文档库 最新最全的文档下载
当前位置:文档库 › 微积分模型08单摆

微积分模型08单摆

微积分模型08单摆
微积分模型08单摆

单摆

问题:

试推导单摆的周期公式g

l T π

2=。 符号:

m 摆球的质量

l 摆长

θ 角度(标量)

v 线速度

ω 角速度(矢量)

a 线加速度

t 时间

关系: dt d l dt d l l v θθω-=-?==)((因θ是关于t 的减函数,故0

d θω-=) 22dt

d l dt dv a θ-== 模型:

将单摆从初始角度0θ处无初速度释放.

在切向上,受力分析(不必在法向上受力分析):

ma F =合 即22sin dt

d l m mg θθ?-= 或22sin dt

d l g θθ-= 当?

<5θ时,θθ≈sin ,故22dt d l g θθ-=,即022=+θθl g dt d 。 上述方程为一个二阶常系数线性齐次微分方程,其特征方程为 02=+l

g λ

显然,两个特征根为i l

g ±=λ。 因此,通解为t l g c t l g c sin cos

21+=θ。 (1)因0)0(θθ=,

00==t dt d θ,故0,201==c c θ。 因此,t l

g cos 0θθ=。 联系到简谐振动的运动规律)cos(φω+=t A x 知,l g =

ω。 于是,g

l T πωπ

22==。 (2)将通解改写为 )cos()sin (cos 22

212222112221?θ+=+?++?+=t l g A c c c t l g c c c t l g c c 其中222

12222

11

2221cos ,sin ,c c c c c c c c A +=+=+=??。

联系到简谐振动的运动规律)cos(φω+=t A x 知,l g =ω。 于是,g l T πωπ

22==。

数学建模-微积分模型

第四章 微积分模型 今天人们不论从事什么活动都讲究高效益,即希望所采取的策略使某个或某些指标达到最优。商店订货要使订货、存贮等费用最小,体育比赛运动员要创造最好的成绩,工程设计要追求最佳方案。普遍存在的优化问题经常成为人们研究的对象,建立这类问题的模型,我们称为优化模型。 建立优化模型首先要确定所关心的优化指标的数量描述,然后构造包括这个指标及各种限制条件的模型,通过模型求解给出达到优化指标的所谓策略。本章仅考虑定常情况(即所给的策略不随时间改变)。 4.1 不允许缺货模型 某配送中心为所属的几个超市送配某种小电器,假设超市每天对这种小电器的需求量是稳定的,订货费与每个产品每天的存贮费都是常数。如果超市对这种小家电的需求是不可缺货的,试制定最优的存贮策略(即多长时间订一次货,一次订多少货)。 如果日需求量价值100元,一次订货费用为 5000元,每件电器每天的贮存费1元,请给出最 优结果。 模型假设: (1)每天的需求量为常数r ; (2)每次的订货费用为c 1,每天每件产品的存贮费为c 2 ; (3)T 天订一次货,每次订Q 件,且当存贮量 为0时,立即补充,补充是瞬时完成的; (4)为方便起见,将r ,Q 都视为连续量。 模型建立 将存贮量表示为时间的函数(),0q t t =时,进货Q 件这类小电器,储存量(0),()q Q q t =以需求r 的速率递减,直到q (T )=0。 易见 Q=rT (4.1) 一个周期的存贮费用 C 2= A c ds s q T 20 )(=? 一个周期的总费用 C =2 2 21rT c c + 每天平均费用

数学建模与计算机关系研究

数学建模与计算机关系研究 【摘要】高等数学与计算机教学具有内在相关性,尤其是在数学建模应用中,根据计算机学科发展来发挥数学建模理论的作用及效果,有助于增强学生对高等数学的理解和应用能力。基于此,本文笔者就从高等数学建模理论与计算机技术的关系研究入手,来阐述建模嵌入在计算机辅助教学中的重要潜力。 【关键词】计算机;高等数学;教学改革;数学建模 1.高等数学与计算机学科发展 有人说,计算机技术的发展可以省去学习数学的麻烦,即便是很多专业计算机教师也抱有同样的想法。然而,对于计算机应用领域及实践中,计算机技术确实给很多从业者带来了便捷与高效,但计算机技术不等于数学,更不能替代数学。从高等数学教学实践来看,对于我们常见的数学概念,如比率、概率、图像、逻辑、误差、机会,以及程序等知识的认识,很多行业都在进行数字化、数量化转变,对数学知识的应用也日益广泛。从这些应用中,数学理论及知识,尤其是数学基本理论研究就显得更为重要。数学,在数学知识的应用中,更需要从练习中来提升对数学知识及概念的理解,也需要通过练习来提升运算能力。如果对数学概念及方法应用的不过,对数学单调性的知识缺乏深刻的认识,就会影响数学知识在实践应用中出现偏差。计算机技术的出现,尤其是程序化语言的应用,使得数学知识在表达与反映中能够依据不同的应用灵活有效、准确的运算,从而减少了不必要的验证,也提升了数学在各行业中的应用效率。 数学软件学科的发展,成为计算机重要的辅助教学的热门领域,也使得计算机技术能够发挥其数学应用能力。在传统的数学教学中,逻辑与直观、抽象与具体始终是研究的矛盾主体,如有些太简单的例子往往无法进行全面的计算;有些复杂的例子又需要更多的计算量。在课堂表现与讲解中,对于理性与感性知识的认知,学生缺乏有效的理解和应用,而强大的计算机运算功能却能够直观的表达和弥补这些缺陷,并依托具体的演示过程中来营造概念间的差异性,帮助学生从中领会知识及方法。在计算机的辅助教学下,教师利用对数学理论课题或应用课题,从鲜活的思维及形象的表达上借助于软件来展现,让学生从失败与成功中得到知识的应用体验,从而将被动的知识学习转变为主动的参与实践,更有助于通过实践来激发学生的创新精神。这种将数学教学思维与逻辑与计算机技术的融合,便于从教学中调整教学目标,依据学生所需知识及专业需求来分配侧重点。数学建模就是从数学学科与计算机学科的融合与实践中帮助学生协作学习,提升自身的能力。 2.信息技术是高等数学应用的产物 现代信息技术的发展及应用无处不在,对数学知识的渗透也是日益深入。当前,各行业在多种协作、多种专业融合中,借助于先进的信息技术都可以实现畅通的表达与物化。如天气预报技术、卫星电视技术、网络通讯技术等都需要从数

高等数学公式汇总(大全)

高等数学公式汇总(大全) 一 导数公式: 二 基本积分表: 三 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , , a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

微积分方法建模2经济增长模型--数学建模案例分析

§2 经济增长模型 发展经济、增加生产有两个重要因素,一是增加投资(扩大厂房、购买设备、技术革新等), 二是增加劳动力。恰当调节投资增长和劳动力增长的关系,使增加的产量不致被劳动力的增长抵消,劳动生产率才能不断提高,从而真正起到发展经济的作用。为此,需要分析产量、劳动力和投资之间变化规律,从而保证经济正常发展。 记 )(t Q —某地区、部门或企业在t 时刻的产量 )(t L —某地区、部门或企业在t 时刻的劳动力 )(t K ?某地区、部门或企业在t 时刻的资金 )(t Z —每个劳动力在t 时刻占有的产量(劳动生产率) 一、道格拉斯(Douglas )生产函数 由于现在关心的是产量、劳动力、投资的相对增长量,不是绝对量, 所以定义 ,)0()()(Q t Q t i Q =)0()()(L t L t i L = ,)0()()(K t K t i K = (1) 分别称为产量指数、劳动力指数和投资指数。 在正常的经济发展过程中这三个指数都是随时间增长的,但它们之间的关系难以从机理分析 得到,只能求助统计资料.Douglas 从大量统计数据中发现下面的规律: 如果令 )()(ln )(t i t i t K L =ξ,) ()(ln )(t i t i t K Q =ψ (2) 则散点),(ψξ在ψξ~平面直角坐标系上的图象大致如下

即大多数点靠近一条过原点的直线,这提示ξ和ψ的关系为 )10(<<=γγξ ψ (3) 上式代入得 )()()(1t i t i t i K L Q γγ-= (4) 记)0()0()0(1--=γγK L Q a ,则由(1)、(4),可得 )0,10(),()()(1><<=-a t K t aL t Q γγγ (5) 这就是经济学中著名的Douglas 生产函数,它表明产量与劳动力、投资之间的关系。由(5)有 K K L L Q Q )1(γγ-+= (6) (6)表明年相对增长量Q Q 、L L 、K K 之间呈线性关系。且1→γ说明产量增长主要靠劳动力的增长;0→γ说明产量增长主要靠投资的增长。称γ是产量对劳动力的弹性系数。 二、劳动生产率增长的条件 定义 )()()(t L t Q t Z =—劳动生产率,则L L Q Q Z Z -=,由(6)代入 则 ))(1(L L K K Z Z --=γ (7) 可见,只要L L K K >,就能保证0>Z Z ,即劳动生产率的提高需要由投资的相对增长大于劳动力的相对增长为前提条件。 问题:考虑到物价上升因素我们记物价上升指数为)((t P 设)1)0(=P ,则产品的表面价值)(t y 、实际价值)(t Q 和物价指数)(t P 之间满足)(t y )()(t P t Q =。 (1)导出)(t y 、)(t Q 、)(t P 的相对增长率之间的关系,并作解释。 (2)设雇佣工人数目为)(t L ,每个工人工资为),(t W 企业的利润简化为产品的收入)(t y 中扣除工人的工资和固定成本,企业应雇佣多少工人能使利润最大。

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? =1 ln ax b C a ++ 2.()d ax b x μ+?=11 ()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +? =21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5.d () x x ax b +?=1ln ax b C b x +-+ 6.2 d () x x ax b +?=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +? =21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9.2 d ()x x ax b +? = 211ln ()ax b C b ax b b x +-++ 的积分 10.x C + 11.x ?=2 2(3215ax b C a -+ 12.x x ?=2223 2 (15128105a x abx b C a -+ 13.x =22 (23ax b C a - 14.2x =2223 2(34815a x abx b C a -+

15 . =(0) (0) C b C b ?+>< 16 . 2a b - 17 .x =b +18 .x =2a x -+ (三)含有22x a ±的积分 19.22d x x a +?=1arctan x C a a + 20.22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21.22 d x x a -? =1ln 2x a C a x a -++ (四)含有2(0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23.2 d x x ax b +? =2 1ln 2ax b C a ++ 24.22d x x ax b +?=2d x b x a a ax b -+? 25.2d ()x x ax b +?=2 2 1ln 2x C b ax b ++ 26.22d ()x x ax b +? =21d a x bx b ax b --+?

微积分公式大全

导数公式: 基本积分表: 三角函数的有理式积分: 2222 212sin cos 1121u u x du x x u tg dx u u u -==== +++, , ,  22(tan )sec (cot )csc (sec )sec tan (csc )csc cot ()ln ()(ln 1)1(log )ln x x x x a x x x x x x x x x x a a a x x x x x a '='=-'=?'=-?'='=+' = 2 2 2 (arcsin )(arccos )1 (arctan )11 (arc cot )11 ()x x x x x x thx ch '= '='= +'=- +' = 2 22 2sec tan cos csc cot sin sec tan sec csc cot csc ln ln(x x dx xdx x C x dx xdx x C x x xdx x C x xdx x C a a dx C a shxdx chx C chxdx shx C x C ==+==-+?=+?=-+=+=+=+=+????????? 222222tan ln cos cot ln sin sec ln sec tan csc ln csc cot 1arctan 1ln 21ln 2arcsin xdx x C xdx x C xdx x x C xdx x x C dx x C a x a a dx x a C x a a x a dx a x C a x a a x x C a =-+=+=++=-+=++-=+-++=+--=+???????? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

(完整版)高等数学常用公式大全

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥L 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot(2 A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a -

微积分公式大全

微积分公式 sin x dx = —cos x + C cos x dx = sin x + C tan x dx = ln |sec x | + C cot x dx = ln |sin x | + C sec x dx = ln |sec x + tan x | + C csc x dx = ln |csc x – cot x | + C sin —1(—x) = —sin —1 x cos -1(—x ) = — cos -1 x tan -1(-x ) = -tan —1 x cot -1(-x ) = — cot -1 x sec -1(—x) = — sec -1 x csc —1(—x ) = — csc -1 x sin -1 x dx = x sin -1 x+21x -+C cos —1 x dx = x cos -1 x-2 1x -+C tan —1 x dx = x tan -1 x-?ln (1+x 2 )+C cot -1 x dx = x cot -1 x+?ln (1+x 2)+C sec -1 x dx = x sec -1 x — ln |x+12 -x |+C csc —1 x dx = x csc -1 x+ ln |x+12-x |+C sinh x dx = cosh x + C cosh x dx = sinh x + C tanh x dx = ln | cosh x |+ C coth x dx = ln | sinh x | + C sech x dx = -2tan —1 (e -x ) + C csch x dx = 2 ln | x x e e 211---+| + C d uv = u d v + v d u d uv = uv = u d v + v d u → u d v = uv — v d u cos 2θ-sin 2θ=cos2θ cos 2θ+ sin 2θ=1 cosh 2θ—sinh 2θ=1 cosh 2θ+sinh 2θ=cosh2θ

高等数学积分公式大全

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2 d () x x ax b +? =21ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++

9. 2 d () x x ax b +? =211ln ()ax b C b ax b b x +-++ 的积分 10 . x ? C + 11 .x ? =2 2 (3215ax b C a - 12 .x x ? =2223 2(15128105a x abx b C a -++ 13 . x ? =22 (23ax b C a - 14 . 2x ? =222 3 2(34815a x abx b C a -++ 15 .? (0) (0) C b C b ?+>< 16 . ? =2a bx b -- 17 . x ? =b ?18. 2d x x ? =2a + (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a +

第二章数学模型与定解问题

第二章数学模型与定解问题 2.1典型方程 三类基本的二阶偏微分方程是: (1)波动方程 0)(2 =++-zz yy xx tt u u u a u (2)热传导方程 0)(=++-zz yy xx t u u u k u (3)拉普拉斯方程 0=++zz yy xx u u u 许多数学物理问题都可归结为解偏微分方程的问题,特别是可归结为解上面所列举的三个偏微分方程的问题.我们将开始研究这些方程,首先仔细考察表示这些物理问题的数学模型. 2.2弦的振动 在数学物理中最重要的问题之一是拉紧的弦的振动问题.由于它较简单, 且经常出现在许多数学物理的分支中,所以在偏微分方程理论中把它作为一个典型的例子. 让我们考察一长为 l 的两端固定的拉紧的弦.我们的问题是要确定弦的运动方程,用它来描述在给定初始扰动后任一时刻t 的弦的位移u(x,t). 为了能.得出一个较简单的方程,我们作下面的一些假设: (1)弦是柔软与有弹性的,即它不能抵抗弯矩,因此在任何时刻弦的张力总是沿着弦的切线方向; (2)弦的每一段都不伸长,因此根据胡克(Hooke)定律,张力是常数; (3)弦的重量与其张力相比很小; (4)弦的偏移与其长度相比很小; (5)位移后的弦在任一点上的斜率与1相比很小; (6)弦只有横振动. 我们考察弦上一微小元素.设T 是如图2.1所示的两端点上的张力.作用在弦的这一微小元素上的垂直方向的力是: αβsin sin T T - 图(Figure )2.1

根据牛顿第二运动定律,合力等于质量乘以加速度.因此 tt su T T ?=-ραβsin sin (2.2.1) 其中ρ是弦的密度,s ?是这一小段位移后的弦的弧长.因为位移后的弦的斜率很小,所以有 x s ?≈? 因为角α和β都很小,所以 ααtan sin ≈, ββtan sin ≈ 于是等式(2.2.1)变成 tt u T x ?=-ραβtan tan (2.2.2) 但是,由微积分学我们知道,在时刻t 有 x x u )(tan ≈α 及 x x x u ?+≈)(tan β 于是等式(2.2.2)可以写成 tt x x x x x u t u u x ρ =-??+])()([1 令x ?趋于零取极限,得 xx tt u a u 2 = (2.2.3) 其中ρ T a = 2 。方程(2.2.3)称为一维波动方程. 如果在弦的每单位长度上有外力F 作用着,方程(2.2.3)具有下列形式: f u a u xx tt +=2 (2.2.4) Where ρ F f = ,而外力可以是压力、重力、阻力以及其他力等 2.3膜的振动 膜振动方程在数学物理的许多问题中出现.在我们导出膜振动方程前,像在弦振动的情形中一样,我们作下列一些简化的假设: (1) 膜是柔软与有弹性的,即它不能抵抗弯矩,因此在任何时刻它的张力 总是在膜的切平面内; (2) 膜的每一块元素都没有伸张变形, 因此根据胡克定律, 张力是常数;

高数微积分公式大全总结的比较好

高等数学微积分公式大全 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1 ln x x '= ⑿()1 log ln x a x a '= ⒀( )arcsin x '= ⒁( )arccos x '= ⒂()21arctan 1x x '= + ⒃()2 1arccot 1x x '=-+⒄()1x '= ⒅ ' = 二、导数的四则运算法则 三、高阶导数的运算法则 (1)()()() () () ()()n n n u x v x u x v x ±=±???? (2)()() ()()n n cu x cu x =???? (3)()()() ()n n n u ax b a u ax b +=+???? (4)()()() () ()()()0 n n n k k k n k u x v x c u x v x -=?=????∑ 四、基本初等函数的n 阶导数公式 (1)() () !n n x n = (2)() () n ax b n ax b e a e ++=? (3)() () ln n x x n a a a = (4)()() sin sin 2n n ax b a ax b n π??+=++??? ??? ?? (5) ()()cos cos 2n n ax b a ax b n π??+=++??? ????? (6)() () () 1 1! 1n n n n a n ax b ax b +??? =- ? +?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =? ⑻()csc csc cot d x x xdx =-? ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1 ln d x dx x =

微积分模型

第一篇 微积分模型 在微积分部分的应用实例中,通过对应用问题建模主要培养应用极限、连续、相对变化率、微元、无穷级数、最优化和微分与差分方程等思想解决实际应用问题的能力。 函数的性质包括分段性质、单调性、奇偶性等,由函数的基本性质可以产生对函数进行分类的方法。与函数基本特性相关的应用实例有:市话费是降了还是升了,外币兑换与股票交易中的涨跌停板,库存问题与库存曲线,“另类”的常量函数,蠓虫分类的初等数学模型,核军备竞赛问题等。 数列与函数的极限和函数连续性质是处理变量变化过程的工具,应用重要极限计算连续复利利率的计算,应用函数的连续性和介值定理解决特殊的应用问题。与极限和连续等内容相关的应用实例有:从科赫雪花谈起,复利、连续复利与贴现,出售相同产品的公司为什么喜欢扎堆,椅子为什么能放稳等。 导数、微分是函数的相对变化的极限过程,函数的特性和极值理论可以解决经济管理中的实际应用问题,导数、微分在经济管理中的应用反映为边际、弹性等。相关的应用实例有:影子为什么那么长,边际是什么?弹性是什么?商家应该怎样制定自己的价格策略?不同消费群体的需求弹性问题,机械与人工的调配问题,易拉罐的形状,这批酒什么时候出售最好,该不该接受供货商的优惠条件,作者与出版商的利益冲突等。 微元分析是微积分中一种重要的分析方法,特别是函数的连续求和归结为该函数的积分。与积分和微元分析内容相关的应用实例有:洛伦兹曲线与基尼系数,均匀货币流的总价值与投资回收期的计算,下雪时间的确定,第二宇宙速度是怎样计算出来的等。 离散变量的求和可以用无穷级数来表达,无穷级数的求和是一个极限过程。与无穷级数内容相关的应用实例有:最大货币供应量的计算,政府支出的乘数效应,运用现值计算进行投资项目的评估,谈谈龟兔赛跑悖论 等。 如果影响研究问题的主要因素有两个或者两个以上,则要用多元函数的微积分学来处理,涉及到多元函数偏导数、偏边际、偏弹性和交叉弹性、条件极值等内容。相关的应用实例有:空调销售量的预测,相互关联商品的需求分析,衣物怎样漂洗最干净,拉格朗日乘数与影子价格等。 变量的变化过程可以用微分方程或差分方程来描述,通过对微分方程或差分方程的建立与求解,可以研究变量的形态和变化规律。与微分方程和差分方程相关的应用实例有:人口模型,单种群动物模型,相对封闭环境中的传染病模型,江河污染物的降解系数,怎样计算固定资产的折旧,放射性元素衰变模型,市场上的商品价格是怎样波动的,再谈下雪时间的确定,溶液浓度模型,饲养物的最佳销售时机,信贷消费中每月还款金额的确定,资源的合理开发与利用,从诺贝尔奖谈起,蛛网模型,梵塔问题,平面内直线交点的个数,菲波那契数列的通项公式等。 1

数学建模微积分模型

第四章 微积分模型 今天人们不论从事什么活动都讲究高效益,即希望所采取的策略使某个或某些指标达到最优。商店订货要使订货、存贮等费用最小,体育比赛运动员要创造最好的成绩,工程设计要追求最佳方案。普遍存在的优化问题经常成为人们研究的对象,建立这类问题的模型,我们称为优化模型。 建立优化模型首先要确定所关心的优化指标的数量描述,然后构造包括这个指标及各种限制条件的模型,通过模型求解给出达到优化指标的所谓策略。本章仅考虑定常情况(即所给的策略不随时间改变)。 4.1 不允许缺货模型 某配送中心为所属的几个超市送配某种小电器,假设超市每天对这种小电器的需求量是稳定的,订货费与每个产品每天的存贮费都是常数。如果超市对这种小家电的需求是不可缺货的,试制定最优的存贮策略(即多长时间订一次货,一次订多少货)。 如果日需求量价值100元,一次订货费用为 5000元,每件电器每天的贮存费1元,请给出最 优结果。 模型假设: (1)每天的需求量为常数r ; (2)每次的订货费用为c 1,每天每件产品的存贮费为c 2 ; (3)T 天订一次货,每次订Q 件,且当存贮量 为0时,立即补充,补充是瞬时完成的; (4)为方便起见,将r ,Q 都视为连续量。 模型建立 将存贮量表示为时间的函数(),0q t t =时,进货Q 件这类小电器,储存量(0),()q Q q t =以需求r 的速率递减,直到q (T )=0。 易见 Q=rT (4.1) 一个周期的存贮费用 C 2= A c ds s q T 20 )(=? 一个周期的总费用 C =2 2 21rT c c + 每天平均费用 2 )(21rT c T c T c += (4.2) 模型求解 求T ,使)(T c 取最小值。 由 0=dT dc ,得 2 12 1 2,2c r c Q rc c T = = (4.3)

微积分公式与定积分计算练习大全

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼ ()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1 ln x x '= ⑿ () 1log ln x a x a '= ⒀ ( )arcsin x '= ⒁( )arccos x '= ⒂ ()21arctan 1x x '=+ ⒃() 21arccot 1x x '=-+⒄()1 x '= ⒅ '= 二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v ''' -??= ??? 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±??? ? (2)()() ( ) ()n n cu x cu x =??? ? (3)()() () ()n n n u ax b a u ax b +=+??? ? (4) ()()() ( ) ()() ()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) ()() ! n n x n = (2) ()() n ax b n ax b e a e ++=? (3) ()() ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π??+=++??? ??? ??(5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6) () () () 1 1! 1n n n n a n ax b ax b +???=- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

微积分方法建模药物在体内的分布与排除数学建模案例分析

§10 药物在体内的分布与排除 药物进入机体后,在随血液输送到各器官和组织的过程中,不断地被吸收、分布、代谢,最终排出体外.药物在血液中的浓度()mv g μ称血药浓度.血药浓度的大小直接影响到药物的疗效,浓度太低不能达到预期的治疗效果,浓度太高又可能导致中毒、副作用太强或造成浪费.因此研究药物在体内吸收、分布和排除的动态过程,对于新药研制时剂量的确定、给药方案设计等药理学和临床医学的发展具有重要的指导意义和实用价值. 为了研究目的,将一个机体划分成若干个房室,每个房室是机体的一部分,比如中心室和周边室.在一个房室内药物呈均匀分布,而在不同的房室之间按一定规律进行转移.如果要求的精度不是太高的情况下,可以只考虑一室模型. 模型假设 1.药物进入机体后,全部进入中心室(血液较丰富的心、肺、肾等器官和组织), 中心室的容积在给药过程中保持不变. 2.药物从中心室排出体外,与排除的数量相比,药物的吸收可以忽略. 3.药物排除的速率与中心室的血药浓度成正比. 模型构成与求解 记()t f 0 给药速率 ()t c 中心室血药浓度 ()t x 中心室药量 V 中心室容积 k 排除速率系数 一、求解各种给药方式下血药浓度变化情况 上述各量间有关系 ()kx t f x -=? 0 即 ()t f kx x 0=+? 又 ()()t Vc t x = 得方程 ()()() V t f t kc t c 0=+? (1) 1、 快速静脉注射 设给药量D ,则初始条件()V D c =0,()00=t f (1)的解为 ()t k e V D t c -= (2) 2、恒速静脉注射 设持续时间为τ,注射速率为0k ,则有 ()00k t f =,初始条件()00=c ,()τ≤≤t 0 (t c

微积分与数学建模学习知识情况总结

微积分与数学模型(上册) 任课教师:陈骑兵 小组成员 张程1440610405 王子尧1440610402 李昊奇1440610403 梅良玉1440610426 方旭建1440610406 李柏睿1440610428

第1章 函数,极限与连续 1.1 函数的基本概念 准备知识(掌握集合与区间的相关知识) 函数定义:设x 和y 是两个变量,D 是一个给定的数集。如果对于任意x ∈D , 按照某一法则f ,变量y 都有确定的值和它对应,则称f 为定义在D 上的函数,数集D 称为函数的定义域,x 称为自变量,y 称为因变量。与x 对应的y 的值记做f(x),称为函数f 在x 处的函数值。D 上所有的数值对应的全体函数值的集合称为值域 函数特性: 1:函数的有界性 设f(x)在集合X 上有定义,若存在M>=0,使得对任意x 属于X 都有f(x 的绝 对值<=M, 则称函数f(x 在)X 上有界;否则,称函数f(x)在X 上无界。 2:函数的单调性 3:函数的奇偶性 4:函数的周期性 5:分段函数 6:复合函数 1.2初等函数 常值函数 如:y=C,C 为常数; 幂函数 如:y=x α,α∈R 为常数; 指数函数 如:y=a x ,a>0且a ≠1; 对数函数 如:y=a x log ,a>0且a ≠1; 三角函数 如:y=sinx,y=cosx,y=tanx ; 反三角函数 如:y=arcsinx,y=arccosx,y=arctanx ; 以及双曲函数 1.3 极限的概念 (1) .极限的直观定义:当x 接近于某个常数x 0但不等于x 0时,若f(x)趋向于 常数A ,则 称A 为f(x)当x 趋向于x 0时的极限。 (2) .极限的精确定义:给定函数f(x)和常数A ,若对于?ε>0(无论ε多么小),总彐δ>0,使得当0<|x-x 0|<ε,则称A 为f(x)当x 趋于x 0时的极限,记做

数学建模模型与应用

Mathematica软件常用功能 【实验目的】 1. 用Mathematica软件进行各种数学处理; 2. 用Mathematica软件进行作图; 3. 用Mathematica软件编写程序. 【注意事项】 Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名。 系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Conjugate[z]等。 乘法即可以用*,又可以用空格表示,如2 3=2*3=6 ,x y,2 Sin[x]等;乘幂可以用“^”表示,如x^0.5,Tan[x]^y。 自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。当你赋予变量任何一个值,除非你明显地改变该值或使用Clear[变量名]或“变量名=.”取消该值为止,它将始终保持原值不变。 一定要注意四种括号的用法:()圆括号表示项的结合顺序,如 (x+(y^x+1/(2x)));[]方括号表示函数,如Log[x],BesselJ[x,1];{}大括号表示一个“表”(一组数字、任意表达式、函数等的集合),如 {2x,Sin[12 Pi],{1+A,y*x}};[[]]双方括号表示“表”或“表达式”的下标,如a[[2,3]]、{1,2,3}[[1]]=1。 Mathematica的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔)。当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果。 命令行“Shift+Enter”才是执行这个命令。

数学建模和高等数学的区别与联系

数学建模与高等数学的区别与联系 建立数学模型的过程叫做数学建模,数学模型是指“对于现实世界的某一特定对象,为了某个特定目的,做出一些重要的简化和假设,运用适当的数学工具得到的一个数学结构,它或者能解释特定现象的现实性态;或者能预测对象的未来状况;或者能提供处理对象的最优决策或控制。”这个表述告诉我们,数学模型的对象是现实世界中的实际问题,数学模型本身是一个数学结构,它可以是一个式子,也可以是一种图表。数学模型的作用或目的是对现象进行解释、预测、提供决策或控制。 高等数学(也称为微积分。)是理、工科院校一门重要的基础学科。作为一门科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点--有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。微积分是人类两千年智慧的结晶,它的形成和发展直接得益于物理学、天文学、几何学等研究领域的进展和突破。 高等数学教学强调理论的系统性,结构的严密性,而轻视了基本概念的实际背景,实际意义的解释,割裂了微积分与外部世界的密切联系,没能充分显示微积分的巨大生命力与应用价值,使学生学了一大堆的定义、定理和公式,却不

知道对实际问题有什么用。而数学建模是通过调查、收集数据、资料,观察和研究其固有的特征和内在的规律,抓住问题的主要矛盾,运用数学的思想、方法和手段对实际问题进行抽象和合理假设、创造性地建立起反映实际问题的数量关系,即数学模型;然后运用数学方法辅以计算机等设备对模型加以求解,再返回到实际中去解释、分析实际问题,并根据实际问题的反馈结果对数学模型进行验证、修改、并逐步完善,为人们解决实际问题提供科学依据和手段。因此数学模型是数学与客观实际问题联系起来的纽带,是沟通现实世界与数学世界的桥梁,是解决实际问题的强力工具。然而在实践中能够直接运用数学知识去解决实际问题的情况还是很少的,而且对于如何使用数学语言来描述所面临的实际问题也往往不是轻而易举的,而使用数学知识解决实际问题的第一步就是要从实际问题的看起来杂乱无章的现象中抽象出恰当的数学关系,即数学模型,数学模型的组建过程不仅要进行演绎推理而且还要对复杂的现实情况进行归纳、总结和提炼,这是一个归纳、总结和演绎推理相结合的过程。 经过上述一番分析,我们发现数学建模和高等数学有各自的独到之处,但在学习应用中由着相辅相成的作用。我们必须改变只重视推理的传统数学教学模式,不仅要掌握数学知识而且学会“用数学”,学会用数学的知识与方法解决实际问题因此,在高等数学学习中渗透建模思想尤为重要。

相关文档
相关文档 最新文档