 (2)6个变形几何方程[式(2-1-29)],或简写为 (3)6个物性方程[式(3-5)或式(3-6)],简写为 或 2.边界条件 弹性力学一般问题的解,在物体内部满足上述线性方程组,在边界上必须满足给定的边界条件。弹性力学问题按边界条件分为三类。 a 应力边界问题在边界Sσ表面上作用的表面力分量为F x、F y、F z.。面力与该点在物体内的应力分量之间的关系,即力的边界条件为 式中,l nj=cos(n,j)为边界上一点的外法线n对j轴的方向余弦。 这一类问题中体积力和表面力是已知的,求解体内各点的位移、应变和应力。 b 位移边界问题在边界S x上给定的几何边界条件为

弹塑性力学讲义简答题

研究生弹塑性考试试题 1. 简答题:(每小题2分) (1) 弹性本构关系和塑性本构关系的各自主要特点是什么? (2) 偏应力第二不变量J 2的物理意义是什么? (3) 虚位移原理是否适用于塑性力学问题?为什么? (4) 塑性内变量是否可以减小?为什么? (5) Tresca 屈服条件和Mises 屈服条件是否适用于岩土材料?为什么? (6) 解释:在应力空间中为什么应力状态不能位于加载面之外? (7) π平面上的点所代表的应力状态有何特点? (8) 举例说明屈服条件为各向同性的物理含义? 2. 岩土材料若服从Drucker-Prager 屈服条件,试使用关联流动法则求塑性体积应变增量的表达式?(8分) 3. 试确定下面的平面应变状态是否存在?(6分) εx =Axy 2,εy =Bx 2y ,γxy =0,A 、B 为常数 4. 正方形薄板三边固定,另一边承受法向压力b x p p π-=sin 0,如图所示,设位移函数为 0=u b y b x a v 2sin sin 2ππ= 利用Ritz 法求位移近似解(泊松比ν=0)。(15分) y x a b A B C O (第4题图) (第5题图) 5. 如图所示的矩形薄板OABC ,OA 边与BC 边为简支边,OC 边与AB 边为自由边。板不受横向荷载,但在两个简支边上受大小相等而方向相反的均布弯矩M 。试证,为了将薄

板弯成柱面,即w =f (x ),必须在自由边上施加以均布弯矩νM 。并求挠度和反力。(15分) 6. 如图所示矩形截面梁受三角形分布荷载作用,试检验应力函数 ?=Ax 3y 3+Bxy 5+Cx 3y +Dxy 3+Ex 3+Fxy 能否成立。若能成立求出应力分量。(15分) (第6题图) 7. 8. 一材料质点处在平面应变状态下(εz =0),若假定材料的弹性变形相对其塑性变形较小可 忽略,应力应变关系服从Levy-Mises 增量理论,即d εij =d λs ij ,且材料体积是不可压缩的,试证明 σz =2 1(σx +σy ) 进一步证明在此情况下,Tresca 屈服条件和Mises 屈服条件重合。(10分)

《工程弹塑性力学》习题

《工程弹塑性力学》习题 1、(1)试分析下列应力函数可解什么样的平面应力问题: 2232 343y q c xy xy c F +???? ??-=? (2)为使函数φ(r ,z)=C(r 2十z 2)n 能够作为轴对称情况下的应力函数,式中n 应为何值? 2、已知下列应力状态: Pa ij 5101138303835????? ??????=σ 试求八面体正应力与剪应力。 3、已知材料的真实应力应变曲线为:B T =σ? n 或 m T c εσ=,试证: n e m --=1 4、试证: ()dV u dS u n dV u u i V j ij i j s ij i j j i ij V ???????-=+,,,21σσσ 5、试证图示悬臂梁的应变能公式及泛函ΠP 为: ()dx w EJ U l 20 ''21?= 及 () ()()l Fw l Mw Pw dx w EJ l l P +--=∏??0'20''21 并说明其附加条件 6、试求图示斜坡的最大承载能力。 7、对Mises 屈服条件,证明 8、已知理想弹塑性材料的悬臂梁,一端受集中力P 作用,如此杆的截面ij ij ij s J f =σ??=σ??2

为矩形,其尺寸为h b 2?,弹性模量E ,屈服极限为s σ,试求作用点的挠度值。 9、试证明虚位移与虚应力原理是下列高斯散度定理的特殊情况: dS u T dS u T dV u F dV i S i i S i i V i ij V ij u T ????????++=εσ 10、名词解释 1、主平面、主应力、应力主方向 2、李兹法 3、工程应变 4、滑移线 5、Drucker 公设 6、伽辽金法 7、壳体、壳体的厚度、中曲面 8、屈服面、屈服函数 9、增量理论 10、完全解 11、简答题 1、什么是八面体及其特点? 2、阐述弹性力学的平面问题的基本假设? 3、矩形、圆形薄板弯曲的三类边界条件的区别? 4、在大应变问题中,为什么只有用自由应变才能得出合理的结果? 5、Tresca 和Mises 的屈服条件的比较? 6、论述薄板小挠度弯曲理论的基本假定? 7、各向均匀受压对金属材料体积的影响及写出Bridgman 提出p 与单位体积的关系式。 8、阐述弹性本构理论的特点? 9、阐述滑移线的性质? 12、(1)矩形薄板其边界条件见图,不受 横向载荷(q =0),但在两个简支边上受有均 布弯矩M ,在两个自由边上受均布弯矩 μM ,证明:ω=f(x)能满足一切条件,并求 出挠度、弯矩和反力。

(完整版)弹塑性力学作业(含答案)

2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ; 试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。 解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0 代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0; OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cos sin 0x xy yx y σβτβτβσβ+=?? +=?………………………………(a ) 将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: ()()() 1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=???--+-=??L L L L L L L L L L L L L L L L L L 化简(b )式得:d =γ1ctg 2β; 化简(c )式得:c =γctg β-2γ1 ctg 3β 2—17.己知一点处的应力张量为3 1260610010000Pa ??????????? 试求该点的最大主应力及其主方向。 解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: (()()3 1.2333 3 121010 2217.0831******* 6.082810 4.9172410 x y Pa σσσ?++?==????=?=±?=? 则显然:3 312317.08310 4.917100Pa Pa σσσ=?=?= σ1 与x 轴正向的夹角为:(按材力公式计算) ()22612sin 226 12102 cos 2xy x y tg τθθσσθ--?-++ ====+=--+ 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 则:θ=+40.2688B 40°16' 或(-139°44')

第二章应力状态 弹塑性力学基本理论及应用_刘土光

第二章 应力状态理论 2.1 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作用的物体用一平面A 分成A 和B 两部分(图2.1)。如将B 部分移去,则B 对A 的作用应代之以B 部分对A 部分的作用力。这种力在B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面上点P 处取出一包括P 点在内的微小面积元素S ?,而S ?上的内力矢量为F ?,则内力的平均集度为F ?/S ?,如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于一定的极限σ,即 σ=??→?S F S 0lim 这个极限矢量σ就是物体在过c 面上点P 处 的应力。由于S ?为标量,故,σ的方向与F ?的 极限方向一致。内力矢量F ?可分解为所在平面 的外法线方向和切线方向两个分量n F ?和s F ?。 同样,应力σ可分解为所在平面的外法线方向 和切线方向两个分量。沿应力所在平面 的外法线方向n 的应力分量称为正应力,记为n σ,沿切线方向的应力分量称为切应力,记为 n τ。此处脚注n 标明其所在面的外法线方向,由此, S ?面上的正应力和切应力分别为n σ和n τ。 在上面的讨论中,过点P 的平面C 是任选的。显然,过点P 可以做无穷多个这样的平面C ,也就是说,过点P 有无穷多个连续变化的n 方向。不同面上的应力是不同的。这样,就产生了如何描绘一点处的应力状态的问题。为了研究点P 处的应力状态,在点P 处沿坐标轴x ,y ,z 方向取一个微小的平行六面体(图2.2),其六个面的外法线方向分别与三个坐标轴的正负方向重合,其边长分别为x ?,Δy ,Δz 。假定应力在各面上均匀分布,于是各面上的应力便可用作用在各面中心点的一个应力矢量来表示,每个面上的应力矢量又可分解关一个正应力和两个切应力分量,如图2.2所示。以后,对正应力只用一个字母的下标标记,对切应力则用两个字母标记*其中第一个字母表示应力所在面的外法线方向;第二个字母表示应力分量的指向。正应力的正负号规定为:拉应力为正,压应力为负。切应力的正负号规定分为两种情况:当其所在面的外法线与坐标轴的正方向一致时,则以沿坐标轴正方向的切应力为正,反之为负;当所在面的外法线与坐标袖的负方向一致时,则以沿坐标轴负方向的切应力为正,反之为负。图2.2中的各应力分量均 图2.1 应力矢量

(完整版)弹塑性力学公式

应力应变关系: 弹性模量 || 广义虎克定律 1.弹性模量 a 弹性模量 单向拉伸或压缩时正应力与线应变之比,即 E σε = b 切变模量 切应力与相应的切应变 之比,即 G τγ= c 体积弹性模量 三向平均应力 0() 3 x y z σσσσ++= 与体积应变θ(=εx +εy +εz )之比, 即 K σθ= d 泊松比 单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 1 ε νε= 2.广义虎克定律 a.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即 (1)3个平衡方程(或用脚标形式简)写 为: 22()0 j ij i i x u f t σρ??++-=?? (,,,)i j x y z = (2)6个变形几何方程,或简写为: 1()2j i ij j i u u E x x ??= +?? (,,,)i j x y z = (3)6个物性方程简写为: 0132ij ij E G E ν σσδ= - 2ij ij ij G σελθδ=+ (,,,)i j x y z = { 1() 0() () i j ij i j δ=≠= 2.边界条件 x x xx xy xy xz xz F l l l σττ=++ y yz xx y xy yz xz F l l l τσσ=++ z zz xx xy xy z xz F l l l ττσ=++ 式中,l nj =cos(n,j)为边界上一点的外 法线n 对j 轴的方向余弦 b 位移边界问题 在边界S x 上给定的几何边界条件为 *x x u u = * y y u u = *z z u u = 式中,u i 为表面上给定的位移分量 Cauchy 公式: T x = σ x l + τ xy m +τ zx n T y = τ xy l+σ y m +τ zy n T y =τ xz l+τ y z m +σ z n (n z n T n T στ= 边界条件: ()()()x xy xz s x xy y yz s y xz yz z s z l m n T l m n T l m n T στττστττσ++=++=++= 平衡微分方程: 000yx x zx x xy y zy y yz xz z z F x y z F x y z F x y z τσττστττσ???+++=??????+++=??????+++=??? 主应力、不变量,偏应力不变量 321231230 x y z x xy y z zx yz yx y zy xz x z x xy xz yx y yz zx zy z I I I I I I σσσσσσστσστττσττσσστττστττσ-+-==++=++ = 1231 ();3 m i i m s σσσσσσ=++=- ()()()1123222222230 16()6x y y z z x xy yz zx J s s s J J σσσσσστττ=++=??=-+-+-+++????=偏应力张量行列式的秩 八面体 812381 () 3σσσστ=++ 等效应力σ=体积应变x y z θεεε=++ 12312()E v v εσσσ-= ++ 几何方程: ;;;x xy y yz z xy u u v x y x v v w y z y w u w z z x εγεγεγ???= =+??????==+ ??????==+ ??? 1 2 ij ij εγ= 变形协调方程22 222y xy x xy y x ετε???+=??? 物理方程 ()()()12(1) ;12(1) ;12(1) ;x x y z xy xy y y x z yz yz z z y x zx zx v v E E v v E E v v E E εσσσγτεσσσγτεσσσγτ+??=-+=??+??=-+=??+??=-+=??

我所认识的弹塑性力学知识交流

我所认识的弹塑性力学 弹塑性力学作为固体力学的一门分支学科已有很长的发展历史,其理论与方法的体系基本完善,并在建筑工程、机械工程、水利工程、航空航天工程等诸多技术领域得到了成功的应用。 一绪论 1、弹塑性力学的概念和研究对象 弹塑性力学是研究物体在载荷(包括外力、温度变化或外界约束变动等)作用下产生的应力、变形和承载能力,包括弹性力学和塑性力学,分别用来研究弹性变形和塑性变形的力学问题。弹性变形指卸载后可以恢复和消失的变形,塑性变形时指卸载后不能恢复而残留下的变形。弹塑性力学的研究对象可以是各种固体,特别是各种结构,包括建筑结构、车身骨架、飞机机身、船舶结构等,也研究量的弯曲、住的扭转等问题。其基本任务在于针对实际问题构建力学模型和微分方程并设法求解它们,以获得结构在载荷作用下产生的变形,应力分布及结构强度等。 2、弹塑性简化模型及基本假定 在弹性理论中,实际固体的简化模型为理想弹性体,它的特征是:一定温度下,应力应变之间存在一一对应关系,而与加载过程以及时间无关。在塑性理论中,常用的简化模型为:理想塑性模型和强化模型。理想塑性模型又分为理想弹塑性模型和理想刚塑性模型;强化模型包括线性强化弹塑性模型、线性强化刚塑性模型和幂次强化模型。弹塑性力学有五个最基本的力学假定,分别为:连续性假定、均匀性

假定、各向同性假定、小变形假定和无初应力假定。 3、研究方法及其与初等力学理论的联系和区别 一般来说,弹塑性力学的求解方法有:经典方法、数值方法、试验方法和实验与数值分析相结合的方法。经典方法是采用数学分析方法求解,一般采用近似解法,例如,基于能量原理的Ritz法和伽辽金法;数值法常用的有差分法、有限元法及边界条件法;实验法是采用机电方法、光学方法、声学方法等来测定应力应变分布规律,如光弹性法和云纹法。 弹塑性力学与初等理论力学既有联系又有区别,如下表所示:表1、弹塑性力学与初等力学理论的联系和区别

弹塑性力学讲义应力

第1章 应 力 1. 1 应力矢量 物体受外力作用后,其内部将产生内力,即物体本身不同部分之间相互作用的力。为了描述内力场,Chauchy 引进了应力的重要概念。对于处于平衡状态的物体,假想使用一个过P 点的平面C 将其截开成A 和B 两部分。如将B 部分移去,则B 对A 的作用应以分布的内力代替。考察平面C 上包括P 点在内的微小面积,如图1.1所示。设微面外法线(平面C 的外法线)为n ,微面面积为?S ,作用在微面上的内力合力为?F ,则该微面上的平均内力集度为?F /?S ,于是,P 点的内力集度可使用应力矢量T (n ),定义为 T (n ) =S F s ???0 lim → B ?S A C P n ?F x y z 图1.1 应力矢量定义 在笛卡儿坐标系下,使用e x ,e y 和e z 表示坐标轴的单位基矢量,应力矢量可以表示为 T (n ) = T x e x +T y e y +T z e z (1.1) 式中T x 、T y 和T z 是应力矢量沿坐标轴的分量。

上篇弹性力学第1章应力 8 除进行公式推导外,通常很少使用应力矢量的坐标分量T x、T y 和T z。实际应用 中,往往需要知道应力矢量沿微面法线方向和切线方向的分量,沿法线方向的应力分量称为正应力,沿切线方向的应力分量称为剪应力。 显而易见,应力矢量的大小和方向不仅取决于P点的空间位置,而且还与所取截面的法线方向n有关,即作用在同一点不同法线方向微面上的应力矢量不同。所有这些应力矢量构成该点的应力状态。 由应力矢量的定义并结合作用力与反作用力定律,在同一点,外法线为-n微面上的应力矢量为: T(-n)= -T(n) (1.2) 1.2 应力张量 人们讨论问题常常是在笛卡儿坐标中进行,因此,我们使用六个与坐标面平行的平面从图1.1中P点的邻域截取一个微六面体,如图1.2所示。在这个微六面体中,若微面的外法线方向与坐标正方向一致,则称为正面;若与坐标正方向相反,则称为负面。因此有三个正面和三个负面。 图1.2 一点的应力状态

工程弹塑性力学题库及答案

第一章弹塑性力学基础 1.1什么是偏应力状态?什么是静水压力状态?举例说明? 解:静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 1.2对照应力张量与偏应力张量,试问:两者之间的关系?两者主方向之间的关系? 解:两者主方向相同。。 1.3 简述应力和应变Lode参数定义及物理意义: 解:μσ的定义、物理意义:; 1) 表征S ij的形式;2) μσ相等,应力莫尔圆相似,S ij形式相同;3) 由μσ可确定S1:S2:S3。 1.4设某点应力张量的分量值已知,求作用在过此点平面上的应 力矢量,并求该应力矢量的法向分量。 解:该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为:

1.5利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解:求出后,可求出及,再利用关系 可求得。 最终的结果为, 1.6 已知应力分量为,其特征方程为 三次多项式,求。如设法作变换,把该方程变为形式 ,求以及与的关系。 解:求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系

代入数据得,, 1.7已知应力分量中,求三个主应力。 解:在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 1.8已知应力分量 ,是材料的屈服极限,求及主应力。 解:先求平均应力,再求应力偏张量,, ,,,。 由此求得: 然后求得:,,解出 然后按大小次序排列得到 ,, 1.9 已知应力分量中,求三个主应力,以及每个

弹塑性力学习题题库加答案

第二章 应力理论和应变理论 2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及 306.768 6.77() 104 sin 2cos 2sin 602cos 6022 1 32 3.598 3.60() 22 x y xy MPa MPa σστατα=----+= ?+= ?-=-?-?=-- 代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τ xy = +2 3030( )cos 2sin 22 2 1041041cos 602sin 607322226.768 6.77()104 sin 2cos 2sin 602cos 602 2 1 32 3.598 3.60()2 x y x y xy x y xy MPa MPa σσσσσατα σστατα+-= ++---+= ++=--?+=----+=- ?+=- ?+=+?= 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。 2—6. 悬挂的等直杆在自重W 作用下(如图所示)。材料比重为γ弹性模量为 E ,横截面面积为A 。试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。 解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得: 题图 1-3

c 截面的内力:N z =γ·A ·z ; c 截面上的应力:z z N A z z A A γσγ??= ==?; 所以离下端为z 处的任意一点c 的线应变εz 为: z z z E E σγε= = ; 则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为: ()2 2z z z z z z z z y z z l d l d d zd E E E γγ γε=???=??=? = ?= ; 显然该杆件的总的伸长量为(也即下端面的位移): ()2 222l l A l l W l l d l E EA EA γγ?????=??= = =  ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-????+-?? ??--?? 应力单位为kg /cm 2 。 试确定外法线为n i (也即三个方向余弦都相等)的微分斜截面上的总应力n P 、正应力σn 及剪应力τ n 。 题—图 16

弹塑性力学简答题

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

弹塑性力学基本内容

弹塑性力学基本内容 本课程是以物体的应力、应变理论以及在工程中的应用主要对象的一门基础性、实践性很强的应用学科。 教学目标为在强化物体的应力、应变理论基础的同时,关注物体的弹性力学模型的建立、分析和应用,并兼顾塑性理论的建立。在深度和广度上力求体现学科专业发展的前沿,有利于研究生掌握弹性理论专门知识,了解塑性理论的思想和方法,并着重在基础理论和实践应用两方面进行科研能力的培养。其基本要求为:使学生掌握弹性理论的建立、分析、应用,初步掌握塑性力学理论,使其具有从事弹性力学分析的知识和初步能力。 (1)弹塑性力学的研究对象和内容、弹塑性力学的分析方法和体系、弹塑性力学的基本假定 应力矢量、应力张量、Cauchy公式、平衡微分方程、力边界条件、应力分量的坐标变换、主应力、应力张量不变量、最大切应力、Mohr应力圆、偏应力张量及其不变量、八面体上的应力和等效应力、主应力空间与π平面 (2)位移分量和应变分量、两者的关系、物体内无限邻近两点位置的变化、转动分量、转轴时应变分量的变换、应变张量、主应变应变张量不变量、应变协调方程、应力和应变的关系、应力率和应变增量 (3)弹性力学的基本方程及其边值问题、位移解法(以位移表示的平衡微分方程)、应力解法(以应力表示的应变协调方程)、解的唯一性定理、局部性原理、逆解法和半逆解法、几个简单问题的求解 (4)平面应变问题、平面应力问题、应力解法(把平面问题归结为双调和方程的边值问题)、用多项式解平面问题、悬臂梁一端受集中力作用、简支梁受均匀分布荷载作用(5)平面问题的极坐标方程、轴对称应力问题和对应的位移、圆筒受均匀压力作用、曲梁的纯弯曲、具有小圆孔的平板的均匀拉伸 (6)薄板弯曲的基本概念及基本假设、弹性曲面的基本公式、薄板横截面上的内力、边界条件、圆形薄板弯曲问题 (7)塑性力学的基本概念、材料在简单拉压时的实验结果、应力-应变关系的简化模型、轴向拉伸时的塑性失稳、塑性本构关系的主要内容和研究方法 (8)应变张量和应力张量、屈服条件、几个常用的屈服条件、屈服条件的实验验证、加载条件 (9)塑性应变增量、加卸载判别准则、Drucker公设和Ilyushin公设、加载面外凸性和正交流动法则、塑性势理论、简单弹塑性问题

相关文档
相关文档 最新文档