文档库 最新最全的文档下载
当前位置:文档库 › 基于有限元法对简支T型梁进行结构分析

基于有限元法对简支T型梁进行结构分析

基于有限元法对简支T型梁进行结构分析
基于有限元法对简支T型梁进行结构分析

 万方数据

8期卢彭真:基于有限元法对简支T型梁进行结构分析505

图2实体单元模型

利用实体结构处理问题时,单元的结构比较复杂,计算得到的是应力,因此通常就用杆单元进行建模。简支T型梁根据结构的形式可以采用杆系结构,即可以用杆系单元来处理。故本实例也是采用杆系单元来建立有限元模型,采用10个单元,11个节点,引入边界条件建立有限元模型,模型见图3所示‘引。

图3杆系单元模型

3加载计算分析

分析结果如下。

简支梁支反力如表l。

表1简支梁支反力

从表1可知,简支梁最大弯矩:呱。;一772.162kN?m,最大剪力图:盯。。。一157.584kN,弯矩图和剪力图分别如图4、图5所示。

图4简直梁内力弯矩图

图5简支梁内力剪力图

简支梁在荷载的作用下的变形图如图6所示。

图6简支梁的变形图

简支梁各节点的位移如表2。

表2各节点挠度

从表2可知,最大挠度是跨中第7号节点,其最大挠度值是一1.55

1Tlln。 万方数据

 万方数据

基于有限元法对简支T型梁进行结构分析

作者:卢彭真, L(U) Pengzhen

作者单位:广州大学,广州,510405

刊名:

科学技术与工程

英文刊名:SCIENCE TECHNOLOGY AND ENGINEERING

年,卷(期):2005,5(8)

参考文献(3条)

1.王勖成有限元法 2003

2.姚玲森桥梁工程 1985

3.任辉启ansys7.0工程分析实例详解 2003

本文读者也读过(10条)

1.谢晓君钢筋混凝土悬臂梁ANSYS优化设计与传统优化设计的对比分析[期刊论文]-城市建设理论研究(电子版)2011(16)

2.钢筋混凝土受压构件高温性能的有限元分析[期刊论文]-昆明理工大学学报(理工版)2005,30(5)

3.袁丽军.杜群贵.曾信.YUAN Li-jun.DU Qun-gui.ZENG Xin基于APDL的模架参数化建模与变形影响因素分析[期刊论文]-模具工业2011,37(3)

4.金锡平浅谈ansys在高层钢筋混凝土房屋抗震设计中的应用[期刊论文]-科技信息2011(10)

5.陈建明.付永强.仲秀丽利用ANSYS进行钢筋混凝土结构的非线性分析[期刊论文]-中国科技博览2009(16)

6.卢文明钢筋混凝土T型组合梁抗剪性能研究[期刊论文]-低温建筑技术2011,33(2)

7.叶树进.李寅珺.YE Shu-jin.LI Yin-jun ANSYS在高层钢筋混凝土房屋抗震设计中的应用[期刊论文]-山西建筑2011,37(16)

8.孙九春.申明文.周海俊.SUN Jiu-chun.SHEH Ming-wen.ZHOU Hai-jun ANSYS分析技术在系杆拱桥施工中的应用[期刊论文]-中国市政工程2006(2)

9.ZHANG Xiang有限元在计算简支梁屈曲荷载中的应用[期刊论文]-山西建筑2008,34(23)

10.王斌华.邵雨虹.吕彭民.WANG Bin-hua.SHAO Yu-hong.LU Peng-min基于ANSYS的450t提梁机结构有限元分析[期刊论文]-筑路机械与施工机械化2011,28(6)

引用本文格式:卢彭真.L(U) Pengzhen基于有限元法对简支T型梁进行结构分析[期刊论文]-科学技术与工程2005(8)

《结构分析中的有限元法》2015-有限元习题-参考答案

本科有限元习题参考答案

2015年3月10日作业 1、简述力学课程中介绍的各种力学模型的简化条件、基本假设和适用范围(包括有拉压杆模型、弯曲梁模型、平面应力和平面应变模型、轴对称模型、板模型、壳模型等) 2、给出弹性力学问题中平衡方程、几何方程、物理方程的表达式及其意义。 (1)平衡方程:

zy yz xz zx yx xy z yz xz z y xy zy y x zx yx x f y x z f x z y f z y x ττττττττσττσττσ====+??+??+??=+??+??+??=+??+??+??,000, 物理意义:应力分量与体力分量之间的关系。 (2)几何方程: z u x w y w z v x v y u z w y v x u zx yz xy z y x ??+??=??+??=??+??=??=??=??=γγγεεε,,,, 物理意义:应变分量与位移分量之间的关系。 (3)物理方程: [] [] [] zx zx yz yz xy xy y x z z z x y y z y x x G G G E E E τγτγτγσσμσεσσμσεσσμσε1,1,1) (1 ) (1 )(1 ===+-=+-=+-= 物理意义:应变分量与应力分量之间的关系。 3、简述最小势能原理的主要内容和主要公式。 根据虚功原理得到:??=-Γ T Ω T T 0Td Γδu d Ω)F δu -σδε(,由 )(21εδσεδδεU T T =?? ? ??=则0)21((=Γ-Ω-=∏??ΩΓ)Td u d F u T T T p σεδδ 其中,??ΩΓ Γ-Ω-=∏Td u d F u T T T p )21 (σε即为系统的总势能,它是弹性体变 形势能和外力势能之和。上面变分为零式表明:在所有区域内满足几何关系,在边界上满足给定位移条件的可能位移中,真实位移使系统的总势能取驻值(可证

ANSYS结构有限元分析流程

有限元法的基本思想是将连续的结构离散成有限个单元,并在每一个单元中设定有限个节点,将连续体看做是只在节点处相连接的一组单元的集合体;同时选定场函数的节点值作为基本未知量,并在每一个单元中假设一个近似插值函数表示单元中场函数的分布规律;然后利用力学中的变分原理建立求解节点未知量的有限元方程,这样就将一个连续域中的无限自由度的问题转化为离散域的自由度问题。求解后可以利用已知的节点值和插值函数确定单元以及整个集合体上场函数。 ANSYS结构有限元分析流程 1.前处理 前处理的目的是建立一个符合实际情况的结构有限元模型。在Preprocessor 处理器中进行。包括:分析环境设置(指定分析工作名称、分析标题)、定义单元类型、定义实常数、定义材料属性(如线弹性材料的弹性模量、泊松比、密度)、建立几何模型(一般用自底向上建模:先定义关键点,由这些点连成线,由线组成面,再由线形成体)、对几何模型进行网格划分(分为三个步骤:赋予单元属性、指定网格划分密度、网格划分) 2.施加载荷、设置求解选项并求解 这些工作通过SOLUTION 处理器实现。 指定分析类型(静力分析、模态分析、谐响应分析、瞬态动力分析、谱分析等)、设置分析选项(不同分析类型设置不同选项,有非线性选项设置、线性设置和求解器设置)、设置载荷步选项(包括时间、

子步数、载荷步、平衡迭代次数和输出控制)、加载(ANSYS结构分析的载荷包括位移约束、集中力、面载荷、体载荷、惯性力、耦合场载荷,将其施加于几何模型的关键点、线、面、体上)然后求解。3.后处理 当完成计算以后,通过后处理模块查看结果。ANSYS软件的后处理模块包括通用后处理模块(POST1)和时间历程后处理模块(POST26)。可以轻松获得求解计算结果,包括位移、温度、应变、热流等,还可以对结果进行数学运算,然后以图形或者数据列表的形式输出。结构的变形图、内力图(轴力图、弯矩图、剪力图),各节点的位移、应力、应变,还有位移应力应变云图都可以得出,为我们分析问题提供重要依据。 ANSYS软件提供了100种以上的单元类型,用来模拟工程中的各种材料和结构,各种不同单元组合在一起,成为具体物理问题的抽象模型。如在隧道工程中衬砌用beam3梁单元模拟,弹簧单元COMBIN14模拟围岩与结构的相互作用。边坡工程中边坡土体用平面单元来模拟。水利工程中对大坝进行三维模拟分析时用实体单元,二维分析时用平面单元;水库闸门用壳单元模拟。桥梁结构模拟分析中,用梁单元模拟不同截面的钢梁、混凝土梁,壳单元模拟桥面板箱梁等薄壁结构,杆单元可以模拟预应力钢筋和桁架。房屋建筑结构中,梁单元模拟框架柱,壳单元模拟屋面板,实体单元模拟大体积混凝土,杆单元模拟预应力钢筋等。 一般都要对结构进行静力分析,结果必须满足设计要求。当动荷

结构分析及有限元分析基础知识

第一章结构分析及有限元分析基础知识 注:摘自《NX知识工程应用技术——CAD/CAE篇》 洪如瑾编译 清华大学出版社 [目标] 本章将简述结构分析及有限元分析的基础知识,为学习与应用结构分析做好准备,包括: ※ 结构与结构分析定义 ※ 结构的线性静态分析 ※ 材料行为与故障 ※ 有限元分析的基本概念 ※ 有限元模型 1.1结构分析基础知识 1.1.1结构基本概念 1.结构定义 结构可以定义为一个正承受作用的载荷处于平衡中的系统。平衡条件意味着结构是不移动的。一个自由的支架不是一个结构,它未被连接到任一物体上并无载荷作用与它。仅当它附着到外部世界,并且有作用力、压力或力矩时,支架成为一个结构。 例如横跨江面的大桥就是一个普通的结构,一个支架通过它的支撑连接到地面上,桥的重量是在结构上的一种载荷(力)。当汽车通过桥时,附加的力作用于桥的不同位置。 一个好的结构必须满足以下标准: (1) 当预期的载荷作用时,结构必须不出现故障。这个似乎是显而易见的,并意味着结构必须是“强度足够的”。故障意味着结构破裂、分离、弯曲,以及支撑作用载荷失败。 注意:考虑到意外的载荷,通常在设计中提供安全余量。余量常常利用安全因素来描述。例如,如果在结构上期待载荷是10 000磅,规定安全因素是2.0,则结构将设计成能经受住20 000磅载荷。 (2) 当载荷作用时,结构必须不产生过分变形。这意味着结构必须“刚度足够”。 变形可接受的极限(弯曲度、挠度、拉伸等)取决于特定情况。例如,在通常住宅中的地板由足够的吊带支撑,以防止当人在地板岸上行走时有“柔软”的感觉。 (3) 在它的服务生命周期,结构的行为应不会恶化。这意味着结构必须“足够耐用”,必须考虑环境影响和“磨损与破裂”。如果一座桥假定维持50年,则桥的设计必须提供整个50年寿命的结构完整性与充分的安全余量。2.结构分析 结构分析是用于决定一个结构是否将正确完成任务的工程分析过程。结构将在某些方式中进行模拟和求解描述它的行为的数学方程。分析可以人工方法或用计算机方法来完成。 结构分析的结果(答案)用于评估性能,摘要如下: (1)“强度足够吗?”:应力必须是在一可接受的范围内。 (2)“刚度足够吗?”:位移必须是在一可接受的范围内。 (3)“耐用度足够?”:对一个长的疲劳周期应力必须足够低。

板结构有限元分析实例详解

板结构有限元分析实例详解1:带孔平板结构静力分析本节介绍带孔平板结构静力分析问题,同时介绍布尔操作的基本用法。 8.3.1 问题描述与分析 有孔的矩形平板,左侧边缘固定,长400mm,宽200 mm,厚度为10 mm,圆孔在板的正中心,半径为40 mm,左侧全约束,右侧边缘均布应力1MPa,如图8.7所示。求板的变形、位移及应力变化情况。(材料的材料属性为:弹性模量为300000 MPa,剪切模量为0.31。) 图8.7 带孔的矩形平板 由于小孔处边缘不规则,本文采用PLANE82高阶平面单元进行分析。 8.3.2 求解过程 8.3.2.1 定义工作目录及文件名 启动ANSYS Mechanical APDL Product Launcher窗口,如图8.8所示。在License下 拉选框中选择ANSYS Multiphysics产品,在Working Directory输入栏中输入工作目 录:C:\ANSYS12.0 Structural Finite Elements Analysis and Practice\Chapter 8\8-1,在Job Name一栏中输入工作文件名:Chapter8-1。以上参数设置完毕后,单 击Run按钮运行ANSYS。

图8.8 ANSYS设置窗口菜单 可以先在目标文件位置建立工作目录,然后单击Browse按钮选择工作目录;也 可以通过单击Browse按钮选择工作文件名。 8.3.2.2 定义单元类型和材料属性 选择Main Menu>Preferences命令,出现Preferences for GUI Filtering对话框, 如图8.9所示,在Individual discipline(s) to show in the GUI中勾选Structural,过滤掉ANSYS GUI菜单中与结构分析无关的选项,单击OK按钮关闭该对话框。 图8.9 Preferences for GUI Filtering对话框

对称结构有限元分析

对称结构有限元分析 ----3节点三角形单元的分析 一问题分析(对称框架线弹性实体的静力平衡问题) 图是一个方形弹性实体,单位边长、单位厚度、承受等效竖向压力2 1m,其中边界条 KN 件暗示着存在两组相对称的平面,因此现考虑的仅是问题的。每个节点上的自由度号码代表了各自在x和y方向上可能的位移。 结构和单元信息NELS NCE NN NIP 8 2 9 1 AA BB E V

.5 .55 1.E6 .3 约束节点自由度信息NR 5 K , NF(:,K), I=1,NR 10 1 4 0 1 7 0 0 8 1 9 1 0 载荷信息LOADED_NODES 3 (K, LOADS(NF(:,K)), I=1 , LOADED_NODES) 1 .0 -.25 2 .0 -.5 3 .0 -.25 333 3节点三角形单元网络的总体节点和单元编号 3节三角形单元局部坐标系中节点和自由度编号

二理论基础(有限元方法原理) 通过弹性力学变分原理建立弹性力学问题有限元方法表达格式的基本步骤。最小位能原理的未知场变量是位移,以结点位移为基本未知量,并以最小位能原理为基础建立的有限元为位移元。它是有限元方法中应用最为普遍的单元,也是本书主要讨论的单元。 对于一个力学或无力问题,在建立其数学模型以后,用有限元方法对它进行分析的首要步骤是选择单元形式。平面问题3结点三角形单元是有限元方法最早采用,而且至今仍经常采用的单元形式。我们将以它作为典型,讨论如何应用广义坐标建立单元位移模式与位移插值函数,以及如何根据最小位能原理建立有限元求解方程的原理、方法与步骤,并进而引出弹性力学问题有限元方法的一般表达格式。对于前一问题,着重讨论选择广义坐标和有限元位移模式的一般原则和建立其位移插值函数的一般步骤。对于后一问题,着重讨论单元刚度矩阵和单元载荷向量的形式,总体刚度矩阵和总体载荷向量集成的原理和方法,以及它们各自的特性。 作为一种数值方法,有限元解的收敛性无疑是十分重要的问题,以后将讨论解的收敛准则及其物理意义,所阐明的原则在以后还将得到进一步的应用和具体化。 在建立了有限元的一般表达格式以后,原则上可以将它推广到平面问题以外的其他弹性力学问题和采用任何形式的单元。轴对称问题具有很广泛的应用领域,轴对称问题3结点三角形 单元的表达格式可以看作是平面问题此种单元表达格式的直接推广。 一)弹性力学平面问题的有限元格式 结点三角形单元是有限元方法中最早提出,并且至今仍广泛应用的单元,由于三角形单元对复杂边界有较强的适应能力,因此很容易将一个二维离散成有限个三角形单元,如图1所示。在边界上以若干段直线近似原来的曲线边界,随着单元增多,这种拟合将趋于精确。我们在讨论如何应用有限元方法分析各类具体问题的开始,将以平面问题3结点三角形单元 为例来阐明弹性力学问题有限元分析的表达格式和一般步 1.1)单元位移模式及插值函数的构造 典型的3节点三角形单元节点编码i,j,m ,以逆时针方向编码为正向。每个节点有位移分量如图所示。 ?? ? ???=i i v u i a (i,j,m) 每个单元有6个节点位移即6个节点自由度,亦即 [ ] T m m j j i i m j i e v u v u v u a a a =??? ? ??????=a 1.2) 单元的位移模式和广义坐标 在有限元方法中单元的位移模式或称位移函数一般采用多项式作为近似函数,因为 多项式运算简便,并且随着项数的增多,可以逼近任何一段光滑的函数曲线。多项式的选取由低次到高次。

钢结构的有限元分析报告

2 受料仓与给料机的钢结构有限元分析 2.1建立有限元模型 如图2.1破碎站主视图和图2.2破碎机布置图,它的工作过程是:卸料卡车间歇把最大入料粒度为1500mm的煤块倒入受料仓,受料仓存储大粒度煤块。刮板给料机把受料仓的大粒度的煤块连续的刮给破碎平台的破碎机。破碎机把最大入料粒度为1500mm的煤块破碎成最大排料粒度为300mm的煤块,煤块由底部的传送带传出。 图2.1 破碎站主视图

图2.2 破碎机布置图 破碎站钢结构的弹性模量E=200000MPa,泊松比,质量密度 ×10-3kg/cm3。破碎站由支撑件型钢和斜支撑角钢组成。在结构离散化时,由于角钢和其它部位铰接,铰接是具有相同的线位移,而其角位移不同。承受轴向力,不承受在其它方向的弯矩,相当于二力杆,所以型钢用梁单元模拟,角钢用杆单元模拟。破碎站是由受料仓与给料机和破碎平台与控制室两部分组成,故计算时是分别对这两部分进行的。离散后,受料仓和给料机共个单元,其中梁单元个,杆单元个,节点总数为个,有限元模型如图和图所示。

图2.3 受料仓与给料机有限元模型 图2.4 受料仓与给料机有限元模型俯视图 2.2载荷等效计算 2.2.1主要结构截面几何参数 破碎站主要结构采用H型钢梁,截面尺寸如图2.5所示,各截面横截面积A,截面惯性矩I y,I z和极惯性矩I如下。

图2.5 截面尺寸 料仓及给料机支撑结构 料仓及给料机六根支撑立柱(H500×400×12×20) A= 215.2mm2,I y=101947×104mm4,I z=21340×104mm4,I=240×104mm4料仓B-B面横梁和给料机E-E、F-F面横梁(H400×300×12×20) A=16320mm2,I y=48026×104mm4,I z=9005×104mm4,I=181×104mm4料仓C-C面和D-D面横梁(H400×400×12×20) A=20320mm2,I y=62479×104mm4,I z=21339×104mm4,I=234×104mm4给料机两根纵梁(H550×400×12×20) A=22120mm2,I y=125678×104mm4,I z=21341×104mm4,I=243×104mm4给料机六根横梁(H400×400×12×20) A=20320mm2,I y=62479×104mm4,I z=21339×104mm4,I=234×104mm4其它横梁(H400×300×12×20) A=16320mm2,I y=48026×104mm4,I z=9005×104mm4,I=181×104mm4 斜支撑的横截面积 ∠125×12:A=2856mm2 ∠75×6:A=864mm2 2.2.1实际载荷情况

机械结构有限元分析

机械结构有限元分析 有限元分析软件ANSYS在机械设计中的应用 摘要:在机械设计中运用ANSYS软件进行有限元分析是今后机械设计发展的必然趋势,将有限元方法引入到机械设计课程教学中,让学生参与如何用有限元法来求解一些典型零件的应力,并将有限元结果与教材上的理论结果进行对照。这种新的教学方法可以大大提高学生的学习兴趣,增强学生对专业知识的理解和掌握,同时还可以培养学生的动手能力。在机械设计课程教学中具有很强的实用价值。 关键词:机械设计有限元 Ansys 前言:机械设计课程是一门专业基础课,其中很多教学内容都涉及到如何求取零件的应力问题,比如齿轮、v带、螺栓等零件。在传统的教学过程中,都是根据零件的具体受力情况按材料力学中相应的计算公式来求解。比如,在求解齿轮的接触应力时,是把齿轮啮合转化为两圆柱体的接触,再用公式求解。这些公式本身就比较复杂,还要引入各种修正参数,因此我们在学习这些内容时普遍反映公式难记,学习起来枯燥乏味,而且很吃力。 近年来有限元法在结构分析中应用越来越广泛,因此如果能将这种方法运用到机械设计课程中,求解一些典型零件的应力应变,并将分析结果和教材上的理论结果进行对比,那么无论是对于提高学生学习的热情和积极性,增强对重点、难点知识的理解程度,还是加强学生的计算机水平都是一件非常有益的事情。 由于直齿圆柱齿轮的接触强度计算是机械设计课程中的一个重要内容,齿轮强度的计算也是课程中工作量最繁琐的部分。下面就以渐开线直齿圆柱齿轮的齿根弯曲疲劳强度的计算为例,探讨在机械设计课程中用ANSYS软件进行计算机辅助教学的步骤和方法,简述如何将有限元方法应用到这门课程的教学中。 1.传统的直齿圆柱齿轮齿根弯曲疲劳强度的计算 传统方法把轮齿看作宽度为b的矩形截面的悬臂梁。因此齿根处为危险剖面,它可用30。切线法确定。如图l所示。 作与轮齿对称中心线成30。角并与齿根过渡曲线相切的切线,通过两切点作平行与齿轮轴线 的剖面,即齿根危险剖面。理论上载荷应由同时啮合的多对齿分担,但为简化计算,通常假设全部载荷作用于齿顶来进行分析,另用重合度系数E对齿根弯曲应力予以修正。 由材料力学弯曲应力计算方法求得齿根最大弯曲应力为:

结构有限元及其应用软件

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述(中英文): 本课程是一门重要的结构计算分析课程,通过多媒体教学和上机练习,系统学习结构有限元FEM的基本原理和方法,熟悉掌握通用有限元应用软件ANSYS进行结构静力和动力分析的方法和步骤,并初步掌握使用ANSYS进行海工典型结构强度计算的方法。 Structural finite element method and its application software is an important course of structural calculation and analysis. Through multimedia teaching and computer practice, the basic principles and methods of Finite Element Method (FEM) are learned systematically. The general finite element application software ANSYS for the methods and procedures of structural static and dynamic analysis are mastered.At the same time, the strength calculation method of typical ocean engineering structures using ANSYS is preliminarily mastered. 2.设计思路: 有限元方法是一种现代设计方法,应用于结构设计中,是一种具有重要经济意义和巨大潜力的先进结构设计技术。因此选择该课程作为结构设计方面的一门必修课程,主要介绍结构有限元的基本原理和方法,还选择了通用的有限元软件ANSYS进行示例分析。包括要求掌握有限元法的基本思想和基本原理、平面刚架结构的有限元法、弹

有限元分析

摘要:本文中要利用有限元分析进行结构优化设计的零件是联轴部件中的连接杆。连杆始终与轴中间不规则截面部分保持接触,连接杆和轴之间是过盈配合,使得连接杆上承受外力,从而连接杆发生形变、进行结构应力分析。Abstract:In this paper to use finite element analysis for structure optimization design of the parts are coupling parts of the connecting rod. Connecting rod always and shaft intermediate irregular section keep contact, connecting rod and shaft are interference fit, making the connecting rod under forces, thus connecting rod occur deformation and structure stress analysis. 关键字:连接杆、有限元分析、结构应力分析 Keywords:connecting rod,finite element analysis,the structural stress analysis 前言连接杆为联接轴部件中传递外力的主要零件,材料为钢,这是本文利用有限元分析进行连接杆的结构优化设计的重要部分,准确地说,能否肯定新的结构,有限元分析在零件的优化设计中起到了至关重要的作用。 有限元法的基本概念 有限元法(Finite Element Method,简称FEM)是一种数值离散化方法,根据变分原理求其数值解。因此适合于求解结构形状及边界条件比较复杂、材料特性不均匀等力学问题能够解决几乎所有工程领域中各种边值问题。 有限元法的基本思想是:在对整体结构进行结构分析和受力分析的基础上,对结构加以简化,利用离散化方法把简化后的边界结构看成是由许多有限大小、彼此只在有限个节点处相连接的有限单元的组合体。然后,从单元分析人手,先建立每个单元的刚度方程,再用计算机对平衡方程组求解,便可得到问题的数值近似解。用有限元法进行结构分析步骤是:结构和受力分析一离散化处理一单元分析一整体分析一引人边界条件求解。 有限元分析的前置处理 建立有限分析模型的过程,即前置处理是有限元分析的关键环节。前置处理的功能主要包括:离散化网格模型的自动生成、网格的修改、拼接和节点编号的优化、载荷及材料数据的建立、边界条件的定义(零位移、已知位移、接触、磨擦等约束条件的处理)、模型数据检查与编辑修改、模型的图形显示等。在对机械结构

结构分析中有限元法课程建设的问题和方式

结构分析中有限元法课程建设的问题和 方式 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 随着复杂工程结构及巨型结构的大量出现,在土木、水利等工程专业本科生中加强结构分析能力(包括电算能力)的培养显得尤为迫切。笔者将结构力学中的“矩阵位移法”和弹性力学中的“有限元法”有机结合,按照培养创新型高级专门人才的要求建设了结构分析中的有限元法课程,精心编写并出版了该课程所用的教材和电算程序。根据该课程的特点,对课堂教学、上机实习和考试等教学环节进行了改革,充分发挥教师的主导作用和学生的主体作用,取得了良好的教学效果。 关键词:结构分析;有限元法;课程建设 中图分类号:G6423文献标志码:A文章编号: 10052909(2015)02005304 一、加强结构分析能力的培养是课程建设的初衷 在土木、水利等本科工程专业的教学过程中,通过前期基础课程和专业基础课程的学习,学生初步具备了对计算工作量不大的简单结构进行结构分析的能

力。如通过结构力学课程经典理论的学习,学生可以对静定平面杆系结构进行分析,也可用力法或位移法等方法分析未知量较少的超静定平面杆系结构,计算其内力和位移。通过弹性力学基本理论的学习,学生可求出几何形状规则(如矩形或圆形)、边界条件简单(如四边固支或四边铰支)的结构在单一荷载(如均布荷载)作用下的内力解析值。 随着各行各业现代化建设的深入开展和城镇化建设的加速推进,房地产和土木工程建筑行业已成为国家的重要支柱产业,与之相伴的是大跨度结构、高层高耸结构等各种复杂结构和巨型结构的出现。这些结构中,有些是形状、边界、荷载等较复杂的连续体板壳结构或实体结构,有些虽是杆系结构,但却是空间杆系结构或计算工作量庞大的平面杆系结构,还有些是杆系结构与连续体结构的组合体。无论对以上哪种结构进行分析,都必须利用数值分析法才能进行,学生既有知识已明显不足。 在一般本科院校开设的结构力学课程体系中,通常都要介绍适合数值分析的矩阵位移法。但有的仅讲述了矩阵位移法基本原理而未涉及程序使用,有的虽然让学生使用了部分程序,却较少或几乎不涉及对空间杆系结构的分析。实际工程中较为复杂的连续体结

ansys桁架和梁的有限元分析

桁架和梁的有限元分析 第一节基本知识 一、桁架和粱的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中晕常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表7-1。 通过对桁架和粱进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。 第128页

第二节桁架的有限元分析实例案例1--2D桁架的有限元分析 问题 人字形屋架的几何尺寸如图7—1所示。杆件截面尺寸为0.01m^2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0x10^11N/m^2,泊松比为0.3。 解题过程 制定分析方案。材料为弹性材料,结构静力分析,属21)桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图7-1所示,边界条件为1点和5点固定,6、7、8点各受1000N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility Menu>File>Clear&Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility Menu>File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Ufility Menu>File>Change Title,弹出ChangeTitle对话框,在Enter New Tifie项输入标题名,本例中输入“2D-spar problem'’为标题名,然后单击OK按钮完成分析标题的定义。 (4)重新刷新图形窗9 选取Utility Menu>Plot>Replot,定义的信息显示在图形窗口中。 (5)定义结构分析运行主菜单Main Menu>Preferences,出现偏好设置对话框,赋值分析模块为Structure结构分析,单击OK按钮完成分析类型的定义。 2.定义单元类型 运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择

有限元分析中的结构静力学分析怎样才能做好

有限元分析中的结构静力学分析怎样才能做好 1 概述结构有限元分析中,最基础、最根本、最关键、最核心同时也是最重要的一种分析类型就是“结构静力学分析”。静力学分析可用于与结构相关、与流体相关、与电磁相关以及与热相关的所有产品;静力学分析是有限元分析的根基,是有限元分析的灵魂。2 基础理论结构静力学按照矩阵的形式可表示为微分方程:[K]{x}+{F}=0 其中,[K]代表刚度矩阵,{x}代表位移矢量,{F}代表静载荷函数。由此可知,结构静力学有限元分析过程就是求解微分方程组的过程。2.1 三个矩阵的说明静力学分析微分方程组三个矩阵进一步说明:[K]代表刚度矩阵。举例说明,如果用手折弯一根筷子,假设筷子是钢材料的,比较硬,很难折断;假设筷子是常规木材的,比较脆,基本上都能折断。这里筷子断与不断的本质并不是钢或者木材,而是钢或者木材表在筷子上表现出来的刚度(或者叫硬度),这里刚度用计算机数值分析的方式来描述,就是刚度矩阵。{x}代表位移矢量。举例说明,一把椅子,如果有人偏瘦,坐在椅子上,椅面基本不下沉;如果有人偏胖,坐在椅子上,椅面会有明显下

沉(谁坐谁知道...),此时,椅面的下沉量,可用位移矢量来表示。{F}代表静载荷函数,也是静力学分析的关键。举例说明,上面筷子例子中,手腕对筷子的作用,就是一种载荷(或者叫外力、荷载、负荷、承重等);上面椅子例子中,人对椅子表面的作用,也是一种载荷。这些载荷在大多数情况下,没有明显的快慢效应,就可用静载荷函数来表示。 2.2 静力学分析中的载荷说明静载荷函数本质说明:假设1,相同一根筷子,又假设筷子比较粗(或者说是几根筷子捆绑在一起):双手慢慢用 1 / 5 力,筷子难断;双手快速用力,筷子难断,此时慢慢折弯的效果就可以理解为静力学过程。假设2,相同椅子:慢慢坐下去,椅子没有明显晃动;快速坐下去,椅子没有明显下沉与晃动,此时慢慢坐在椅子上的过程就可以理解为静力学过程。通过静载荷函数解释过程,可明显发现静力学分析过程有如下特征:特征1,描述受力过程时总是假设在某种情况下;特征2,施加给结构的外力有快慢与方式的区别。因此,一个结构静力学分析过程,就是在一种假设的情况下(工况),又假设结构在某种受力状态下,不考虑时间效应、不考虑惯性效应以及不考虑阻尼效应的一种理想情况下的结构分析过程。 3 实

西工大结构有限元习题库

有限元法基础及应用 习题集 一、填空 1.有限元法是求解连续场力学和物理问题的一种方法。用有限元法求解连续体或结构的力学问题的三个主要步骤是:①;②; ③。 2.离散化就是把连续体或结构分割成若干个在处相互连接,尺寸有限的结合体来代替原来的连续结构。 3.单元分析阶段导出的单元刚度方程建立了和之间的关系。单元刚度方程的核心是矩阵。该矩阵具有性和性,且主对角元 素。 4.建立实体单元(一维杆单元、三节点三角形平面单元等)的刚度方程时,须应用作为平衡条件。 5.弹性力学几何方程反映弹性体变形时和之间的关系。u??????e???N?义含程的矩阵。该中方称为 6.单元位移模式N??v?? 是。 7.单元某节点i的形函数N在该点的值为,在其它节点的值均为。一个单元所有节点i形函数之和等于。 8.作用在单元上的载荷须按的原则移置到节点上,因 为。

9.单元刚度矩阵奇异性的力学意义 是:。 ???????Q?K建立了有限元离散结构中节点的和结构有限元平衡方程之间的关10.系。该方程的力学意义是有限元离散结构中节点的和之间的平衡。 11.整体刚度矩阵具有如下性质:①②③ ④。 12.对一定的有限元网格,整体刚度矩阵的半带宽与有关。半带宽越小,求解时占用计算机资源。 13.为保证有限元解的收敛性,单元位移模式应满足和。 14.建立任意形状和方位平面四边形单元和空间六面体单元时,需要采用与单元位移模式中相同的用局部坐标表示的节点形函数对节点坐标进行插值以获得一种坐标变换,这种变换称 为,采用等参变换的单元称为。 15.节点数越多的单元,其位移模式多项式,单元的能力越强,所以精度。 16.弹性力学几何方程反映弹性体变形时和之间的关系。 17.弹性力学边界条件包括和。 18.弹性体的虚位移是假想在弹性体上发生的满足条件的微小位移场。弹性体的虚功原理可以概括为等于。 19.弹性力学物理方程反映弹性体变形时和之间的关系。 20.平面应力问题的典型例子是、平面应变问题的典型例子 是。 21.建立平面问题或空间问题的单元特性方程(单元分析)阶段,需要用到弹性力学的方程和 方程。 二、简答题 1.简述弹性力学平面问题有限元法中单元特性分析的过程。 2.简述建立整体有限元平衡方程的过程。 3.平面三节点三角形单元中位移、应变和应力具有什么特征?有何优缺点? 4.四节点矩形单元中位移、应变和应力具有什么特征?有何优缺点? 5.简单三角形单元刚度矩阵元素的大小与哪些因素有关?与哪些因素无关? 6.画出三节点三角形单元形函数的图形,并分析其在边界上的分布特点。 7.对一个给定的弹性力学问题,有那些途径可以提高有限元法求解精度? 8.按位移求解的有限元法中:(1)应用了哪些弹性力学的基本方程?(2)应力边界条件及位移边界条件是如何反映的?(3)力的平衡条件是如何满足的?(4)变形协调条件是如何满足的?9.有限元的收敛条件是什么?证明三节点三角形单元满足收敛条件。 10.平面应力三角形单元和空间轴对称三角形单元分别代表物理空间中什么样的物体?

有限元原理在桥梁结构分析中的应用

有限元原理在桥梁结构分析中的应用 在过去的30年里,有限元法作为一种通用工具在物理系统的建模和模拟仿真领域已经得到了广泛的接受。在许多学科它已经成为至关重要的分析技术,例如结构力学、流体力学、电磁学等等。 一、有限元原理 将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。 二、结构有限元求解问题 依据有限元法的基本思想,结构有限元求解问题可以分解为两个问题,即单元分析和单元集合问题。 (1)单元分析 所谓单元分析就是对某一复杂求解的结构取微小单元进行分析,依据其力学物理特性寻找描述该单元特性的数学函数。即通常说的描述该单元变形的形函数。 (2)单元集合 按照单元之间的联结方式,对整个求解问题系统进行整合。在弹性力学中利用单元的内部势能力与外部作用势能一起守恒,建立内部单元与外界作用之间的联系。 (3)问题的求解 获得内部单元与外界作用之间的联系,即系统的总刚度矩阵。要对问题的求解,则需要依据系统的外部条件求解出各个内部单元的变形状态,依据内部单元的变形,确定内部单元

的应力。 因此,有限元法是最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。 三、梁结构的有限元分析 1.有限元程序分析的过程 有限元程序分析的过程大致分为三个阶段: (1)建模阶段 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。 但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。 (2)计算阶段 计算阶段的任务是完成有限元方法有关的数值计算。由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。 (3)后处理阶段 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是结构有限元分析的目的所在。

有限元分析试题

1. 数学:偏微分方程变换成代数方程进行求解 2. 力学:连续体划分成小单元体,各单元节点间相连接并建立力平衡关系. 3. 有限元模型:有限元模型是真实系统理想化的数学抽象.由一些简 单形状的单元组成,单元之间通过节点连接,并承受一定载荷. 4. 有限元法:是以力学理论为基础,随着力学\数学和计算机科学相结 合而发展起来的一种数值计算方法. 5. 传统结构设计流程:设计----建模----测试---再设计.(1)作很大简化,计 算精度差;(2)结构尺寸与重量偏大;(3)结构局部强度或刚度不足;(4) 设计周期长,试制费用高 6. 现代产品设计: Design(CAD)----Virtual Test(CAE)---Build---Test---Redesign。有限元法是CAE 的核心部 分 7. 汽车结构有限元分析的内容:(1)零部件及整车的疲劳分析,估 计产品的寿命,分析部件损坏的原因;(2)结构件、零部件的强 度、刚度和稳定性分析(3)结构件模态分析、瞬态分析、谐响应 分析和响应谱分析;(4)车身内的声学设计,车身结构模态与车 身内声模态耦合;(5)汽车碰撞历程仿真和乘员安全保护分析(被 动安全性);(6)结构件、零部件的优化设计(质量或体积为目标 函数);(7)车身空气动力学计算,解决高速行驶中的升力、阻力 和湍流问题8. 汽车结构有限元分析的流程:(1)制定方案;(2)建立结构模型; (3)划分有限元模型;(4)有限元模型检查;(5)加载和增加约 束条件;(6)求解计算;(7)结果分析。P9 9. 模态分析:固有频率和振型,从数学上讲,固有频率就是系统矩 阵的特征值,振型就是该特征值所对应的特征向量。 10.谐响应分析:确定结构对已知幅值和频率的正弦载荷的响应。 11.瞬态动力学分析:确定结构对随时间变化载荷的响应。 12.单元:用于离散结构的杆、梁、三角形、四边形、四面体、六面 体等。节点:单元与单元之间的连接点。具有一定自由度和存在 相互物理作用。 (1)每个单元的特性是通过一些线性方程式来描述的;(2)作为 一个整体,单元形成了整体结构的数学模型。(3)信息是通过单 元之间的公共节点传递的。 13.有限元模型由一些简单形状的单元组成,单元之间通过节点连接, 并承受一定载荷。 14.自由度:确定物体(或结构)运动时所必须给定的独立运动方程 数目。 15.节点载荷:作用在节点上的外载荷。 16.节点力:单元间的作用力。 17.一维结构单元:杆单元、梁单元;二维单元:三角形单元、四边 形单元;三维结构单元:四面体单元、六面体单元等 18.模型集合的拓扑显示:(1)自由边:自由边只属于一个曲面,默认颜色为红色,在一个经过几何清理的模型中,自由边通常只存在于部件 的外周或者环绕在内部孔洞的周围.(2)共享边:共享边被两个相邻 曲面所共有,默认颜色为绿色.(3)压缩边:压缩边为两个相邻曲面所 共有,但在划分网格时被忽略被压缩边,不会生成节点,默认为蓝 色.(4)T型连接边:表示曲面的边界被三个或三个以上的曲面所共享, 默认颜色为黄色. 19.静态应力分析流程:(1)建立材料属性(2)建立单元属性(3)将单元属 性赋予相应的单元(4)建立约束条件(5)将约束条件赋予相应的节点(6)建立边界条件(7)将边界条件赋予相 应的节点(8)建立分析工况(9) 提交计算(10)观看结果. 20.V字形开发流程:产品策划定义—概 念设计—工程设计—CAE分析—样车试 制 有限元分析 21.有限元法可分为两类:线弹性有限元 法和非线性有限元法,其中线弹性有限 元法是非线性有限元法的基础,二者不 但在分析方法和研究步骤上有类似之处, 而且后者常常要引用欠着的某些结果 计算题: 1. 数学:偏微分方程变换成代数方程进 行求解 2. 力学:连续体划分成小单元体,各单元 节点间相连接并建立力平衡关系. 3. 有限元模型:有限元模型是真实系统 理想化的数学抽象.由一些简 单形状的单元组成,单元之间通过节点 连接,并承受一定载荷. 4. 有限元法:是以力学理论为基础,随着 力学\数学和计算机科学相结 合而发展起来的一种数值计算方法. 5. 传统结构设计流程:设计----建模----测 试---再设计.(1)作很大简化,计 算精度差;(2)结构尺寸与重量偏大;(3)结 构局部强度或刚度不足;(4) 设计周期长,试制费用高 6. 现代产品设计: Design(CAD)----Virtual Test(CAE)---Build---Test---Redesign。有限 元法是CAE 的核心部 分 7. 汽车结构有限元分析的内容:(1)零 部件及整车的疲劳分析,估 计产品的寿命,分析部件损坏的原因; (2)结构件、零部件的强 度、刚度和稳定性分析(3)结构件模态 分析、瞬态分析、谐响应 分析和响应谱分析;(4)车身内的声学 设计,车身结构模态与车 身内声模态耦合;(5)汽车碰撞历程仿 真和乘员安全保护分析(被 动安全性);(6)结构件、零部件的优化 设计(质量或体积为目标 函数);(7)车身空气动力学计算,解决 高速行驶中的升力、阻力 和湍流问题8. 汽车结构有限元分析的 流程:(1)制定方案;(2)建立结构模 型; (3)划分有限元模型;(4)有限元模型 检查;(5)加载和增加约 束条件;(6)求解计算;(7)结果分析。 P9 9. 模态分析:固有频率和振型,从数学 上讲,固有频率就是系统矩 阵的特征值,振型就是该特征值所对应 的特征向量。 10.谐响应分析:确定结构对已知幅值和 频率的正弦载荷的响应。 11.瞬态动力学分析:确定结构对随时间 变化载荷的响应。 12.单元:用于离散结构的杆、梁、三角 形、四边形、四面体、六面 体等。节点:单元与单元之间的连接点。 具有一定自由度和存在 相互物理作用。 (1)每个单元的特性是通过一些线性方 程式来描述的;(2)作为 一个整体,单元形成了整体结构的数学 模型。(3)信息是通过单 元之间的公共节点传递的。 13.有限元模型由一些简单形状的单元 组成,单元之间通过节点连接, 并承受一定载荷。 14.自由度:确定物体(或结构)运动时 所必须给定的独立运动方程 数目。 15.节点载荷:作用在节点上的外载荷。 16.节点力:单元间的作用力。 17.一维结构单元:杆单元、梁单元;二 维单元:三角形单元、四边 形单元;三维结构单元:四面体单元、 六面体单元等 18.模型集合的拓扑显示:(1)自由边:自由 边只属于一个曲面,默认颜色为红色,在 一个经过几何清理的模型中,自由边通 常只存在于部件 的外周或者环绕在内部孔洞的周围.(2) 共享边:共享边被两个相邻 曲面所共有,默认颜色为绿色.(3)压缩边: 压缩边为两个相邻曲面所 共有,但在划分网格时被忽略被压缩边, 不会生成节点,默认为蓝 色.(4)T型连接边:表示曲面的边界被三 个或三个以上的曲面所共享, 默认颜色为黄色. 19.静态应力分析流程:(1)建立材料属性 (2)建立单元属性(3)将单元属 性赋予相应的单元(4)建立约束条件(5) 将约束条件赋予相应的节点 (6)建立边界条件(7)将边界条件赋予相 应的节点(8)建立分析工况(9) 提交计算(10)观看结果. 20. V字形开发流程:产品策划定义—概 念设计—工程设计—CAE分析—样车试 制 有限元分析 21.有限元法可分为两类:线弹性有限元 法和非线性有限元法,其中线弹性有限 元法是非线性有限元法的基础,二者不 但在分析方法和研究步骤上有类似之处, 而且后者常常要引用欠着的某些结果 计算题:

相关文档
相关文档 最新文档