文档库 最新最全的文档下载
当前位置:文档库 › 微积分与数学模型答案

微积分与数学模型答案

微积分与数学模型答案
微积分与数学模型答案

微积分与数学模型答案

【篇一:数学建模课后答案】

t>第二章(1)(2012年12月21日)

1.学校共1000名学生,235人住在a宿舍,333人住在b宿

舍,432人住在c宿舍.学生们

要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). 1中的q值方法;

(3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表:

将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍

分配的席位.你能解释这种方法的道理吗?

如果委员会从10个人增至15人,用以上3种方法再分配名额,将

3种方法两次分配的结果列表比较.

解:先考虑n=10的分配方案,

p1?235,p2?333,p3?432,方法一(按比例分配)

?p

i?1

3

i

?1000.

q1?

p1n

?p

i?1

3

?2.35,q2?

p2n

i

?p

i?1

3

?3.33, q3?

p3n

i

?p

i?1

3

?4.32

i

分配结果为: n1?3, n2?3, n3?4 方法二(q值方法)

9个席位的分配结果(可用按比例分配)为:

n1?2,n2?3, n3?4

第10个席位:计算q值为

235233324322

q1??9204.17, q2??9240.75, q3??9331.2

2?33?44?5

q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5

方法三(d’hondt方法)

此方法的分配结果为:n1?2,n2?3,n3?5

此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍).

pi

是ni

每席位代表的人数,取ni?1,2,?,从而得到的近.

pip

中选较大者,可使对所有的i,i尽量接nini

再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:

2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本.

考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得

vdt?(r?wkn)2?kdn,两边积分,得

?

t

vdt?2?k?(r?wkn)dn

n

2?rk?wk22n2

2vv

第二章(2)(2008年10月9日)

15.速度为v的风吹在迎风面积为s的风车上,空气密度是? ,用量纲分析方法确定风车

获得的功率p与v、s、?的关系.

解: 设p、v、s、?的关系为f(p,v,s,?)?0,其量纲表达式为: [p]=mlt

2

?3

, [v]=lt

?1

,[s]=l,[?]=ml,这里l,m,t是基本量纲.

2?3

量纲矩阵为:

1?2?10a=?

???3?1(p)(v)

齐次线性方程组为:

2?3?(l)01??(m) 00??(t)(s)(??

?2y1?y2?2y3?3y4?0?

?y1?y4?0

??3y?y?0

12?

它的基本解为y?(?1,3,1,1) 由量纲pi定理得

??p?1v3s1?1,?p??v3s1?1 ,其中?是无量纲常数.

16.雨滴的速度v与空气密度?、粘滞系数?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系

数,用量纲分析方法给出速度v的表达式.

解:设v,?,?,g 的关系为f(v,?,?,g)=0.其量纲表达式为[v]=lmt,[?]=lmt,

0-1

-3

[?]=mlt(ltl)l=mlltt=lmt,[g]=lmt,其中l,m,t是基本量纲.

-2

-1-1

-1-2

-2-2

-1

-1

0-2

量纲矩阵为

?1?3?11?(l)

?0?(m)110?a=? ???10?1?2(t)??(v)(?)(?)(g)

齐次线性方程组ay=0 ,即

? y1-3y2-y3?y4?0?

?0 ?y2?y3

?-y-y-2y?0

34?1

的基本解为y=(-3 ,-1 ,1 ,1) 由量纲pi定理得

*

??v?3??1?g. ?v???g

,其中?是无量纲常数. ?

16.雨滴的速度v与空气密度?、粘滞系数?、特征尺寸?和重力加速度g有关,其中粘

滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.

解:设v,?,?,?,g 的关系为f(v,?,?,?,g)?0.其量纲表达式为

[v]=lmt,[?]=lmt,[?]=mlt(ltl)l=mlltt=lmt,[?]=lm0t0 ,[g]=lmt

0-1

-3

-2

-1-1

-1-2

-2-2

-1

-1

0-2

其中l,m,t是基本量纲. 量纲矩阵为

?1?0a=????1(v)

齐次线性方程组ay=0 即

1?3?100

10

1?(l)10??(m) ?1?2??(t)

(?)(?)(?)(g)

?y1?y2?3y3?y4?y5?0

?

y3?y4?0 ?

??y1?y4?2y5?0?

的基本解为

11?

y?(1,?,0,0,?)?1

22 ?31

?y2?(0,?,?1,1,?)

22?

得到两个相互独立的无量纲量

??1?v??1/2g?1/2

??3/2?1?1/2

??g??2??

即 v?

?1

) g1,?3/2?g1/2??1??2?1. 由?(?1,?2)?0 , 得 ?1??(?2

? ??

g(?3/2?g1/2??1) , 其中?是未定函数.

20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t,摆长l, 质量m,重力加速度g,阻力系数k的关系为

f(t,l,m,g,k)?0

其量纲表达式为:

[t]?l0m0t,[l]?lm0t0,[m]?l0mt0,[g]?lm0t?2,[k]?[f][v]?1?mlt?2(lt?1 )?1

?l0mt?1,其中l,m,t是基本量纲.

量纲矩阵为

?0?0a=???1(t)

10

0?(l)

0101??(m) 00?2?1??(t)

1

(l)(m)(g)(k)

齐次线性方程组

y2?y4?0??

y3?y5?0 ?

?y?2y?y?0

45?1

的基本解为

11?

y?(1,?,0,,0)?1

22 ?11

?y2?(0,,?1,?,1)

22?

得到两个相互独立的无量纲量

?tl?1/2g1/2??1

?1/2?1?1/2

?lmgk??2

∴t?

kl1/2l

?1, ?1??(?2), ?2?1/2

gmg

∴t?

lkl1/2

(1/2) ,其中?是未定函数 . gmg

考虑物理模拟的比例模型,设g和k不变,记模型和原型摆的周期、摆长、质量分别为

lkl?1/2() t,t;l,l;m,m. 又t??1/2gm?g

当无量纲量

m?lt?lgl时,就有 ?. ???

mltgll

《数学模型》作业解答

第三章1(2008年10月14日)

1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货

批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.

【篇二:数学建模-微积分模型】

>今天人们不论从事什么活动都讲究高效益,即希望所采取的策略使某个或某些指标达到最优。商店订货要使订货、存贮等费用最小,体育比赛运动员要创造最好的成绩,工程设计要追求最佳方案。普遍

存在的优化问题经常成为人们研究的对象,建立这类问题的模型,我们称为优化模型。

建立优化模型首先要确定所关心的优化指标的数量描述,然后构造包括这个指标及各种限制条件的模型,通过模型求解给出达到优化指标的所谓策略。本章仅考虑定常情况(即所给的策略不随时间改变)。

4.1 不允许缺货模型

某配送中心为所属的几个超市送配某种小电器,假设超市每天对这种小电器的需求量是稳定的,订货费与每个产品每天的存贮费都是常数。如果超市对这种小家电的需求是不可缺货的,试制定最优的存贮策略(即多长时间订一次货,一次订多少货)。如果日需求量价值100元,一次订货费用为

5000元,每件电器每天的贮存费1元,请给出最

优结果。模型假设:

(1)每天的需求量为常数r;(2)每次的订货费用为c1,每天每件产品的存贮费为c2 ;

(3)t天订一次货,每次订q件,且当存贮量

为0时,立即补充,补充是瞬时完成的;(4)为方便起见,将r,q都视为连续量。模型建立

将存贮量表示为时间的函数q(t),t?0时,进货q件这类小电器,储存量q(0)?q,q(t)以需求r的速率递减,直到q(t)=0。易见

q=rt (4.1)

一个周期的存贮费用

c2=

一个周期的总费用

?

t

q(s)ds?c2a

rt2

c=c1?c2

2

每天平均费用

c(t)?

c1c2rt?(4.2) t2

模型求解

求t,使c(t)取最小值。由

dc

?0,得 dt

t?

2c1

,rc2

q?

2c1rc2

(4.3)

上式称为经济订货批量公式。

模型解释

(1)订货费越高,需求量越大,则每次订货批量应越大,反之,每次订货量越小; (2)贮存费越高,则每次订货量越小,反之,每次订货量应越大。模型应用将c1?5000,c2?1,r?100代入(4.3)式得 t=10天,q=1000件,c=1000元。

4.2 允许缺货模型

某配送中心为所属的几个超市送配某种

小电器,假设超市每天对这种小电器的需求量是稳定的,订货费与每个产品每天的存贮费都是常数。如果超市对这种小家电的需求是可以缺货的,试制定最优的存贮策略(即多长时间订一次货,一次订多少货)。

如果日需求为100元,一次订货费用为5000元,每件电器每天的贮存费1元,每件小家电每天的缺货费为0.1元,请给出最优结果。与不允许缺货情况不同的是,对于允许缺货的情况,缺货时因失去销售机会而使利润减少,减少的利润可以看作为因缺货而付出的费用,称为缺货费。于是这个模型的第(1)、(2)条假设与不允许缺货的模型相同,除此之外,增加假设

(3)每隔t天订货q件,允许缺货,每天每件小家电缺货费为

c3 。缺货时存贮量q看作负值,q(t)的图形如图4.2,货物在t?t1时送完。

tt1

一个供货周期t内的总费用包括:订货费c1,存贮费c2?0缺货费c3?t1|q(t)|dt,q(t)dt,

借助图4.2可以得到一个周期总费用为 c?c1? 每天的平均费用

c(t,q)?

利用微分法,令

11

c2qt1?c3r(t?t1)222c1c2q2c3(rt?q)2

(4.4) ??

t2rt2rt

??c

?0???t

??c

??0??q?

可以求出最优的t,q值为

t?记

??

2c1c2?c3

.,rc2c3

q?

c32c1r

. (4.5) c2c2?c3

c2?c3

(?1) c3

通过与不允许缺货的模型相比较得到

t?t?,q?q/? (4.6)显然t?t,q?q,即允许缺货时订货周期可以长一些,每次可以少订一些货。(4.6)式表明,缺货费c3越大,?值越小,t,q与t,q越接近,这与实际是相符的,因为c3越大,意味着因缺货造成的损失越大,所以应该尽量避免缺货,当c3???时,??1,于是t?t,q?q。这个结果是合理的,因为缺货费充分大,造成的缺货损失也充分大,所以不允许缺货。

将所给的数据代入(4.6)式得到 t?33天,q?333件,c?301.7元。

4.3森林救火模型

本节讨论森林救火问题。森林失火了,消防站接到报警后派多少消防队员前去救火呢?队员派多了,森林的损失小,但是救火的开支增加了;队员派少了,森林的损失大,救火的开支相应减小。所以需要综合考虑森林损失和救火队员开支之间的关系,以总费用最小来确定派出队员的多少。

从问题中可以看出,总费用包括两方面,烧毁森林的损失,派出救火队员的开支。烧毁森林的损失费通常正比于烧毁森林的面积,而烧毁森林的面积与失火的时间、灭火的时间有关,灭火时间又取决于消防队员数量,队员越多灭火越快。通常救火开支不仅与队员人数有关,而且与队员救火时间的长短也有关。记失火时刻为t?0,开始救火时刻为t?t1,火被熄灭的时刻为t?t2。设t时刻烧毁森林的面积为b(t),则造成损失的森林烧毁的面积为b(t2)。下面我们设法确定各项费用。

先确定b(t)的形式,研究b(t)比b(t)更直接和方便。b(t)是单位时间烧毁森林的面积,取决于火势的强弱程度,称为火势蔓延程度。在消防队员到达之前,即0?t?t1,火势越来越大,即b(t)随t的增加而增加;开始救火后,即t1?t?t2,如果消防队员救火能力充分强,火势会逐渐减小,即b(t)逐渐减小,且当t?t2时,b(t)?0。

救火开支可分两部分:一部分是灭火设备的消耗、灭火人员的开支等费用,这笔费用与队员人数及灭火所用的时间有关;另一部分是运送队员和设备等的一次性支出,只与队员人数有关。

模型假设

需要对烧毁森林的损失费、救火费及火势蔓延程度的形式做出假设。 b(t)

(1) 损失费与森林烧毁面

c1,c1即烧毁单积b(t2)成正比,比例系数为

位面积森林的损失费,取决于森林的疏密程度

和珍贵程度。

(2) 对于0?t?t1,火势蔓延程度b(t)与时间t成正比,比例系数?称为火势蔓延速度。(注:对这个假设我们作一些说明,火势以着火点为中心,以均匀速度向四周呈圆形蔓延,所以蔓延的半径与时间成正比,因为烧毁森林的面积与过火区域的半径平方成正比,从而火势蔓延速度与时间成正比)。

(3) 派出消防队员x名,开始救火以后,火势蔓延速度降为???x,其中?称为每个队员的平均救火速度,显然必须x??/?,否则无法灭火。

(4)每个消防队员单位时间的费用为c2,于是每个队员的救火费用为c2(t2?t1),每个队员的一次性开支为c3。

模型建立

根据假设条件(2)、(3),火势蔓延程度在0?t?t1时线性增加,在t1?t?t2时线性减小,具体绘出其图形见图4.3。

记t?t1时,b(t)?b。烧毁森林面积

b(t2)??02b(t)dt

正好是图中三角形的面积,显然有 b(t2)?而且

t2?t1?因此

1b2

b(t2)?bt1?

22(?x??)

t

1bt 22b

?x??

根据条件(1)、(4)得到,森林烧毁的损失费为c1b(t2),救火费为c2x(t2?t1)?c3x据此计算得到救火总费用为

c1b2cbx1

?2?c3x (4.7) c(x)?c1bt1?

22(?x??)?x??

问题归结为求x使c(x)达到最小。令

dc

?0 dx

得到最优的派出队员人数为x?

c1?b?2c2?b2c3?2

?

?

(4.8) ?

模型解释

(4.8)式包含两项,后一项是能够将火灾扑灭的最低应派出的队员人数,前一项与相关的参数有关,它的含义是从优化的角度来看:当救火队员的灭火速度?和救火费用系数c3增大时,派出的队员数应该减少;当火势蔓延速度?、开始救火时的火势b以及损失费用系数c1增加时,派出的队员人数也应该增加。这些结果与实际都是相符的。

实际应用这个模型时,c1,c2,c3都是已知常数,?,?由森林类型、消防人员素质等因素确定。

4.4消费者的选择

本节利用无差别曲线的概念讨论消费者的选择问题。如果一个消费者用一定数量的资金去购买两种商品,他应该怎样分配资金才会最满意呢?

记购买甲乙两种商品的数量分别为q1,q2,当消费者占有它们时的满意程度,或者说给消费者带来的效用是q1,q2的函数,记作

u(q1,q2),经济学中称之为效用函数。u(q1,q2)?c的图形就是无差别曲线族,如图4.4所示。类似于第二章中无差别曲线的作法,可以作出效用函数族,它们是一族单调下降、下凸、不相交的曲线。在每一条曲线上,对于不同的点,效用函数值不变,即满意程度不变。而随着曲线向右上方移动,u(q1,q2)的值增加。曲线下凸的具体

形状则反映了消费者的偏爱情况。这里假设消费者u(q1,q2),即无差别曲线族已

设甲乙两种商品的单价分费者有资金s元。当消费者用商品时所作的选择,即分别用应该使效用函数u(q1,q2)达到

s/对甲乙两种商品的效用函数经完全确定了。别为p1,p2元,消这些钱买这两种多少钱买甲和乙,最大,即达到最大

的满意度。经济学上称这种最优状态为消费者

均衡。

当消费者购买两种商品量为q1,q2时,他用的钱分别为p1q1和

p2q2,于是问题归结

为在条件

p1q1?p2q2?s(4.9)下求比例p1q1/p2q2,使效用函数达到最大。

这是二元函数求条件极值问题,用乘子法不难得到最优解应满足

p?u?u

/?1(4.10) ?q1?q2p2

当效用函数u(q1,q2)给定后,由(4.10)式即可确定最优比例

p1q1/p2q2。

上述问题也可用图形法求解。约束条件(4.9)在图4.4中是一条直线,此直线必与无差别曲线族中的某一条相切(见图4.4中的q 点),则q1,q2的最优值必在切点q处取得。

图解法的结果与(4.10)式是一致的。因为在切点q处直线与曲线的斜率相同,直线的斜率为?p1/p2,曲线的斜率为?

经济学中

?u?u

/,在q点,利用相切条件就得到(4.10)式。 ?q1?q2

?u?u

,称为边际效用,即商品购买量增加1单位时效用函数的增量。(4.10)?q1?q2

式表明,消费者均衡状态在两种商品的边际效用之比正好等于价格之比时达到。从以上的讨论可以看出,建立消费者均衡模型的关键是确定效用函数u(q1,q2)。构造效用函数时应注意到它必须满足如下的条件:

条件a :

u(q1,q2)?c所确定的一元函数q2?q(q1)是单调递减的,且曲线是呈下凸的。

条件a是无差别曲线族u(q1,q2)?c的一般特性,这个条件可以用下面更一般的条件代替。

条件b:

【篇三:数学模型第四版课后答案姜启源版】

t>第二章(1)(2012年12月21日)

1.学校共1000名学生,235人住在a宿舍,333人住在b宿

舍,432人住在c宿舍.学生们

要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). 1中的q值方法;

(3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表:

将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍

分配的席位.你能解释这种方法的道理吗?

如果委员会从10个人增至15人,用以上3种方法再分配名额,将

3种方法两次分配的结果列表比较.

解:先考虑n=10的分配方案,

p1?235,p2?333,p3?432,方法一(按比例分配)q1?

?p

i?1

3

i

?1000.

p1n

?p

i?1

3

?2.35,q2?

p2n

i

?p

i?1

3

?3.33, q3?

p3n

i

?p

i?1

3

?4.32

i

分配结果为: n1?3, n2?3, n3?4 方法二(q值方法)

9个席位的分配结果(可用按比例分配)为:

n1?2,n2?3, n3?4

第10个席位:计算q值为

235233324322

q1??9204.17, q2??9240.75, q3??9331.2

2?33?44?5

q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5

方法三(d’hondt方法)

此方法的分配结果为:n1?2,n2?3,n3?5

此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍).

pi

是ni

每席位代表的人数,取ni?1,2,?,从而得到的近.

pip

中选较大者,可使对所有的i,i尽量接nini

再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:

2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本.

考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得

vdt?(r?wkn)2?kdn,两边积分,得

?

t

vdt?2?k?(r?wkn)dn

n

2?rk?wk22n2

2vv

《数学模型》作业解答

第三章1(2008年10月14日)

1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货

批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.

解:设购买单位重量货物的费用为k,其它假设及符号约定同课本. 10 对于不允许缺货模型,每天平均费用为:

c(t)?

c1c2rt??kr t2

ccrdc

??12?2 dt2t

dc

?0 ,解得 t*?dt

2c1

c2r2c1r

c2

由q?rt ,得q??rt??

与不考虑购货费的结果比较,T、Q的最优结果没有变.

20 对于允许缺货模型,每天平均费用为:

1

c(t,q)?

t

??c2q2c32c??(rt?q)?kq?1?

2r2r??

c1c2q2c3rc3q2kq?c

??2????2 22?t2t2rt2rtt

cqk?cc2q

??c3?3? ?qrtrtt

??c

?0???t

令? ,得到驻点:

?c

?0????q

???

?

?q????

t?

?

2c1c2?c3k2

?

rc2c3c2c3

2

2

c3kr2c1rc3kr

??

c2c2?c3c2(c2?c3)c2?c3

与不考虑购货费的结果比较,T、Q的最优结果减少.

2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k,销售速率为常数r,

k?r.在每个生产周期T内,开始的一段时间?0?t?t0?一边生产一边销售,后来的

一段时间(t0?t?t)只销售不生产,画出贮存量g(t)的图形.设每次生产准备费为c1,单位时间每件产品贮存费为c2,以总费用最小为目标确定最优生产周期,讨论k??r和k?r的情况.

解:由题意可得贮存量g(t)的图形如下:

t

(k?r)t0?t

2

贮存费为 c2lim

?t?0

?g(?i)?

ti?c2?g(t)dt?c2

i?1

又? (k?r)t0?r(t?t0) ?t0?

rr(k?r)t?tt , ? 贮存费变为c2? k2k

于是不允许缺货的情况下,生产销售的总费用(单位时间内)为

c1c2r(k?r)t2c1r(k?r)t

???c2c(t)? t2ktt2k

cdcr(k?r)??12?c2. dt2ktdc

?0 ,得t??dt

?

2c1k

c2r(k?r)

2c1k

c2r(k?r)

易得函数c(t)在t处取得最小值,即最优周期为: t??

当k??r时,t

?

?

2c1

. 相当于不考虑生产的情况. c2r

当k?r时,t

?

?? .此时产量与销量相抵消,无法形成贮存量.

第三章2(2008年10月16日)

3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度?与开始救火时的火势b有关,试假设一个合理的函数关系,重新求解模型.

解:考虑灭火速度?与火势b有关,可知火势b越大,灭火速度?将减小,我们作如下假设: ?(b)?

k

, b?1

中的1是防止b?0时???而加的. 分母b?1

c1?t12c1?2t12(b?1)c2?t1x(b?1)

总费用函数c?x?????c3x

22(kx??b??)kx??b??

最优解为 x?

ckb

1

2

?2c2b(b?1)?(b?1)(b?1)?

? 2

k2c3k

5.在考虑最优价格问题时设销售期为t,由于商品的损耗,成本q 随时间增长,设

q(t)?q0??t,?为增长率.又设单位时间的销售量为x?a?bp(p为价格).今将销售

期分为0?t?t

和t

?t?t两段,每段的价格固定,记作p1,p2.求p1,p2的最优值,

使销售期内的总利润最大.如果要求销售期t内的总售量为q0,再求p1,p2的最优值.解:按分段价格,单位时间内的销售量为

??a?bp1,0?t? x??

ta?bp2,?t?t??

又? q(t)?q0??t.于是总利润为

?(p1,p2)??

t

?p1?q(t)?(a?bp1)dt??t?p2?q(t)?(a?bp2)dt t

t?2??2???

=(a?bp1)?p1t?q0t?t?2?(a?bp2)?p2t?q0t?t?t 2?2???02

p1tq0t?t2p2tq0t3?t2

??)?(a?bp2)(??) =(a?bp1)(228228

微积分试题及答案(5)

微积分试题及答案 一、填空题(每小题2分,共20分) 1. =∞→2 arctan lim x x x . 2. 设函数??? ??=<<-=0 , 10 )21()(1 x k x ,x x f x 在0=x 处连续,则=k 。 3. 若x x f 2e )(-=,则=')(ln x f 。 4. 设2sin x y =,则=)0() 7(y 。 5. 函数2 x y =在点0x 处的函数改变量与微分之差=-?y y d 。 6. 若)(x f 在[]b a ,上连续, 则=?x a x x f x d )(d d ; =? b x x x f x 2d )(d d . 7. 设函数)3)(2)(1()(---=x x x x f ,则方程0)(='x f 有 个实根。 8. 曲线x x y -=e 的拐点是 。 9. 曲线)1ln(+=x y 的铅垂渐近线是 。 10. 若 C x x x f x ++=? 2d )(,则=)(x f 。 二、单项选择(每小题2分,共10分) 1. 设x x f ln )(=,2)(+=x x g 则)]([x g f 的定义域是( ) (A )()+∞-,2 (B )[)+∞-,2 (C )()2,-∞- (D )(]2,-∞- 2. 当0→x 时,下列变量中与x 相比为高阶无穷小的是( ) (A )x sin (B )2 x x + (C )3x (D )x cos 1- 3. 函数)(x f 在],[b a 上连续是)(x f 在],[b a 上取得最大值和最小值的( ) (A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件 4. 设函数)(x f 在]0[a , 上二次可微,且0)()(>'-''x f x f x ,则x x f ) ('在区间)0(a ,内是( ) (A )不增的 (B )不减的 (C )单调增加的 (D )单调减少的 5. 若 C x x x f +=?2d )(,则=-?x x xf d )1(2 。 (A )C x +-2 2)1(2 (B )C x +--2 2)1(2

数学建模-微积分模型

第四章 微积分模型 今天人们不论从事什么活动都讲究高效益,即希望所采取的策略使某个或某些指标达到最优。商店订货要使订货、存贮等费用最小,体育比赛运动员要创造最好的成绩,工程设计要追求最佳方案。普遍存在的优化问题经常成为人们研究的对象,建立这类问题的模型,我们称为优化模型。 建立优化模型首先要确定所关心的优化指标的数量描述,然后构造包括这个指标及各种限制条件的模型,通过模型求解给出达到优化指标的所谓策略。本章仅考虑定常情况(即所给的策略不随时间改变)。 4.1 不允许缺货模型 某配送中心为所属的几个超市送配某种小电器,假设超市每天对这种小电器的需求量是稳定的,订货费与每个产品每天的存贮费都是常数。如果超市对这种小家电的需求是不可缺货的,试制定最优的存贮策略(即多长时间订一次货,一次订多少货)。 如果日需求量价值100元,一次订货费用为 5000元,每件电器每天的贮存费1元,请给出最 优结果。 模型假设: (1)每天的需求量为常数r ; (2)每次的订货费用为c 1,每天每件产品的存贮费为c 2 ; (3)T 天订一次货,每次订Q 件,且当存贮量 为0时,立即补充,补充是瞬时完成的; (4)为方便起见,将r ,Q 都视为连续量。 模型建立 将存贮量表示为时间的函数(),0q t t =时,进货Q 件这类小电器,储存量(0),()q Q q t =以需求r 的速率递减,直到q (T )=0。 易见 Q=rT (4.1) 一个周期的存贮费用 C 2= A c ds s q T 20 )(=? 一个周期的总费用 C =2 2 21rT c c + 每天平均费用

数学建模与计算机关系研究

数学建模与计算机关系研究 【摘要】高等数学与计算机教学具有内在相关性,尤其是在数学建模应用中,根据计算机学科发展来发挥数学建模理论的作用及效果,有助于增强学生对高等数学的理解和应用能力。基于此,本文笔者就从高等数学建模理论与计算机技术的关系研究入手,来阐述建模嵌入在计算机辅助教学中的重要潜力。 【关键词】计算机;高等数学;教学改革;数学建模 1.高等数学与计算机学科发展 有人说,计算机技术的发展可以省去学习数学的麻烦,即便是很多专业计算机教师也抱有同样的想法。然而,对于计算机应用领域及实践中,计算机技术确实给很多从业者带来了便捷与高效,但计算机技术不等于数学,更不能替代数学。从高等数学教学实践来看,对于我们常见的数学概念,如比率、概率、图像、逻辑、误差、机会,以及程序等知识的认识,很多行业都在进行数字化、数量化转变,对数学知识的应用也日益广泛。从这些应用中,数学理论及知识,尤其是数学基本理论研究就显得更为重要。数学,在数学知识的应用中,更需要从练习中来提升对数学知识及概念的理解,也需要通过练习来提升运算能力。如果对数学概念及方法应用的不过,对数学单调性的知识缺乏深刻的认识,就会影响数学知识在实践应用中出现偏差。计算机技术的出现,尤其是程序化语言的应用,使得数学知识在表达与反映中能够依据不同的应用灵活有效、准确的运算,从而减少了不必要的验证,也提升了数学在各行业中的应用效率。 数学软件学科的发展,成为计算机重要的辅助教学的热门领域,也使得计算机技术能够发挥其数学应用能力。在传统的数学教学中,逻辑与直观、抽象与具体始终是研究的矛盾主体,如有些太简单的例子往往无法进行全面的计算;有些复杂的例子又需要更多的计算量。在课堂表现与讲解中,对于理性与感性知识的认知,学生缺乏有效的理解和应用,而强大的计算机运算功能却能够直观的表达和弥补这些缺陷,并依托具体的演示过程中来营造概念间的差异性,帮助学生从中领会知识及方法。在计算机的辅助教学下,教师利用对数学理论课题或应用课题,从鲜活的思维及形象的表达上借助于软件来展现,让学生从失败与成功中得到知识的应用体验,从而将被动的知识学习转变为主动的参与实践,更有助于通过实践来激发学生的创新精神。这种将数学教学思维与逻辑与计算机技术的融合,便于从教学中调整教学目标,依据学生所需知识及专业需求来分配侧重点。数学建模就是从数学学科与计算机学科的融合与实践中帮助学生协作学习,提升自身的能力。 2.信息技术是高等数学应用的产物 现代信息技术的发展及应用无处不在,对数学知识的渗透也是日益深入。当前,各行业在多种协作、多种专业融合中,借助于先进的信息技术都可以实现畅通的表达与物化。如天气预报技术、卫星电视技术、网络通讯技术等都需要从数

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

微积分方法建模2经济增长模型--数学建模案例分析

§2 经济增长模型 发展经济、增加生产有两个重要因素,一是增加投资(扩大厂房、购买设备、技术革新等), 二是增加劳动力。恰当调节投资增长和劳动力增长的关系,使增加的产量不致被劳动力的增长抵消,劳动生产率才能不断提高,从而真正起到发展经济的作用。为此,需要分析产量、劳动力和投资之间变化规律,从而保证经济正常发展。 记 )(t Q —某地区、部门或企业在t 时刻的产量 )(t L —某地区、部门或企业在t 时刻的劳动力 )(t K ?某地区、部门或企业在t 时刻的资金 )(t Z —每个劳动力在t 时刻占有的产量(劳动生产率) 一、道格拉斯(Douglas )生产函数 由于现在关心的是产量、劳动力、投资的相对增长量,不是绝对量, 所以定义 ,)0()()(Q t Q t i Q =)0()()(L t L t i L = ,)0()()(K t K t i K = (1) 分别称为产量指数、劳动力指数和投资指数。 在正常的经济发展过程中这三个指数都是随时间增长的,但它们之间的关系难以从机理分析 得到,只能求助统计资料.Douglas 从大量统计数据中发现下面的规律: 如果令 )()(ln )(t i t i t K L =ξ,) ()(ln )(t i t i t K Q =ψ (2) 则散点),(ψξ在ψξ~平面直角坐标系上的图象大致如下

即大多数点靠近一条过原点的直线,这提示ξ和ψ的关系为 )10(<<=γγξ ψ (3) 上式代入得 )()()(1t i t i t i K L Q γγ-= (4) 记)0()0()0(1--=γγK L Q a ,则由(1)、(4),可得 )0,10(),()()(1><<=-a t K t aL t Q γγγ (5) 这就是经济学中著名的Douglas 生产函数,它表明产量与劳动力、投资之间的关系。由(5)有 K K L L Q Q )1(γγ-+= (6) (6)表明年相对增长量Q Q 、L L 、K K 之间呈线性关系。且1→γ说明产量增长主要靠劳动力的增长;0→γ说明产量增长主要靠投资的增长。称γ是产量对劳动力的弹性系数。 二、劳动生产率增长的条件 定义 )()()(t L t Q t Z =—劳动生产率,则L L Q Q Z Z -=,由(6)代入 则 ))(1(L L K K Z Z --=γ (7) 可见,只要L L K K >,就能保证0>Z Z ,即劳动生产率的提高需要由投资的相对增长大于劳动力的相对增长为前提条件。 问题:考虑到物价上升因素我们记物价上升指数为)((t P 设)1)0(=P ,则产品的表面价值)(t y 、实际价值)(t Q 和物价指数)(t P 之间满足)(t y )()(t P t Q =。 (1)导出)(t y 、)(t Q 、)(t P 的相对增长率之间的关系,并作解释。 (2)设雇佣工人数目为)(t L ,每个工人工资为),(t W 企业的利润简化为产品的收入)(t y 中扣除工人的工资和固定成本,企业应雇佣多少工人能使利润最大。

微积分试题及答案

微积分试题及答案

5、ln 2111x y y x +-=求曲线 ,在点(, )的法线方程是__________ 三、判断题(每题2分) 1、2 21x y x =+函数是有界函数 ( ) 2、 有界函数是收敛数列的充分不必要条件 ( ) 3、lim ββαα=∞若,就说是比低阶的无穷小( )4可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分)1、1sin x y x =求函数 的导数 2、 21()arctan ln(12f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x x x x →-求 5、31)x x +计算( 6、21 0lim(cos )x x x + →计算 五、应用题 1、设某企业在生产一种商品x 件时的总收益为2 )100R x x x =-(,总成本函数为2 ()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21 y x x =+的图形(12分) 六、证明题(每题6分) 1、用极限的定义证明:设01lim (),lim ()x x f x A f A x + →+∞→==则 2、证明方程10,1x xe =在区间()内有且仅有一个实数 一、 选择题

1、C 2、C 3、A 4、B 5、D 6、B 二、填空题 1、0x = 2、6,7a b ==- 3、18 4、3 5、20x y +-= 三、判断题 1、√ 2、× 3、√ 4、× 5、× 四、计算题 1、 1sin 1sin 1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )x x x x x x y x e e x x x x x x x x x x x '='='??=-+??? ?=-+(( 2、 22()112(arctan )121arctan dy f x dx x x x dx x x xdx ='=+-++= 3、 解: 2222)2)22230 2323(23)(23(22)(26) (23x y xy y y x y y x y y x y x y yy y x y --'+'=-∴'=--'----'∴''=-

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

微积分期末测试题及答案

微积分期末测试题及答 案 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ??-???? ③(0,+∞) ④(-∞,+∞) 4.设2 ()()lim 1()x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) sin lim sin x x x x x →∞-=+. 31lim(1)x x x +→∞+=. 3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1 x x x →-- 2.t t x e y te ?=?=? ,求22d y dx 3.ln(y x =,求dy 和22d y dx . 4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求 dy dx . 5.设111 1,11n n n x x x x --==+ +,求lim n x x →∞.

微积分试卷及答案4套

微积分试题 (A 卷) 一. 填空题 (每空2分,共20分) 1. 已知,)(lim 1A x f x =+ →则对于0>?ε,总存在δ>0,使得当 时,恒有│?(x )─A│< ε。 2. 已知22 35 lim 2=-++∞→n bn an n ,则a = ,b = 。 3. 若当0x x →时,α与β 是等价无穷小量,则=-→β β α0 lim x x 。 4. 若f (x )在点x = a 处连续,则=→)(lim x f a x 。 5. )ln(arcsin )(x x f =的连续区间是 。 6. 设函数y =?(x )在x 0点可导,则=-+→h x f h x f h ) ()3(lim 000 ______________。 7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。 8. ='? ))((dx x f x d 。 9. 设总收益函数和总成本函数分别为2 224Q Q R -=,52 +=Q C ,则当利润最大时产 量Q 是 。 二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。 (A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a (C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设1 1 )(-=x arctg x f 则1=x 为函数)(x f 的( )。 (A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点

(D) 连续点 3. =+ -∞ →1 3)11(lim x x x ( ) 。 (A) 1 (B) ∞ (C) 2e (D) 3e 4. 对需求函数5 p e Q -=,需求价格弹性5 p E d - =。当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。 (A) 3 (B) 5 (C) 6 (D) 10 5. 假设)(),(0)(lim , 0)(lim 0 x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外) 存在,又a 是常数,则下列结论正确的是( )。 (A) 若a x g x f x x =→) ()(lim 或∞,则a x g x f x x =''→)() (lim 0或∞ (B) 若a x g x f x x =''→)()(lim 0或∞,则a x g x f x x =→) () (lim 0或∞ (C) 若) ()(lim x g x f x x ''→不存在,则)() (lim 0x g x f x x →不存在 (D) 以上都不对 6. 曲线2 2 3 )(a bx ax x x f +++=的拐点个数是( ) 。 (A) 0 (B)1 (C) 2 (D) 3 7. 曲线2 ) 2(1 4--= x x y ( )。 (A) 只有水平渐近线; (B) 只有垂直渐近线; (C) 没有渐近线; (D) 既有水平渐近线, 又有垂直渐近线 8. 假设)(x f 连续,其导函数图形如右图所示,则)(x f 具有 (A) 两个极大值一个极小值 (B) 两个极小值一个极大值 (C) 两个极大值两个极小值 (D) 三个极大值一个极小值 9. 若?(x )的导函数是2 -x ,则?(x )有一个原函数为 ( ) 。 x

数学建模微积分模型

第四章 微积分模型 今天人们不论从事什么活动都讲究高效益,即希望所采取的策略使某个或某些指标达到最优。商店订货要使订货、存贮等费用最小,体育比赛运动员要创造最好的成绩,工程设计要追求最佳方案。普遍存在的优化问题经常成为人们研究的对象,建立这类问题的模型,我们称为优化模型。 建立优化模型首先要确定所关心的优化指标的数量描述,然后构造包括这个指标及各种限制条件的模型,通过模型求解给出达到优化指标的所谓策略。本章仅考虑定常情况(即所给的策略不随时间改变)。 4.1 不允许缺货模型 某配送中心为所属的几个超市送配某种小电器,假设超市每天对这种小电器的需求量是稳定的,订货费与每个产品每天的存贮费都是常数。如果超市对这种小家电的需求是不可缺货的,试制定最优的存贮策略(即多长时间订一次货,一次订多少货)。 如果日需求量价值100元,一次订货费用为 5000元,每件电器每天的贮存费1元,请给出最 优结果。 模型假设: (1)每天的需求量为常数r ; (2)每次的订货费用为c 1,每天每件产品的存贮费为c 2 ; (3)T 天订一次货,每次订Q 件,且当存贮量 为0时,立即补充,补充是瞬时完成的; (4)为方便起见,将r ,Q 都视为连续量。 模型建立 将存贮量表示为时间的函数(),0q t t =时,进货Q 件这类小电器,储存量(0),()q Q q t =以需求r 的速率递减,直到q (T )=0。 易见 Q=rT (4.1) 一个周期的存贮费用 C 2= A c ds s q T 20 )(=? 一个周期的总费用 C =2 2 21rT c c + 每天平均费用 2 )(21rT c T c T c += (4.2) 模型求解 求T ,使)(T c 取最小值。 由 0=dT dc ,得 2 12 1 2,2c r c Q rc c T = = (4.3)

微积分方法建模如何预报人口的增长--数学建模案例分析

§9 如何预报人口的增长 人口的增长是当前世界上引起普遍关注的问题,我们常在报刊上看见关于人口增长的预报,而且你可能注意到不同的报刊对同一时间同一国家或地区的人口预报在数字上常有较大的差别,这其实是由于使用了不同的人口模型计算的结果.建立人口模型的意义在于利用模型中的参数及时控制人口的增长. 模型一 Malthus 指数增长模型 英国人口学家malthus 根据百余年的人口统计资料,于1787年提出著名的指数增长模型. 假设 1、某国家或地区在时刻t 的人口)(t x 为连续可微函数; 2、人口的增长率r 是常数,或者说,单位时间人口的增长量与当时的人口成正比. 建模 记0x 为初始时刻)0(=t 的人口,由假设2,t 到t t ?+时间内的人口增量为 t t rx t x t t x ?=-?+)()()( 易导出下面的微分方程 ?????==0 )0(x x rx dt dx 求解 易解出)0()(0>=r e x t x rt 分析 模型与19世纪以前欧洲一些地区和国家的人口增长率长期稳定不变的人口统计数据可以很 好地吻合,但是与19世纪以后许多国家的人口统计资料却有很大差异.出现这种差异的原因是19世纪以后人口的增长率已不再是常数.比如美国19世纪100年的10年增长率0.266,20世纪80年的10年增长率0.137,而1970至1980年的10年增长率为0.0307. 模型二 Logistic 阻滞增长模型 假设 1、同模型一; 2、当人口增加到一定数量后,增长率随着人口的继续增加而逐渐减少,且)(x r 为x 的线性函数sx r x r -=)()0,(>s r ,其中r 相当于0=x 时的增长率,称固有增长率; 3、自然资源和环境条件所能容纳的最大人口数量m x ,称最大人口容量. 建模 当m x x =时增长率应为0,即0)(=m x r ,从而m x r s = ,于是)1()(m x x r x r - =,其中r ,m x 是根据人口统计数据确定的常数.m x 常由经验确定.仿模型一同样得 ?? ???=-=0)0()1(x x x x x r dt dx m

高等数学基础模拟试题2及参考答案

高等数学基础试题 一、单项选择题(每小题4分,本题共20分) 1.函数2 e e x x y -=-的图形关于( )对称. (A) 坐标原点 (B) x 轴 (C) y 轴 (D) x y = 2.在下列指定的变化过程中,( )是无穷小量. (A) )(1 sin ∞→x x x (B) )0(1 sin →x x (C) )0()1ln(→+x x (D) )(e 1 ∞→x x 3.设)(x f 在0x 可导,则=--→h x f h x f h 2)()2(lim 000( ). (A) )(0x f ' (B) )(20x f ' (C) )(0x f '- (D) )(20x f '- 4.若?+=c x F x x f )(d )(,则?=x x f x d )(ln 1( ). (A) )(ln x F (B) c x F +)(ln (C) c x F x +)(ln 1 (D) c x F +)1( 5.下列积分计算正确的是( ). (A) 0d sin 11 =?-x x x (B) 1d e 0=?∞--x x (C) πd 2sin 0=?∞-x x (D) 0d cos 11=?-x x x 二、填空题(每小题4分,共20分) 1.函数24) 1ln(x x y -+=的定义域是 . 2.若函数?????≥+<+=0 0) 1()(21x k x x x x f x ,在0=x 处连续,则=k . 3.曲线1)(3 +=x x f 在)2,1(处的切线斜率是 . 4.函数x y arctan =的单调增加区间是 .

5.若?+=c x x x f sin d )(,则=')(x f . 三、计算题(每小题11分,共44分) 1.计算极限1)1sin(lim 21-+-→x x x . 2.设x x y e cos ln +=,求'y . 3.计算不定积分 ?x x x d e 21. 4.计算定积分?e 1d ln x x . 四、应用题(本题16分) 某制罐厂要生产一种体积为V 的有盖圆柱形容器,问容器的底半径与高各为多少时用料最省? 高等数学基础 答案 一、单项选择题 1.A 2.C 3. C 4. B 5. D 二、填空题 1. )2,1(- 2. e 3. 3 4. ),(∞+-∞ 5. x sin - 三、计算题 1. 解:21)1)(1()1sin(lim 1 )1sin(lim 121-=-++=-+-→-→x x x x x x x 2. 解:x x x y e sin e 1-=' 3. 解:由换元积分法得 c u x x x u u x x +-=-=-=???e d e )1(d e d e 121 c x +-=1e 4. 解:由分部积分法得 ??-=e 1e 1e 1)d(ln ln d ln x x x x x x 1d e e 1?=-=x 四、应用题(本题16分)

微积分方法建模飞机的降落曲线数学建模案例分析

第二章 微积分方法建模 现实对象涉及的变量多是连续的,所以建立连续模型是很自然的,而连续模型一般可以用微积分为工具求解,得到的解析解便于进行理论分析,于是有些离散对象,如人口的演变过程,也可以构造连续模型.当我们描述实际对象的某些特性随时间(或空间)而演变的过程,分析它的变化规律,预测它的未来性态时,通常要建立对象的动态模型.建模时首先要根据建模目的和对问题的具体分析作出简化假设,然后按照对象内在的或可以类比的其它对象的规律列出微分方程,求出方程的解并将结果翻译回实际对象,就可以进行描述、分析或预测了. §1 飞机的降落曲线 根据经验,一架水平飞行的飞机,其降落曲线是一条三次抛物线(如图).在整个降落过程中,飞机的水平速度保持为常数u ,出于安全考虑,飞机垂直加速度的最大绝对值不得超过10/g (这里g 是重力加速度).已知飞机飞行高度h (飞临机场上空时),要在跑道上O 点着陆,应找出开始下降点0x 所能允许的最小值. 一、 由题设有 .将上述的四个条件代入y 的 表达式 ??? ????=++='=+++==='==023)()(0)0(0)0(020*******c bx ax x y h d cx bx ax x y c y d y 得 ,0,0,3,22030===-=d c x h b x h a 飞机的降落曲线为 )32(230 20x x x x h y --= 二、 找出最佳着陆点 飞机的垂直速度是y 关于时间t 的导数,故

dt dx x x x x h dt dy )66(20 20--= 其中dt dx 是飞机的水平速度,,u dt dx = 因此 )(60 2 20x x x x hu dt dy --= 垂直加速度为 )12(6)12(6020 202022--=--=x x x hu dt dx x x x hu dt y d 记 ,)(22dt y d x a =则126)(0 202-=x x x hu x a ,[]0,0x x ∈ 因此,垂直加速度的最大绝对值为 202 6)(max x hu x a = []0,0x x ∈ 设计要求 106202 g x hu ≤,所以g h u x 600?≥ (允许的最小值) 例如:小时/540km u =,m h 1000=,则0x 应满足: )(117378 .9100060360010005400m x =??≥ 即飞机所需的降落距离不得小于11737米.

微积分模型

第一篇 微积分模型 在微积分部分的应用实例中,通过对应用问题建模主要培养应用极限、连续、相对变化率、微元、无穷级数、最优化和微分与差分方程等思想解决实际应用问题的能力。 函数的性质包括分段性质、单调性、奇偶性等,由函数的基本性质可以产生对函数进行分类的方法。与函数基本特性相关的应用实例有:市话费是降了还是升了,外币兑换与股票交易中的涨跌停板,库存问题与库存曲线,“另类”的常量函数,蠓虫分类的初等数学模型,核军备竞赛问题等。 数列与函数的极限和函数连续性质是处理变量变化过程的工具,应用重要极限计算连续复利利率的计算,应用函数的连续性和介值定理解决特殊的应用问题。与极限和连续等内容相关的应用实例有:从科赫雪花谈起,复利、连续复利与贴现,出售相同产品的公司为什么喜欢扎堆,椅子为什么能放稳等。 导数、微分是函数的相对变化的极限过程,函数的特性和极值理论可以解决经济管理中的实际应用问题,导数、微分在经济管理中的应用反映为边际、弹性等。相关的应用实例有:影子为什么那么长,边际是什么?弹性是什么?商家应该怎样制定自己的价格策略?不同消费群体的需求弹性问题,机械与人工的调配问题,易拉罐的形状,这批酒什么时候出售最好,该不该接受供货商的优惠条件,作者与出版商的利益冲突等。 微元分析是微积分中一种重要的分析方法,特别是函数的连续求和归结为该函数的积分。与积分和微元分析内容相关的应用实例有:洛伦兹曲线与基尼系数,均匀货币流的总价值与投资回收期的计算,下雪时间的确定,第二宇宙速度是怎样计算出来的等。 离散变量的求和可以用无穷级数来表达,无穷级数的求和是一个极限过程。与无穷级数内容相关的应用实例有:最大货币供应量的计算,政府支出的乘数效应,运用现值计算进行投资项目的评估,谈谈龟兔赛跑悖论 等。 如果影响研究问题的主要因素有两个或者两个以上,则要用多元函数的微积分学来处理,涉及到多元函数偏导数、偏边际、偏弹性和交叉弹性、条件极值等内容。相关的应用实例有:空调销售量的预测,相互关联商品的需求分析,衣物怎样漂洗最干净,拉格朗日乘数与影子价格等。 变量的变化过程可以用微分方程或差分方程来描述,通过对微分方程或差分方程的建立与求解,可以研究变量的形态和变化规律。与微分方程和差分方程相关的应用实例有:人口模型,单种群动物模型,相对封闭环境中的传染病模型,江河污染物的降解系数,怎样计算固定资产的折旧,放射性元素衰变模型,市场上的商品价格是怎样波动的,再谈下雪时间的确定,溶液浓度模型,饲养物的最佳销售时机,信贷消费中每月还款金额的确定,资源的合理开发与利用,从诺贝尔奖谈起,蛛网模型,梵塔问题,平面内直线交点的个数,菲波那契数列的通项公式等。 1

高等数学基础综合练习题精选及答案

试卷代号:7032 上海开放大学2017至2018学年第一学期 《高等数学基础》期末复习题 一.选择题 1.函数2sin(4)2()2 2 x x f x x k x ?-

微积分方法建模药物在体内的分布与排除数学建模案例分析

§10 药物在体内的分布与排除 药物进入机体后,在随血液输送到各器官和组织的过程中,不断地被吸收、分布、代谢,最终排出体外.药物在血液中的浓度()mv g μ称血药浓度.血药浓度的大小直接影响到药物的疗效,浓度太低不能达到预期的治疗效果,浓度太高又可能导致中毒、副作用太强或造成浪费.因此研究药物在体内吸收、分布和排除的动态过程,对于新药研制时剂量的确定、给药方案设计等药理学和临床医学的发展具有重要的指导意义和实用价值. 为了研究目的,将一个机体划分成若干个房室,每个房室是机体的一部分,比如中心室和周边室.在一个房室内药物呈均匀分布,而在不同的房室之间按一定规律进行转移.如果要求的精度不是太高的情况下,可以只考虑一室模型. 模型假设 1.药物进入机体后,全部进入中心室(血液较丰富的心、肺、肾等器官和组织), 中心室的容积在给药过程中保持不变. 2.药物从中心室排出体外,与排除的数量相比,药物的吸收可以忽略. 3.药物排除的速率与中心室的血药浓度成正比. 模型构成与求解 记()t f 0 给药速率 ()t c 中心室血药浓度 ()t x 中心室药量 V 中心室容积 k 排除速率系数 一、求解各种给药方式下血药浓度变化情况 上述各量间有关系 ()kx t f x -=? 0 即 ()t f kx x 0=+? 又 ()()t Vc t x = 得方程 ()()() V t f t kc t c 0=+? (1) 1、 快速静脉注射 设给药量D ,则初始条件()V D c =0,()00=t f (1)的解为 ()t k e V D t c -= (2) 2、恒速静脉注射 设持续时间为τ,注射速率为0k ,则有 ()00k t f =,初始条件()00=c ,()τ≤≤t 0 (t c

微积分与数学建模学习知识情况总结

微积分与数学模型(上册) 任课教师:陈骑兵 小组成员 张程1440610405 王子尧1440610402 李昊奇1440610403 梅良玉1440610426 方旭建1440610406 李柏睿1440610428

第1章 函数,极限与连续 1.1 函数的基本概念 准备知识(掌握集合与区间的相关知识) 函数定义:设x 和y 是两个变量,D 是一个给定的数集。如果对于任意x ∈D , 按照某一法则f ,变量y 都有确定的值和它对应,则称f 为定义在D 上的函数,数集D 称为函数的定义域,x 称为自变量,y 称为因变量。与x 对应的y 的值记做f(x),称为函数f 在x 处的函数值。D 上所有的数值对应的全体函数值的集合称为值域 函数特性: 1:函数的有界性 设f(x)在集合X 上有定义,若存在M>=0,使得对任意x 属于X 都有f(x 的绝 对值<=M, 则称函数f(x 在)X 上有界;否则,称函数f(x)在X 上无界。 2:函数的单调性 3:函数的奇偶性 4:函数的周期性 5:分段函数 6:复合函数 1.2初等函数 常值函数 如:y=C,C 为常数; 幂函数 如:y=x α,α∈R 为常数; 指数函数 如:y=a x ,a>0且a ≠1; 对数函数 如:y=a x log ,a>0且a ≠1; 三角函数 如:y=sinx,y=cosx,y=tanx ; 反三角函数 如:y=arcsinx,y=arccosx,y=arctanx ; 以及双曲函数 1.3 极限的概念 (1) .极限的直观定义:当x 接近于某个常数x 0但不等于x 0时,若f(x)趋向于 常数A ,则 称A 为f(x)当x 趋向于x 0时的极限。 (2) .极限的精确定义:给定函数f(x)和常数A ,若对于?ε>0(无论ε多么小),总彐δ>0,使得当0<|x-x 0|<ε,则称A 为f(x)当x 趋于x 0时的极限,记做

微积分一练习题及答案

《微积分(1)》练习题 一.单项选择题 1.设()0x f '存在,则下列等式成立的有( ) A . ()()()0000 lim x f x x f x x f x '=?-?-→? B .()()()0000lim x f x x f x x f x '-=?-?-→? C .()()()0000 2lim x f h x f h x f h '=-+→ D .()()()00002 1 2lim x f h x f h x f h '=-+→ 2.下列极限不存在的有( ) A .201 sin lim x x x → B .12lim 2+-+∞→x x x x C . x x e 1 lim → D .() x x x x +-∞ →63 2 21 3lim 3.设)(x f 的一个原函数是x e 2-,则=)(x f ( ) A .x e 22-- B .x e 2- C .x e 24- D . x xe 22-- 4.函数?? ? ??>+=<≤=1,11,110,2)(x x x x x x f 在[)+∞,0上的间断点1=x 为( )间断点。 A .跳跃间断点; B .无穷间断点; C .可去间断点; D .振荡间断点 5. 设函数()x f 在[]b a ,上有定义,在()b a ,内可导,则下列结论成立的有( ) A . 当()()0

数学建模模型与应用

Mathematica软件常用功能 【实验目的】 1. 用Mathematica软件进行各种数学处理; 2. 用Mathematica软件进行作图; 3. 用Mathematica软件编写程序. 【注意事项】 Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名。 系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Conjugate[z]等。 乘法即可以用*,又可以用空格表示,如2 3=2*3=6 ,x y,2 Sin[x]等;乘幂可以用“^”表示,如x^0.5,Tan[x]^y。 自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。当你赋予变量任何一个值,除非你明显地改变该值或使用Clear[变量名]或“变量名=.”取消该值为止,它将始终保持原值不变。 一定要注意四种括号的用法:()圆括号表示项的结合顺序,如 (x+(y^x+1/(2x)));[]方括号表示函数,如Log[x],BesselJ[x,1];{}大括号表示一个“表”(一组数字、任意表达式、函数等的集合),如 {2x,Sin[12 Pi],{1+A,y*x}};[[]]双方括号表示“表”或“表达式”的下标,如a[[2,3]]、{1,2,3}[[1]]=1。 Mathematica的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔)。当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果。 命令行“Shift+Enter”才是执行这个命令。

相关文档
相关文档 最新文档